EP0730082B1 - Bohrkrone für drehschlagendes Bohren von vorzugsweise Gestein, Beton oder dergleichen - Google Patents

Bohrkrone für drehschlagendes Bohren von vorzugsweise Gestein, Beton oder dergleichen Download PDF

Info

Publication number
EP0730082B1
EP0730082B1 EP96102389A EP96102389A EP0730082B1 EP 0730082 B1 EP0730082 B1 EP 0730082B1 EP 96102389 A EP96102389 A EP 96102389A EP 96102389 A EP96102389 A EP 96102389A EP 0730082 B1 EP0730082 B1 EP 0730082B1
Authority
EP
European Patent Office
Prior art keywords
drill bit
drill
contour
base
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96102389A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0730082A2 (de
EP0730082A3 (de
Inventor
Bernhard Moser
Hans P. Meyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch Power Tools GmbH
Original Assignee
Hawera Probst GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hawera Probst GmbH filed Critical Hawera Probst GmbH
Publication of EP0730082A2 publication Critical patent/EP0730082A2/de
Publication of EP0730082A3 publication Critical patent/EP0730082A3/de
Application granted granted Critical
Publication of EP0730082B1 publication Critical patent/EP0730082B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/04Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs
    • B28D1/041Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs with cylinder saws, e.g. trepanning; saw cylinders, e.g. having their cutting rim equipped with abrasive particles
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/02Core bits
    • E21B10/04Core bits with core destroying means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/44Bits with helical conveying portion, e.g. screw type bits; Augers with leading portion or with detachable parts
    • E21B10/445Bits with helical conveying portion, e.g. screw type bits; Augers with leading portion or with detachable parts percussion type, e.g. for masonry
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/48Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of core type
    • E21B10/485Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of core type with inserts in form of chisels, blades or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/24Drilling using vibrating or oscillating means, e.g. out-of-balance masses

Definitions

  • the invention relates to a drill bit for rotary impact Drilling preferably rock, concrete or the like after the preamble of claim 1.
  • Drill bits of the type listed above are already known become where the drill bit bottom is essentially in a straight line perpendicular to the axis of rotation or slightly to Drilling side inclined, extending radially outwards. With these Embodiments generally follow the outer contour of the Core bottom in essential sections of the contour of the Inside of the bottom of the drill bit.
  • the present invention therefore has the problem of Optimization of a drill bit, especially when rotary drilling. In essence, it should the impact energy applied to the shank like already mentioned, with the highest possible efficiency, i.e. low losses to break up the rock become.
  • the problem of implementing the impact energy is for example in the patent DE 30 49 135 C2 Applicant discussed.
  • the development goes along Drill bits to the point that the inert mass as a whole increases is to shrink the energy with as possible to implement low losses in drilling work.
  • the bottom of the drill bit, the shank and in particular also the wall sections of the crown part increasingly low-mass, i.e. run thinner to low Generate inertial counter forces.
  • DE 29 13 501 A1 discloses a hollow drill with a drill bit become known with an essentially radial extending inner drill bit bottom.
  • a drill bit becomes known with an essentially radial extending inner drill bit bottom.
  • a cone-shaped breaking tool which at the same time as a central holder for the center drill serves.
  • the bottom of the drill bit itself is flat educated.
  • this The well-known drill bit is the central cylinder shoulder for Inclusion of the center drill as a flat stop surface educated.
  • the invention has for its object the disadvantages of to eliminate known drill bits and in particular the Efficiency or the drilling properties of a Drill bit under the aspect of vibration control too improve.
  • This task is characterized by the characteristics of the Claim 1 and independent ancillary claims 8, 15 or 21 solved.
  • the essence of the invention is that a drill bit, in particular for rotary drilling of preferably rock, concrete or the like is used and essentially from one thin-walled cylindrical drill body open to the drilling side and a substantially radially extending one Drill bit base with axially arranged drill bit shank for The drill bit is fastened with a drill bit base is provided, the outer contour in the radial direction has a curve that follows at least one Has inflection point.
  • the bottom of the drill bit is excited by the boring machine Impact movement with particularly little loss on the cylindrical drill body transferred.
  • the invention From a physical point of view, the bottom of the drill bit has a lower one Damping as a standard type of drill bit base.
  • the a drill bit according to the invention compared to conventional Embodiments more balanced mass flow in the axial Direction.
  • This applies in particular to designs in which a predominantly on the drill bit shaft horizontal drill bit bottom follows. This is on the interface between the drill bit shank and the bit bit base a cross-sectional jump by a factor of 10, for example and when looking at small ones perpendicular to the axis of rotation lying disc elements thus also a corresponding Mass jump.
  • conventional designs at this point a starting impact pulse partially reflected or partially attenuated, so that up a considerable loss of transmission to the drill body Stroke movement occurs.
  • the curve shape that the The outer contour of the drill bit base is determined via the radius from the core bit to the outside a dampened decaying Is vibration. This way one becomes special uniform mass distribution of drill bit shank over Drill bit bottom reached to the drill body, being particularly low attenuation losses in the transmission of Impact impulses from a boring machine occur.
  • the wall thickness of the Bit bottom at least in the radially outer section in Range of the wall thickness of the cylindrical drill body is advantageous.
  • the bottom of the drill bit in the wall thickness of the cylindrical Drilling body is executed, can be up to 30% material save and can also be a particularly uniform Mass distribution in the drill bit in a corresponding manner good drilling performance results can be achieved.
  • the drill bit bottom has an outer contour that in the radial direction Minimum passes through, with the bottom of the drill bit rising radially outer curve section of its contour with the cylindrical drill body is connected.
  • This is special then advantageous if drill bits with a relatively small size Diameter can be made.
  • the Outer contour of the drill bit base is not a complete one Curve shape corresponding to that in claim 1 is described, but already takes place reach the turning point in the cylindrical drill body about.
  • the contour of the Drill bit bottom results in a significant improvement in Drilling performance for the same reasons mentioned above.
  • the contour of the inside of the drill bit base in the radially inner area for training of a conical cavity up to the receiving point for example a center drill at an angle upwards Direction of the drill bit shaft runs.
  • the conical cavity can dodge cuttings that at the Pre-crush small pieces of rock just before the greatest drilling depth by at least one from the contour protrusion protruding from the inside of the bottom of the drill bit arises. This means that the core bit cannot only be used to the full Penetration depth, but there are also deflagrations of Drill dust prevented at a greater drilling depth.
  • a drill bit should now a conveyor spiral construction can be realized at which the outer conveyor helix a drilling dust removal groove has, on the one hand towards the shaft end has increasing slope. This is supposed to be one of the end of the drilling tool Set an increase in the width of the drilling dust groove. on the other hand the back width of the conveyor spiral bars should be as small as possible or be narrow, with a largely constant width.
  • a variation of the Groove depth with a larger groove depth on the tool head in the Cutting area and a continuously removable groove depth, if necessary in the direction of the clamping shaft also results in an enlargement of the groove volume in the area of small groove pitch and one Solidification of the drill bit in the area towards the end of the shaft due to increasing wall thickness.
  • Fig. 1 is a diagram with three different ones Curves shown, for example the Outer contour of a drill bit base for three different ones Determine diameter.
  • the diagram describes the horizontal x-axis the radial and the vertical y-axis the axial Curve.
  • the curves can be through the present mathematical function 1 analytically.
  • the Curve course 2 can be used, for example, for the radial course the outer contour of a drill bit bottom of a drill bit with a diameter of 80 mm, the curve 3 for one Core bit with a diameter of 90 mm and the Curve course 4 for a core bit with a diameter of 100 mm can be used.
  • the associated parameters b2, b3 and c3 of function 1 indicated the respective curve shape to obtain.
  • the three curves are a dampened decaying vibration.
  • the Curve course 2 a turning point and the curve courses 3 or 4 due to the adaptation to a larger one Drill bit diameter two turning points.
  • the drill bit is a first embodiment of a Drill bit according to the invention in cross section through the Shown axis of rotation.
  • the drill bit consists of one Drill bit shaft 6, a bore 7 for receiving a Center drill, a drill bit base 8, the outer and Inner contour of a curve corresponding to a damped decaying vibration and the cylindrical, thin-walled drill body open to the drill side 9.
  • Die Wall thickness of the drill bit base 8 is essentially radial sections in the area of the wall thickness of the Drill body 9.
  • the drill bit is made in one piece, can however, in other embodiments also be in several pieces.
  • the inner contour of the drill bit base 8 has Just before breaking down the material to be drilled the maximum drilling depth from the contour of the inside protruding annular bead 10.
  • the annular bead is determined by the curve of the interior or
  • the outer contour of the drill bit base is determined.
  • the contour of the inside runs to accommodate drilling dust of the drill bit base 8 in the radially inner region 11 Formation of a conical cavity 12 to Location of the center drill 7 obliquely upwards.
  • 3 is representative of small diameters one Drill bit a second embodiment of the invention shown.
  • the embodiment also has one Drill bit shaft 13, a bore for receiving a Center drill 14, a drill bit base 15, which, however, in Difference from the first embodiment an outer contour owns that from a broken muted decaying Vibration exists and therefore has no turning point, however passes through a minimum in the radial direction, the Drill bit bottom in the ascending curve section of its Outer contour connected to the cylindrical drill body 16 is.
  • the second exemplary embodiment also has one conical cavity 17 and an annular bead 18.
  • a third embodiment of the invention for average drill bit diameter of approximately 80 mm is in Fig. 4 shown.
  • Side view of the ring-shaped bead is particularly clear 19 and the curve of the outer contour of the drill bit base 20 visible with a turning point.
  • a striking motion stimulated by a boring machine is on the drill bit shaft 6, 13, 101, Drill bit base 8, 15, 20 on the drill body 9, 16, 106 transfer.
  • the execution of the invention The bottom of the drill bit enables a swinging movement of the Drill body 9, 16, 106 relative to drill bit shank 6, 13, 101. This makes an incoming shock wave particularly small attenuated.
  • the drill bit 100 shown in FIGS. 4 and 5 has a coaxial insertion shaft 101, a pot-like drill body or a pot-like crown part 102, the end 103 of which on the end face or opposite the insertion shaft has only indicated cutting edges 104 in a known manner for workpiece machining.
  • the coaxial insertion shaft 101 merges via a previously described thin-walled drill bit base 20 into a thin-walled cylindrical wall part 106 which has a conveying helix 108 on its outer contour 107.
  • the preferably single-start conveyor spiral 108 consists of a spiral drilling groove 109 with a groove width n1 to n4 with a core diameter D 2 and axially adjoining conveyor spiral webs 110 with a web back width r1 to r4 and an outer diameter D 1 .
  • the outer diameter or nominal diameter D N of the drill bit is determined by the arrangement of the cutting teeth 104 in the end region of the wall part 106.
  • This outer diameter D N is somewhat larger than the outer diameter D1 of the conveying spiral 108, which is formed by the outer diameter of the conveying spiral webs 110.
  • the groove depth t of the drilling dust groove 109 is in the range t ⁇ 1 to 1.5 mm.
  • the wall thickness s of the cylindrical wall part 106 is of the order of magnitude s ⁇ 5 mm. This applies to a drill bit with a nominal diameter of D N ⁇ 80 mm.
  • the groove depth t can be constant or variable. In the latter case, a larger groove depth t 1 is selected in the area of the drill head 103 to increase the groove volume. This groove depth then decreases continuously in the direction of the shaft end to a value t 2 , with a simultaneous increase in the wall thickness s, ie a core reinforcement of the helix. This results in an overall solidification of the drill bit.
  • the values t 1 1.5 mm and t 2 ⁇ 1 mm can of course be optimized in another order of magnitude depending on the embodiment.
  • the drilling dust groove 109 has a changing slope ⁇ 1 to ⁇ 4, where ⁇ 1 ⁇ 1 to 3 °. The slope then increases to the bottom of the drill bit to a value of ⁇ 5 ⁇ 10 to 15 °.
  • the start of the feed spiral groove is shown with reference number 111.
  • This feed helix groove 111 lies only slightly axially above the symbolically illustrated arrangement of a cutting tooth 104, so that there is a large free cut in the front area of the drill bit.
  • the front wall section 112 lying in front of the foremost conveying spiral groove 109 ' has an outer diameter D 1 which corresponds to the outer diameter of the conveying spiral webs 110. This enlarged diameter area results in an increased wall thickness for receiving the cutting teeth 104 and thus an increased strength of this area.
  • the width n1 to n4 of the drill dust groove 109 should preferably increase continuously, so that the volume of the respective drill dust groove increases continuously. In this way, enough drilling dust can be absorbed, which is quickly removed due to the increasing drilling dust pitch. In spite of only a small depth t of the drilling dust grooves, which are essentially rectangular in cross section, there is no drilling dust backlog.
  • the nominal diameter of the drill bit depends on the lateral projection of the cutting teeth 104 and is D N ⁇ 80 mm.
  • the outer diameter of the spiral conveyor webs is D1 ⁇ 78 mm, the core diameter of the drilling dust grooves 109 is D 2 ⁇ 76 mm. These dimensions are matched to one another in such a way that the groove depth t is set to approximately 1 to 1.5 mm.
  • the groove depth can also be variable.
  • the inner diameter of the pot-like crown part 110 is D 3 ⁇ 68 mm, which leads to a constant or variable wall thickness s ⁇ 3.5 to 5 mm, measured between the inner wall 113 and the outer diameter D 1 of the conveying spiral web 110.
  • the start of the groove 111 is approximately at a height h 3 ⁇ 5 mm above the lower edge 114 of the drill bit.
  • the groove width n1 in the front area of the drill bit begins with a dimension n1 ⁇ 4 to 6 mm and increases continuously to a dimension n4 ⁇ 10 to 15 mm.
  • the web width r2 to r5 ⁇ 5 mm constant.
  • the height h1 of the drill bit from the front to the Crown base 20 is h1 ⁇ 75 mm, the inner height of the Face 114 up to the inner crown base h2 ⁇ 68 mm.
  • each Bohrmehlnut 109 has a bevel with a Angle ⁇ ⁇ 20 °.
  • the lower edge 116 is relative sharp-edged, i.e. radially directed or perpendicular to Surface trained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Drilling Tools (AREA)
EP96102389A 1995-03-03 1996-02-17 Bohrkrone für drehschlagendes Bohren von vorzugsweise Gestein, Beton oder dergleichen Expired - Lifetime EP0730082B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19507487 1995-03-03
DE19507487A DE19507487A1 (de) 1995-03-03 1995-03-03 Bohrkrone für drehschlagendes Bohren von vorzugsweise Gestein, Beton oder dergleichen

Publications (3)

Publication Number Publication Date
EP0730082A2 EP0730082A2 (de) 1996-09-04
EP0730082A3 EP0730082A3 (de) 1998-02-04
EP0730082B1 true EP0730082B1 (de) 2002-05-29

Family

ID=7755572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96102389A Expired - Lifetime EP0730082B1 (de) 1995-03-03 1996-02-17 Bohrkrone für drehschlagendes Bohren von vorzugsweise Gestein, Beton oder dergleichen

Country Status (4)

Country Link
US (1) US5791424A (ja)
EP (1) EP0730082B1 (ja)
JP (2) JPH08260863A (ja)
DE (2) DE19507487A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203088A1 (de) 2012-02-29 2013-08-29 Robert Bosch Gmbh Bohrkrone

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654597B4 (de) * 1996-12-20 2006-11-09 Robert Bosch Gmbh Bohrkrone
DE19753731A1 (de) 1997-12-04 1999-06-10 Hawera Probst Gmbh Gesteinsbohrwerkzeug
US6494276B1 (en) * 1998-04-24 2002-12-17 Gator Rock Bits, Inc. Rock auger with pilot drill
DE19915304B4 (de) * 1999-03-22 2006-07-27 Robert Bosch Gmbh Bohrwerkzeug
GB2427843B (en) * 2005-10-24 2008-05-07 C4 Carbides Ltd Drill bit
US7740088B1 (en) * 2007-10-30 2010-06-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ultrasonic rotary-hammer drill
EP2153880A1 (en) * 2008-07-31 2010-02-17 Urea Casale S.A. Process and plant for the production of a urea solution for use in SCR process for reduction of Nox
DE102012212042A1 (de) * 2012-07-10 2014-01-30 Robert Bosch Gmbh Bohrkrone
US9820757B2 (en) * 2013-04-12 2017-11-21 Greatbatch Ltd. Instrument for reshaping the head of a femur
CN103628819B (zh) * 2013-11-20 2016-04-20 中国石油集团渤海钻探工程有限公司 一种近钻头扭转冲击器
CN104196460B (zh) * 2014-08-25 2017-05-03 江苏长城石油装备制造有限公司 一种用于天然气岩芯钻探的回转组合式pdc钻头
US10005137B2 (en) 2015-10-22 2018-06-26 Y. G-1 Tool. Co. Cutting tool
CN105569573A (zh) * 2015-12-15 2016-05-11 武汉地大长江钻头有限公司 适用于月球钻探取心的pdc钻头
CN105735901A (zh) * 2016-05-06 2016-07-06 中铁大桥局集团第四工程有限公司 一种旋挖钻机的组合钻具
CN113369502B (zh) * 2021-06-28 2022-05-06 成都飞机工业(集团)有限责任公司 一种超薄壁衬套的车削加工方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1559680A (en) * 1920-10-30 1925-11-03 Denne Mark Thomas Rotary knife or cutter
US1572386A (en) * 1923-07-16 1926-02-09 Leroy G Gates Rotary drill bit
DE841892C (de) * 1950-12-12 1952-06-19 Deilmann Bergbau G M B H C Verfahren und Vorrichtung zur Herstellung von Kern-Bohrloechern grossen Durchmessers
US3127944A (en) * 1959-09-04 1964-04-07 Frank F Davis Drilling saw
US3055443A (en) * 1960-05-31 1962-09-25 Jersey Prod Res Co Drill bit
US3845830A (en) * 1973-02-22 1974-11-05 Texaco Inc Method for making high penetration rate drill bits and two bits made thereby
DD134591A1 (de) * 1976-07-30 1979-03-07 Andreas Wolf Schaltungsanordnung zur codierung und decodierung von farbfernsehsignalen
DE2735368C2 (de) * 1977-08-05 1986-08-21 Hawera Probst Gmbh + Co, 7980 Ravensburg Gesteinsbohrkrone mit einem Hartmetall-Bohrkopf
DE2913501A1 (de) * 1979-04-04 1980-10-16 Bosch Gmbh Robert Hohlbohrer mit bohrkrone
DE3049135A1 (de) * 1980-12-24 1982-07-15 Hawera Probst Gmbh + Co, 7980 Ravensburg Bohrer, insbesondere gesteinsbohrer
DE3317989A1 (de) * 1983-05-18 1984-11-22 Hawera Probst Gmbh + Co, 7980 Ravensburg Bohrwerkzeug
DE3705717A1 (de) * 1987-02-23 1988-09-01 Erich Wezel Dosensenker oder hohlbohrkrone sowie herstellungsverfahren hierfuer
SU1653910A1 (ru) * 1988-07-05 1991-06-07 Предприятие П/Я М-5612 Сверло
US5015128A (en) * 1990-03-26 1991-05-14 Ross Jr Donald C Rotary drill apparatus
US5213456A (en) * 1991-09-19 1993-05-25 Lee Valley Tools, Ltd. Plug cutter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203088A1 (de) 2012-02-29 2013-08-29 Robert Bosch Gmbh Bohrkrone
EP2633931A2 (de) 2012-02-29 2013-09-04 Robert Bosch Gmbh Bohrkrone
EP2633931A3 (de) * 2012-02-29 2016-08-17 Robert Bosch Gmbh Bohrkrone

Also Published As

Publication number Publication date
EP0730082A2 (de) 1996-09-04
JPH08260863A (ja) 1996-10-08
JP3950151B2 (ja) 2007-07-25
EP0730082A3 (de) 1998-02-04
JP2006096048A (ja) 2006-04-13
DE19507487A1 (de) 1996-09-05
US5791424A (en) 1998-08-11
DE59609243D1 (de) 2002-07-04

Similar Documents

Publication Publication Date Title
EP0730082B1 (de) Bohrkrone für drehschlagendes Bohren von vorzugsweise Gestein, Beton oder dergleichen
DE3339211C2 (ja)
EP0363734B1 (de) Bohrwerkzeug mit Förderwendel
EP0126409B2 (de) Bohrwerkzeug
DE69817276T2 (de) Wendelbohrer
DE4307553A1 (en) Two fluted twist drill - has thick-webbed spiral fluted section at front end which runs out into thin-webbed straight-fluted section with wider flutes at rear end
EP1687126B1 (de) Bohr- und/oder meisselwerkzeug
WO2016150534A1 (de) Bohrer für das bohren von laminaten
DE3742661A1 (de) Gesteinsbohrer
DE2735368C2 (de) Gesteinsbohrkrone mit einem Hartmetall-Bohrkopf
DE60106587T2 (de) Schlagbohrmeissel
EP3656494A1 (de) Stufenbohrer
DE4236553A1 (de) Gesteinsbohrer
EP0003815B1 (de) Bohrkopf eines Drehschlagbohrers
DE3020284A1 (de) Wendelbohrer
EP0891832B1 (de) Bohrer
EP0351493B1 (de) Steinbohrer
DE3118691C2 (ja)
DE3633628C2 (ja)
DE4301708C2 (de) Gesteinsbohrer
DE4303590C2 (de) Gesteinsbohrer
DE19537900B4 (de) Drehbohrer
EP1188897B1 (de) Gesteinsbohrer
DE3620389C2 (ja)
EP0607937A1 (de) Gesteinsbohrwerkzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE DK FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE DK FR GB IT

17P Request for examination filed

Effective date: 19980723

17Q First examination report despatched

Effective date: 20000330

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAWERA PROBST GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020529

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59609243

Country of ref document: DE

Date of ref document: 20020704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020829

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020828

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090223

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130315

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130426

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59609243

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59609243

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228