EP0718814B1 - Verfahren und Anordnung zum Detektieren einer Flamme - Google Patents

Verfahren und Anordnung zum Detektieren einer Flamme Download PDF

Info

Publication number
EP0718814B1
EP0718814B1 EP94120083A EP94120083A EP0718814B1 EP 0718814 B1 EP0718814 B1 EP 0718814B1 EP 94120083 A EP94120083 A EP 94120083A EP 94120083 A EP94120083 A EP 94120083A EP 0718814 B1 EP0718814 B1 EP 0718814B1
Authority
EP
European Patent Office
Prior art keywords
frequency
periodic
flame
signals
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94120083A
Other languages
English (en)
French (fr)
Other versions
EP0718814A1 (de
Inventor
Dr. Marc Pierre Thuillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8216544&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0718814(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Priority to EP94120083A priority Critical patent/EP0718814B1/de
Priority to AT94120083T priority patent/ATE203118T1/de
Priority to DE59409799T priority patent/DE59409799D1/de
Priority to AU37810/95A priority patent/AU703685B2/en
Priority to CZ19953218A priority patent/CZ289921B6/cs
Priority to CN95120895A priority patent/CN1099660C/zh
Priority to US08/574,773 priority patent/US5594421A/en
Publication of EP0718814A1 publication Critical patent/EP0718814A1/de
Publication of EP0718814B1 publication Critical patent/EP0718814B1/de
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/183Single detectors using dual technologies
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/02Mechanical actuation of the alarm, e.g. by the breaking of a wire

Definitions

  • the present invention relates to a method for detecting a flame Analysis of the change in intensity of the radiation emitted by a radiation source, an evaluation of the flicker frequency spectrum of the radiation takes place and outside signals lying in a specific frequency band are evaluated as interference signals become.
  • Methods of this type use the typical flickering of the flames in one low frequency vibration range as a feature to distinguish between the radiation and interference radiation emitted by a flame.
  • the definition of the frequency band in the simplest case it is carried out by the sensor for the emitted radiation upstream filter or frequency-selective amplifier connected downstream, in both cases a certain pass band of, for example, 5 to 25 Hz is obtained. Even if the frequency band is optimally matched to the flickering of flames malfunctions and false reports are relatively common because it happens again and again that random changes in intensity of the ambient radiation in the pass band lie. Such changes in intensity can be caused, for example, by shadowing or reflections from vibrating or slowly moving objects Reflections of sunlight on water surfaces or from flickering or fluctuating Light sources may be caused.
  • the invention is now intended to specify a method of the type specified at the outset be what a clear and secure identification and thus elimination of interference radiation and thus has a high false alarm security, and which is also as universal as possible.
  • This object is achieved according to the invention in that when evaluating the Flicker frequency spectrum determines the center and cut-off frequency and according to periodic and non-periodic signals is distinguished, and that periodic signals with a center frequency above a first and non-periodic signals with a Cut-off frequency above a second frequency value are evaluated as interference signals, the first frequency value being determined by the flickering frequency of a stationary flame a size corresponding to the minimum size to be detected is determined and the second frequency value greater than the first is selected.
  • each flame can have two states, namely a steady state, which is usually then exists when the flame burns stable and undisturbed (so-called periodic Flame), and a quasi-steady state in which the flame burns unstably (so-called non-periodic flame), and that on the other hand a periodic flame Frequency spectrum with a pronounced frequency peak and a non-periodic Flame has a broadband spectrum with a maximum or limit frequency.
  • the invention further relates to a flame detector with means for carrying out the mentioned method, with at least one sensor for the from the radiation source emitted radiation, and with a downstream of the at least one sensor Evaluation electronics.
  • the flame detector according to the invention is characterized in that that the evaluation electronics means for analyzing the received radiation and their center and cut-off frequency and to link the radiation received corresponding sensor signals with these frequencies.
  • a preferred embodiment of the flame detector according to the invention is thereby characterized in that the said means formed by a microprocessor and that this microprocessor contains a fuzzy controller.
  • the fully drawn spectrum with the pronounced peak has a center frequency ⁇ mp and an upper limit frequency ⁇ gp , where: ⁇ gp ⁇ ⁇ mp
  • a spectrum of this type is typical of an undisturbed and stable burning, so-called periodic flame, the center frequency ⁇ mp with a flame diameter of 10 cm being below 5 Hz and slowly decreasing with increasing diameter.
  • the broadband spectrum indicated by a dashed envelope also has a center frequency and a cutoff frequency, which are denoted by ⁇ mc and ⁇ gc .
  • Such a broadband spectrum is typical of a flame in an unstable or non-steady state; Such a flame is referred to below as non-periodic.
  • the cutoff frequency ⁇ gc of the broadband spectrum is higher than the center frequency ⁇ mp of the periodic flame. So the following applies: ⁇ gc > ⁇ mp
  • the occurrence of the cut-off frequency ⁇ gc in a non-periodic flame can be explained as follows: If a flame burns undisturbed and is in the steady state, then the convection cells forming this flame are also stationary in number and size, and the flame has a constant flickering frequency ⁇ 1 , where ⁇ 1 ⁇ ⁇ mp ⁇ ⁇ gp . If, however, the flame is exposed to external influences such as wind, the convection cells can divide or they can form aggregates of several cells, both processes being subject to a limit.
  • K denotes a factor, g the gravitational pull and D the size of the flame, expressed by the diameter of the bowl-shaped container in which a liquid burns with a flame of the relevant size.
  • Formula 5 gives a value of 4.7 Hz for a shell diameter of 0.1 m for ⁇ o . If you measure the flicker frequency, you get lower values.
  • the minimum diameter of the fire or fire to be detected is first determined. If this is to be 10 cm, for example, then the frequency ⁇ mp ⁇ ⁇ gp of a periodic flame is below 5 Hz and the cut-off frequency ⁇ gc of the same size non-periodic flame will certainly not be above 15 Hz. Then two limit values G 1 and G 2 are set for periodic and non-periodic interference signals; the limit value G 1 for periodic interference signals preferably according to Formula 2 with G 1 > ⁇ mp , i.e. at about 5 Hz, and the limit value G 2 for non-periodic interference signals according to Formula 3 with G 2 > 3 ⁇ mp, for example at about 15 Hz.
  • the signal generated by the sensor of the detector is examined for its periodicity and assigned to one of the two classes periodically or non-periodically and compared with the relevant limit value G 1 or G 2 and evaluated as an interference signal when the limit value is exceeded.
  • the signal is examined for periodicity or non-periodicity, for example, by forming the difference between the cutoff frequency minus the center frequency and dividing this difference by the cutoff frequency. If the quotient is in the order of one, then it is a non-periodic signal; if it is well below one, then it is a periodic signal.
  • fuzzy logic This type of signal evaluation would largely suppress potential Interference signals and thus a high level of false alarm security are guaranteed. You can do that False alarm security and reliability further improve if you evaluate the signal using fuzzy logic.
  • fuzzy logic The basics of fuzzy logic will be as known (see for example the book “Fuzzy Set Theory and its Applications "by H.-J. Zimmermann, Kluver Academic Publishers, 1991 or the European patent application EP-A-646901 by Cerberus AG) which was published on April 5, 1995 and has a priority date of October 4, 1993. It is only here recalls that the central concept of fuzzy logic is the fuzzy sets or unsharp ones Are sets, with the membership of elements in a fuzzy set by the so-called membership or membership function is defined. While at sharp sets mean one belonging and zero not belonging in the fuzzy sets as values for the membership function are not just zero and one, but any values in between allowed.
  • each input variable which is one of the signals mentioned above, at least one so-called membership function depicted as a matrix.
  • the x scaling this function has an equivalent in the respective signal, and the y scaling corresponds to the truth content or the degree of approximation to the respective Statement and can take any value from 0 to 1.
  • the determination of the frequencies ⁇ m and ⁇ g can be done with a fast Fourier transform (FFT) or with simpler and / or faster methods such as zero crossing (determination of the zero crossings) or determination of the distance between the peaks or wavelet analysis or spectral analysis (see also M. Kunt: Traitement Numérique des Signaux, Presses Polytechniques Romandes).
  • FFT fast Fourier transform
  • simpler and / or faster methods such as zero crossing (determination of the zero crossings) or determination of the distance between the peaks or wavelet analysis or spectral analysis
  • Flame detectors are known to detect the flame radiation of possible fire locations, this flame radiation, which is heat and thus infrared radiation, reaches the detector through direct or indirect radiation.
  • the detectors usually contain two pyroelectric sensors that are sensitive to two different wavelengths.
  • the first sensor reacts to the infrared active flame gases in the characteristic CO 2 spectral range from 4.1 to 4.7 ⁇ m, which are formed when carbonaceous materials are burned off, and the second sensor measures the infrared energy in the wavelength range from 5 to 6 ⁇ m, which is caused by interference sources such as sunlight. artificial light or radiant heaters.
  • FIG. 3 shows a highly simplified block diagram of a flame detector according to the invention, which essentially consists of an infrared-sensitive sensor 1, an amplifier 2 and a microprocessor or microcontroller 3 containing an A / D converter.
  • a filter 4 is connected upstream of the sensor 1, which has an impedance converter, and is only permeable for radiation from the characteristic CO 2 spectral range mentioned, preferably for a wavelength of 4.3 ⁇ m.
  • the radiation of this wavelength incident on the sensor 1 generates a corresponding voltage signal at the output of the sensor, which after amplification in the amplifier 2 reaches the microprocessor 3 and is evaluated there.
  • This microprocessor now defines the three variables square signal x i 2 , center frequency ⁇ m and cut-off frequency ⁇ g and evaluates these variables, the signal evaluation being able to take place in the first way already mentioned or by means of fuzzy logic.
  • the microprocessor (microcontroller) 3 contains a fuzzy controller, the rule base in a known manner with the fuzzy rules given above and includes an inference engine.
  • the flame detector can also have more than one sensor, for example 2 sensors.
  • the flame detector described has the advantage that the examination of the periodicity of the flicker frequency and the determination of the center and cut-off frequency and their comparison with the two frequency values G 1 and G 2 provides a simple criterion for distinguishing between useful radiation and interference radiation.
  • the signal evaluation using fuzzy logic offers the additional advantage that relatively simple algorithms can be used, as a result of which the computation and storage effort remains within a modest framework.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Detektion einer Flamme durch Analyse der Intensitätsänderung der von einer Strahlungsquelle ausgesandten Strahlung, wobei eine Auswertung des Flackerfrequenzspektrums der Strahlung erfolgt und ausserhalb eines bestimmten Frequenzbandes liegende Signale als Störsignale bewertet werden.
Verfahren dieser Art benutzen also das typische Flackern der Flammen in einem sehr niederfrequenten Schwingungsbereich als Merkmal zur Unterscheidung zwischen der von einer Flamme ausgesandten Strahlung und Störstrahlung. Die Festlegung des Frequenzbandes erfolgt im einfachsten Fall durch dem Sensor für die ausgesandte Strahlung vorgeschaltete Filter oder durch diesem nachgeschaltete frequenzselektive Verstärker, wobei in beiden Fällen ein bestimmter Durchlassbereich von beispielsweise 5 bis 25 Hz erhalten wird. Selbst wenn das Frequenzband optimal auf das Flackern von Flammen abgestimmt ist, sind Störungen und Fehlanzeigen relativ häufig, weil es immer wieder vorkommt, dass zufällige Intensitätsänderungen der Umgebungsstrahlung im Durchlassbereich liegen. Derartige Intensitätsänderungen können beispielsweise durch Abschattungen oder Reflexe von vibrierenden oder sich langsam bewegenden Gegenständen, durch Reflexe des Sonnenlichts an Wasseroberflächen oder durch flackernde oder schwankende Lichtquellen verursacht sein.
In der US-A-3,739,365 ist ein Verfahren der eingangs genannten Art beschrieben, bei dem die Anfälligkeit auf Störlicht dadurch verbessert wird, dass zwei Typen von Sensoren mit unterschiedlicher spektraler Empfindlichkeit verwendet werden und die Differenz der Ausgangssignale der Sensoren in einem begrenzten niederfrequenten Schwingungsbereich gebildet wird.
Die praktische Erfahrung hat gezeigt, dass die Möglichkeit der Beeinflussung durch andere Strahlungsquellen und damit auch die Wahrscheinlichkeit von Fehlalarmen noch immer relativ gross ist, weil nämlich das Auftreten von Störstrahlung im kritischen Frequenzbereich nicht ausgeschlossen werden kann. Aus diesem Grund ist bei modernen Flammenmeldem der kritische Frequenzbereich auf wenige, sehr schmale Frequenzbänder beschränkt. So werden beispielsweise bei einem in der US-A-4,280,058 beschriebenen Flammenmelder nur Emissionen im Wellenlängenbereich von etwa 4,4 µm, das ist der für die Verbrennung von Kohlendioxid typische Spektralbereich, für die Alarmierung ausgewertet, was aber nicht ausschliesst, dass eine gerade in diesem Spektralbereich auftretende Störstrahlung einen Fehlalarm auslösen kann.
Bei einem in der US-A-4,866,420 beschriebenen Verfahren der eingangs genannten Art wird das Ausgangssignal eines Sensors mit dem theoretischen Flackerspektrum einer Flamme verglichen und die Entscheidung, ob eine Flamme vorliegt, erfolgt anhand des Grades der Übereinstimmung zwischen dem gemessenen und dem theoretischen Flackerspektrum. Da in der Praxis eine Flamme sehr verschiedene Flackerspektren aufweisen kann, ermöglicht auch dieses Verfahren keine sichere Ausschaltung von Störstrahlung.
Durch die Erfindung sollen nun ein Verfahren der eingangs angegebenen Art angegeben werden, welches eine eindeutige und sichere Identifizierung und damit Ausschaltung von Störstrahlung ermöglicht und somit eine hohe Fehlalarmsicherheit aufweist, und welches ausserdem möglichst universell einsetzbar ist.
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass bei der Auswertung des Flackerfrequenzspektrums die Mitten- und Grenzfrequenz ermittelt und nach periodischen und nicht-periodischen Signalen unterschieden wird, und dass periodische Signale mit einer Mittenfrequenz oberhalb eines ersten und nicht-periodische Signale mit einer Grenzfrequenz oberhalb eines zweiten Frequenzwerts als Störsignale bewertet werden, wobei der erste Frequenzwert durch die Flackerfrequenz einer stationären Flamme mit einer der zu detektierenden Mindestgrösse entsprechenden Grösse bestimmt ist und der zweite Frequenzwert grösser als der erste gewählt wird.
Das erfindungsgemässe Verfahren geht von der Tatsache aus, dass einerseits jede Flamme zwei Zustände aufweisen kann, und zwar einen stationären Zustand, der in der Regel dann vorliegt, wenn die Flamme stabil und ungestört brennt (sogenannte periodische Flamme), und einen quasistationären Zustand, in dem die Flamme unstabil brennt (sogenannte nicht-periodische Flamme), und dass andererseits eine periodische Flamme ein Frequenzspektrum mit einer ausgeprägten Frequenzspitze und eine nicht-periodische Flamme ein breitbandiges Spektrum mit einer Maximal- oder Grenzfrequenz aufweist.
Für die potentiellen Störstrahler gelten ähnliche Überlegungen: Es gibt Störquellen, wie beispielsweise Schweissapparate oder durch Blätter fallende Sonnenstrahlen, mit einem sehr breiten Fourierspektrum, und es gibt andere Störquellen, wie beispielsweise eine Lampe beim Anzünden oder von einem Ventilator bewegte heisse Luft, mit einer schmalen Frequenzspitze.
Die genannten Tatsachen bilden die Basis für die Erkenntnis von der die vorliegende Erfindung ausgeht. Diese durch experimentelle Untersuchungen erhärtete Erkenntnis besteht darin, dass die Frequenz einer periodischen Flamme etwa ein Drittel bis die Hälfte der Grenzfrequenz einer nicht-periodischen Flamme von der gleichen Grösse beträgt. Ausgehend von dieser Erkenntnis wird nun sowohl für periodische als auch für nicht-periodische Signale ein Kriterium für die Unterdrückung der Störsignale festgelegt.
Die Erfindung betrifft weiter einen Flammenmelder mit Mitteln zur Durchführung des genannten Verfahrens, mit mindestens einem Sensor für die von der Strahlungsquelle ausgesandte Strahlung, und mit einer dem mindestens einen Sensor nachgeschalteten Auswerteelektronik. Der erfindungsgemässe Flammenmelder ist dadurch gekennzeichnet, dass die Auswerteelektronik Mittel zur Analyse der empfangenen Strahlung und von deren Mitten- und Grenzfrequenz und zur Verknüpfung der der empfangenen Strahlung entsprechenden Sensorsignale mit diesen Frequenzen aufweist.
Eine bevorzugte Ausführungsform des erfindungsgemässen Flammenmelders ist dadurch gekennzeichnet, dass die genannten Mittel durch einen Mikroprozessor gebildet sind, und dass dieser Mikroprozessor einen Fuzzy-Controller enthält.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert; es zeigt:
Fig. 1
das Spektrum der Flackerfrequenz einer periodischen und einer nicht-periodischen Flamme,
Fig. 2
ein Beispiel für die Fuzzy-Zugehörigkeitsfunktion der Grenzfrequenz des Spektrums von Fig. 1; und
Fig. 3
ein Blockschema eines erfindungsgemässen Flammenmelders.
Es ist bekannt, dass die Flackerfrequenz einer Flamme in erster Näherung nur vom Flammendurchmesser abhängig ist, wobei diese Beziehung für verschiedenste Brennstoffe, wie beispielsweise alle kohlenstoffwasserhaltigen Flüssigkeiten, Festkörper (PMMA) oder Helium gilt und für Flammendurchmesser von 1cm bis zu 100m experimentell bestätigt ist. Wenn man das Fourierspektrum von Flammen bestimmt, dann erhält man eines von zwei typischen Spektren, entweder ein Spektrum mit einer ausgeprägten, schmalen Spitze oder ein breitbandiges, "verwaschenes" Spektrum ohne Spitze. Diese beiden Arten von Spektren sind in Fig. 1 dargestellt, wobei auf der Abszisse die Frequenz ω und auf der Ordinate die Amplitude F(ω) aufgetragen ist.
Das voll ausgezogen eingezeichnete Spektrum mit der ausgeprägten Spitze hat eine Mittenfrequenz ωmp und eine obere Grenzfrequenz ωgp, wobei gilt: ωgp ≈ ωmp
Ein Spektrum dieser Art ist typisch für eine ungestört und stabil brennende, sogenannte periodische Flamme, wobei die Mittenfrequenz ωmp bei einem Flammendurchmesser von 10cm unterhalb von 5 Hz liegt und mit zunehmendem Durchmesser langsam abnimmt. Das durch eine gestrichelt eingezeichnete Umhüllende angedeutete breitbandige Spektrum besitzt ebenfalls eine Mittenfrequenz und eine Grenzfrequenz, die mit ωmc beziehungsweise ωgc bezeichnet sind.
Ein solches breitbandiges Spektrum ist typisch für eine Flamme in einem unstabilen oder nicht-stationären Zustand; eine derartige Flamme wird im folgenden als nicht-periodisch bezeichnet. Darstellungsgemäss ist die Grenzfrequenz ωgc des breitbandigen Spektrums höher als die Mittenfrequenz ωmp der periodischen Flamme. Es gilt also: ωgc > ωmp
Wie Untersuchungen der Fourierspektren einer Vielzahl von Flammen gezeigt haben, gilt für die Grenzfrequenz ωgc ausserdem noch die Beziehung: ωgc < 3ωmp
Das Auftreten der Grenzfrequenz ωgc bei einer nicht-periodischen Flamme kann folgendermassen erklärt werden: Wenn eine Flamme ungestört brennt und sich im stationären Zustand befindet, dann sind auch die diese Flamme bildenden Konvektionszellen nach Anzahl und Grösse stationär, und die Flamme weist eine konstante Flackerfrequenz ω1 auf, wobei gilt ω1 ≈ ωmp ≈ ωgp. Wenn aber die Flamme äusseren Einflüssen, wie zum Beispiel Wind, ausgesetzt ist, dann können sich die Konvektionszellen teilen oder sie können Aggregate aus mehren Zellen bilden, wobei beiden Vorgängen eine Grenze gesetzt sein wird.
Die vorstehenden Überlegungen führen zusammen mit den Formeln 1 bis 3 zum Ergebnis, dass das (breitbandige) Spektrum einer nicht-periodischen Flamme mit hoher Wahrscheinlichkeit keine Frequenzen enthalten wird, die höher sind als das Dreifache der Flackerfrequenz ωo einer gleich grossen stationären Flamme. Und diese Flackerfrequenz ωo kann für den konkreten Fall berechnet und daher als bekannt vorausgesetzt werden. Die Berechnung erfolgt nach der Formel: ωo ≈ K g/D
In dieser Formel bezeichnet K einen Faktor, g die Erdanziehung und D die Grösse der Flamme ausgedrückt durch den Durchmesser desjenigen schalenförmigen Behälters, in dem eine Flüssigkeit mit einer Flamme der betreffenden Grösse brennt. Man kann K und g zusammenfassen und erhält dann die folgende Beziehung für ωo: ωo ≤ 1.5/D
Aus Formel 5 ergibt sich für einen Schalendurchmesser von 0.1 m für ωo ein Wert von 4.7 Hz. Wenn man die Flackerfrequenz misst, dann kommt man zu tieferen Werten.
Zur Einstellung des Melders wird zuerst der minimale Durchmesser des zu detektierenden Feuers oder Brandes bestimmt. Wenn dieser beispielsweise 10 cm betragen soll, dann liegt die Frequenz ωmp ≈ ωgp einer periodischen Flamme unterhalb von 5 Hz und die Grenzfrequenz ωgc der gleich grossen nicht-periodischen Flamme wird sicher nicht oberhalb von 15 Hz liegen. Dann werden zwei Grenzwerte G1 und G2 für periodische bzw. für nicht-periodische Störsignale festgelegt; der Grenzwert G1 für periodische Störsignale vorzugsweise gemäss Formel 2 mit G1 > ωmp, also bei etwa 5 Hz, und der Grenzwert G2 für nicht-periodische Störsignale gemäss Formel 3 mit G2 > 3ωmp beispielsweise bei etwa 15 Hz.
Im Betrieb wird das vom Sensor des Melders erzeugte Signal auf seine Periodizität untersucht und einer der beiden Klassen periodisch oder nicht-periodisch zugeteilt und jeweils mit dem betreffenden Grenzwert G1 bzw. G2 verglichen und bei Überschreiten des Grenzwerts als Störsignal bewertet. Die Untersuchung des Signals auf Periodizität oder Nicht-Periodizität erfolgt beispielsweise dadurch, dass man die Differenz Grenzfrequenz minus Mittenfrequenz bildet und diese Differenz durch die Grenzfrequenz dividiert. Liegt der Quotient in der Grössenordnung von Einem, dann handelt es sich um ein nicht-periodisches Signal; liegt er deutlich unter eins, dann handelt es sich um ein periodisches Signal.
Die Parametrierung der Sensorsignale xi erfolgt durch Festlegung der drei Grössen:
  • Quadratsignal xi2 (xi2 = Σxi2, i: 1...10)
  • Mittenfrequenz ωm des Fourierspektrums (ωm = ωmp)
  • Grenzfrequenz ωg des Fourierspektrums (ωg = ωgc).
  • Grundsätzlich kann nun eine erste Art der Signalauswertung anhand der folgenden Kriterien erfolgen:
    • Das Quadratsignal muss einen bestimmten Mindestwert übersteigen, damit die Auswertung gestartet wird.
    • Untersuchung der Signale auf die Eigenschaft periodisch/nicht periodisch und entsprechende Klassierung.
    • Unterdrückung aller periodischen Signale mit einer Mittenfrequenz ωm > G1 (G1 > ωmp).
    • Unterdrückung aller nicht-periodischen Signale mit einer Grenzfrequenz ωg > G2 (G2 > 3ωmp).
    Diese Art der Signalauswertung würde eine weitgehende Unterdrückung von potentiellen Störsignalen und damit eine hohe Fehlalarmsicherheit garantieren. Man kann die Fehlalarmsicherheit und die Zuverlässigkeit weiter verbessern, wenn man die Signalauswertung mittels einer Fuzzy-Logik vornimmt. Die Grundlagen der Fuzzy-Logik werden als bekannt vorausgesetzt (siehe beispielsweise das Buch "Fuzzy Set Theory and its Applications" von H.-J. Zimmermann, Kluver Academic Publishers, 1991 oder die europäische Patentanmeldung EP-A-646901 der Cerberus AG) welche am 5.4.1995 veröffenlicht wurde und ein Prioritäts datum vom 4.10.1993 aufweist. Es sei hier nur daran erinnert, dass der zentrale Begriff der Fuzzy-Logik die Fuzzy-Sets oder unscharfen Mengen sind, wobei die Zugehörigkeit von Elementen zu einem Fuzzy-Set durch die sogenannte Zugehörigkeits- oder Membershipfunktion definiert ist. Während bei scharfen Mengen eine Eins Zugehörigkeit und eine Null Nichtzugehörigkeit bedeutet, sind bei den Fuzzy-Sets als Werte für die Zugehörigkeitsfunktion nicht nur null und eins, sondern beliebige Werte dazwischen zugelassen.
    Die Umwandlung von scharfen Zahlen in unscharfe Mengen wird als Fuzzyfizierung bezeichnet. Bei dieser hat jede Eingangsvariable, das ist eines der oben genannten Signale, mindestens eine als Matrix abgebildete sogenannte Zugehörigkeitsfunktion. Die x-Skalierung dieser Funktion hat eine Entsprechung im jeweiligen Signal, und die y-Skalierung entspricht dem Wahrheitsgehalt oder dem Grad der Annäherung an die jeweilige Aussage und kann jeden Wert von 0 bis 1 annehmen.
    Fig. 2 zeigt ein Beispiel für die Definition der Zugehörigkeitsfunktion der Grenzfrequenz ωg für einen Flammendurchmesser von 10 cm, basierend auf den höheren, berechneten Grenzwerten. Für das Quadratsignal xi 2 und die Mittenfrequenz ωm des Fourierspektrums werden ähnliche Zugehörigkeitsfunktionen definiert, und schliesslich werden die Fuzzy-Regeln für die Auswertung dieser drei Grössen aufgestellt. Die Fuzzy-Regeln können beispielsweise folgendermassen lauten:
    • Wenn [(ωg - ωm) / ωg = gross und ωg = klein oder mittel und xi 2 = gross], dann Flamme.
    • Wenn [(ωg - ωm) / ωg = gross und ωg = gross und xi 2 = gross], dann breitbandiger Störer.
    • Wenn xi2 = klein, dann Normalzustand.
    • Wenn [(ωg - ωm) / ωg = klein und ωg = klein und xi 2 = gross], dann Flamme.
    • Wenn [(ωg - ωm) / ωg = klein und ωg = mittel oder gross und xi 2 = gross], dann periodischer Störer.
    Die Bestimmung der Frequenzen ωm und ωg kann mit einer schnellen Fouriertransformation (FFT) oder mit einfacheren und/oder schnelleren Verfahren wie beispielsweise Zero Crossing (Bestimmung der Nulldurchgänge) oder Bestimmung des Abstands zwischen den Spitzen oder Wavelet Analyse oder spektrale Analyse (siehe dazu M. Kunt: Traitement Numérique des Signaux, Presses Polytechniques Romandes) erfolgen.
    Flammenmelder detektieren bekanntlich die Flammenstrahlung möglicher Brandorte, wobei diese Flammenstrahlung, die eine Wärme- und damit eine Infrarotstrahlung ist, durch direkte oder indirekte Einstrahlung zum Melder gelangt. Die Melder enthalten in der Regel zwei pyroelektrische Sensoren, die auf zwei verschiedene Wellenlängen empfindlich sind. Der erste Sensor reagiert auf die infrarotaktiven Flammengase im charakteristischen CO2-Spektralbereich von 4.1 bis 4.7µm, die beim Abbrand von kohlenstoffhaltigen Materialien entstehen, und der zweite Sensor misst die Infrarotenergie im Wellenlängenbereich von 5 bis 6µm, die von Störquellen, wie beispielsweise Sonnenlicht, künstlichem Licht oder Heizstrahlern, ausgestrahlt wird.
    Fig. 3 zeigt ein stark vereinfachtes Blockschaltbild eines erfindungsgemässen Flammenmelders, der im wesentlichen aus einem infrarotempfindlichen Sensor 1, einem Verstärker 2 und aus einem einen A/D-Wandler enthaltenden Mikroprozessor oder Mikrocontroller 3 besteht. Dem einen Impedanzwandler aufweisenden Sensor 1 ist ein Filter 4 vorgeschaltet, das nur für Strahlung aus dem genannten charakteristischen CO2-Spek-tralbereich, vorzugsweise für eine Wellenlänge von 4.3 µm, durchlässig ist. Die auf den Sensor 1 auftreffende Strahlung dieser Wellenlänge, erzeugt am Ausgang des Sensors ein entsprechendes Spannungssignal, das nach Verstärkung im Verstärker 2 in den Mikroprozessor 3 gelangt und dort ausgewertet wird. Dieser Mikroprozessor legt nun die drei Grössen Quadratsignal xi 2, Mittenfrequenz ωm und Grenzfrequenz ωg fest und wertet diese Grössen aus, wobei die Signalauswertung auf die schon erwähnte erste Art oder mittels einer Fuzzy-Logik erfolgen kann.
    Im letzteren Fall enthält der Microprozessor (Mikrocontroller) 3 einen Fuzzy-Controller, der in bekannter Weise eine Regelbasis mit den weiter vorne angegebenen Fuzzy-Regeln und eine Inferenzmaschine enthält. Selbstverständlich kann der Flammenmelder auch mehr als einen Sensor, beispielsweise also 2 Sensoren, aufweisen.
    Der beschriebene Flammenmelder hat den Vorteil, dass die Untersuchung der Periodizität der Flackerfrequenz und die Ermittlung der Mitten- und Grenzfrequenz und deren Vergleich mit den beiden Frequenzwerten G1 und G2 ein einfaches Kriterium für die Unterscheidung zwischen Nutzstrahlung und Störstrahlung liefert. Die Signalauswertung mittels Fuzzy-Logik bietet den zusätzlichen Vorteil, dass relativ einfache Algorithmen verwendet werden können, wodurch der Rechen- und Speicheraufwand in einem bescheidenen Rahmen bleibt.

    Claims (8)

    1. Verfahren zur Detektion einer Flamme durch Analyse der Intensitätsänderung der von einer Strahlungsquelle ausgesandten Strahlung, wobei eine Auswertung des Flackerfrequenzspektrums der Strahlung erfolgt und ausserhalb eines bestimmten Frequenzbandes liegende Signale als Störsignale bewertet werden, dadurch gekennzeichnet, dass die Frequenz der Strahlung analysiert und dabei die Mitten- und Grenzfrequenz (ωmp, ωmc; ωgp, ωgc) ermittelt und nach periodischen und nicht-periodischen Signalen unterschieden wird, und dass periodische Signale mit einer Mittenfrequenz (ωm) oberhalb eines ersten (G1) und nicht-periodische Signale mit einer Grenzfrequenz (ωg) oberhalb eines zweiten Frequenzwerts (G2) als Störsignale bewertet werden, wobei der erste Frequenzwert durch die Flackerfrequenz einer stationären Flamme mit einer der zu detektierenden Flammen-Mindestgrösse entsprechenden Grösse bestimmt ist und der zweite Frequenzwert grösser als der erste gewählt wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Bestimmung des ersten Frequenzwerts (G1) die Flackerfrequenz einer stationären Flamme der genannten Mindestgrösse berechnet, und dass der erste Grenzwert grösser gewählt wird als diese Flackerfrequenz.
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der zweite Frequenzwert (G2) nicht kleiner als der dreifache Wert der genannten Flackerfrequenz und damit etwa dreimal so gross wie der erste Frequenzwert (G1) gewählt wird.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zur Unterscheidung nach periodischen und nicht-periodischen Signalen der Quotient aus der Differenz der Grenzfrequenz minus der Mittenfrequenz (ωg - ωm) geteilt durch die Grenzfrequenz (ωg) gebildet, und dass der Wert dieses Quotienten als Kriterium für die Periodizität oder Nicht-Periodizität der Signale verwendet wird, wobei ein Wert in der Grössenordnung von eins ein nicht-periodisches und ein Wert deutlich unter eins ein periodisches Signal bezeichnet.
    5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Auswertung des Flackerfrequenzspektrums der Strahlung durch eine schnelle Fouriertransformation, durch Ermittlung der Nulldurchgänge oder durch spektrale Analyse erfolgt.
    6. Flammenmelder mit Mitteln zur Durchführung des Verfahrens nach Anspruch 1, mit mindestens einem Sensor (1) für die von der Strahlungsquelle ausgesandte Strahlung, und mit einer dem mindestens einen Sensor nachgeschalteten Auswerteelektronik, dadurch gekennzeichnet, dass die Auswerteelektronik Mittel zur Analyse der empfangenen Strahlung und von deren Mitten- und Grenzfrequenz (ωmp, ωmc; ωgp, ωgc) und zur Verknüpfung der der empfangenen Strahlung entsprechenden Sensorsignale mit diesen Frequenzen aufweist.
    7. Flammenmelder nach Anspruch 6, dadurch gekennzeichnet, dass die genannten Mittel durch einen Mikroprozessor (3) gebildet sind, und dass dieser Mikroprozessor einen Fuzzy-Controller enthält.
    8. Flammenmelder nach Anspruch 7, dadurch gekennzeichnet, dass der Fuzzy-Controller eine oder mehrere der folgenden Fuzzy-Regeln enthält:
      Wenn Sensorsignal klein, dann Normalzustand.
      Wenn [Signal nicht periodisch und Grenzfrequenz (ωgc) klein oder mittel und Sensorsignal gross], dann Flamme.
      Wenn [Signal nicht periodisch und Grenzfrequenz (ωgc) gross und Sensorsignal gross], dann breitbandiger Störer.
      Wenn [Signal periodisch und Grenzfrequenz (ωgp) klein und Sensorsignal gross], dann Flamme.
      Wenn [Signal periodisch und Grenzfrequenz (ωgp) mittel oder gross und Sensorsignal gross], dann periodischer Störer.
    EP94120083A 1994-12-19 1994-12-19 Verfahren und Anordnung zum Detektieren einer Flamme Expired - Lifetime EP0718814B1 (de)

    Priority Applications (7)

    Application Number Priority Date Filing Date Title
    EP94120083A EP0718814B1 (de) 1994-12-19 1994-12-19 Verfahren und Anordnung zum Detektieren einer Flamme
    AT94120083T ATE203118T1 (de) 1994-12-19 1994-12-19 Verfahren und anordnung zum detektieren einer flamme
    DE59409799T DE59409799D1 (de) 1994-12-19 1994-12-19 Verfahren und Anordnung zum Detektieren einer Flamme
    AU37810/95A AU703685B2 (en) 1994-12-19 1995-11-13 Method of detecting a flame and flame detector for carrying out the method
    CZ19953218A CZ289921B6 (cs) 1994-12-19 1995-12-05 Způsob detekce plamene, hlásič plamene a způsob provozu hlásiče plamene
    CN95120895A CN1099660C (zh) 1994-12-19 1995-12-19 探测火焰的方法及实施该方法的火焰报警器
    US08/574,773 US5594421A (en) 1994-12-19 1995-12-19 Method and detector for detecting a flame

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP94120083A EP0718814B1 (de) 1994-12-19 1994-12-19 Verfahren und Anordnung zum Detektieren einer Flamme

    Publications (2)

    Publication Number Publication Date
    EP0718814A1 EP0718814A1 (de) 1996-06-26
    EP0718814B1 true EP0718814B1 (de) 2001-07-11

    Family

    ID=8216544

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94120083A Expired - Lifetime EP0718814B1 (de) 1994-12-19 1994-12-19 Verfahren und Anordnung zum Detektieren einer Flamme

    Country Status (7)

    Country Link
    US (1) US5594421A (de)
    EP (1) EP0718814B1 (de)
    CN (1) CN1099660C (de)
    AT (1) ATE203118T1 (de)
    AU (1) AU703685B2 (de)
    CZ (1) CZ289921B6 (de)
    DE (1) DE59409799D1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN111123423A (zh) * 2020-03-27 2020-05-08 上海翼捷工业安全设备股份有限公司 火焰探测用双通道红外滤光片组合及其制备方法和应用

    Families Citing this family (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6515283B1 (en) 1996-03-01 2003-02-04 Fire Sentry Corporation Fire detector with modulation index measurement
    US6518574B1 (en) 1996-03-01 2003-02-11 Fire Sentry Corporation Fire detector with multiple sensors
    US6507023B1 (en) * 1996-07-31 2003-01-14 Fire Sentry Corporation Fire detector with electronic frequency analysis
    EP0834845A1 (de) * 1996-10-04 1998-04-08 Cerberus Ag Verfahren zur Frequenzanalyse eines Signals
    US5850182A (en) * 1997-01-07 1998-12-15 Detector Electronics Corporation Dual wavelength fire detection method and apparatus
    US5995008A (en) * 1997-05-07 1999-11-30 Detector Electronics Corporation Fire detection method and apparatus using overlapping spectral bands
    AU768582B2 (en) * 1998-06-02 2003-12-18 Hochiki Kabushiki Kaisha Flame detection device and flame detection method
    DE19841475C1 (de) * 1998-09-10 2000-02-03 Electrowatt Tech Innovat Corp Flammenüberwachungssystem und Verfahren zur Überwachung einer Flamme
    US6879253B1 (en) * 2000-03-15 2005-04-12 Siemens Building Technologies Ag Method for the processing of a signal from an alarm and alarms with means for carrying out said method
    US6184792B1 (en) 2000-04-19 2001-02-06 George Privalov Early fire detection method and apparatus
    US7244946B2 (en) * 2004-05-07 2007-07-17 Walter Kidde Portable Equipment, Inc. Flame detector with UV sensor
    JP2010249769A (ja) * 2009-04-20 2010-11-04 Oki Denki Bosai Kk 炎監視装置
    US8260523B2 (en) * 2009-05-04 2012-09-04 General Electric Company Method for detecting gas turbine engine flashback
    US9251683B2 (en) 2011-09-16 2016-02-02 Honeywell International Inc. Flame detector using a light guide for optical sensing
    CN111141504B (zh) * 2019-12-25 2022-04-15 Oppo(重庆)智能科技有限公司 一种断火检测方法、装置及计算机可读存储介质

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    BE759559A (fr) * 1969-12-03 1971-04-30 Cerberus Ag Dispositif pour detecter un incendie ou des flammes
    DE2823410A1 (de) * 1978-04-25 1979-11-08 Cerberus Ag Flammenmelder
    US4206454A (en) * 1978-05-08 1980-06-03 Chloride Incorporated Two channel optical flame detector
    US4709155A (en) * 1984-11-22 1987-11-24 Babcock-Hitachi Kabushiki Kaisha Flame detector for use with a burner
    JPS61178621A (ja) * 1985-02-04 1986-08-11 Hochiki Corp 炎検出装置
    JPS63151827A (ja) * 1986-12-17 1988-06-24 Hochiki Corp 火災判断装置
    US4866420A (en) * 1988-04-26 1989-09-12 Systron Donner Corp. Method of detecting a fire of open uncontrolled flames
    US4988884A (en) * 1988-11-22 1991-01-29 Walter Kidde Aerospace, Inc. High temperature resistant flame detector
    WO1990009012A1 (en) * 1989-01-25 1990-08-09 Nohmi Bosai Kabushiki Kaisha Fire alarm
    US5073769A (en) * 1990-10-31 1991-12-17 Honeywell Inc. Flame detector using a discrete fourier transform to process amplitude samples from a flame signal
    US5434560A (en) * 1993-05-11 1995-07-18 Detector Electronics Corporation System for detecting random events
    CH686805A5 (de) * 1993-10-04 1996-06-28 Cerberus Ag Verfahren zur Verarbeitung der Signale eines passiven Infrarot-Detektors und Infrarot-Detektor zur Durchfuehrung des Verfahrens.

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN111123423A (zh) * 2020-03-27 2020-05-08 上海翼捷工业安全设备股份有限公司 火焰探测用双通道红外滤光片组合及其制备方法和应用

    Also Published As

    Publication number Publication date
    CN1099660C (zh) 2003-01-22
    US5594421A (en) 1997-01-14
    ATE203118T1 (de) 2001-07-15
    EP0718814A1 (de) 1996-06-26
    CN1132889A (zh) 1996-10-09
    AU703685B2 (en) 1999-04-01
    AU3781095A (en) 1996-06-27
    CZ289921B6 (cs) 2002-04-17
    CZ321895A3 (en) 1996-07-17
    DE59409799D1 (de) 2001-08-16

    Similar Documents

    Publication Publication Date Title
    EP0718814B1 (de) Verfahren und Anordnung zum Detektieren einer Flamme
    DE69634450T2 (de) Multi-Signatur-Brandmelder
    EP1022700B1 (de) Streulichtbrandmelder
    DE19629275A1 (de) Verfahren und Vorrichtung zur Unterscheidung verschiedener Arten eines Feuers
    DE2836895C2 (de) Schaltungsanordnung zur Überwachung einer Gasfackel
    DE19934171B4 (de) Filtersystem und -verfahren
    EP2603907B1 (de) Auswerten von streulichtsignalen bei einem optischen gefahrenmelder sowie ausgeben einer staub- / dampf-warnung oder eines brandalarms
    DE2736417C2 (de) Temperaturstrahlungsdetektor zur Flammenüberwachung
    DE69434352T2 (de) Vorrichtung und Verfahren zur Datenverarbeitung in einem Rauchmeldesystem
    EP0338218B1 (de) Verfahren zur Brandfrüherkennung
    DE2915884A1 (de) Flammendetektor
    EP2601644B1 (de) Auswerten von streulichtsignalen bei einem optischen gefahrenmelder und ausgeben sowohl eines gewichteten rauchdichtesignals als auch eines gewichteten staub-/dampfdichte-signals
    WO2005121751A1 (de) Ir-sensor, insbesondere co2-sensor
    DE4200946A1 (de) Verfahren zur feuerfeststellung
    DE19622806A1 (de) Verfahren und Vorrichtung zum Erfassen eines Feuers mit verschiedenen Arten von Feuersensoren
    DE4227727C2 (de) Verfahren zur Zustandserkennung gasförmiger und flüssiger Medien mittels Multisensorsystemen
    WO2002095705A1 (de) Selbstansaugende brandmeldeeinrichtung
    DE19628050A1 (de) Infrarotmeßvorrichtung und Verfahren der Erfassung eines menschlichen Körpers durch diese
    DE10109362A1 (de) Verfahren zur Branderkennung
    EP0865646B1 (de) Verfahren zur analyse des signals eines gefahrenmelders und gefahrenmelder zur durchführung des verfahrens
    EP0660282B1 (de) Brandmeldesystem zur Früherkennung von Bränden
    DE4002829C2 (de) Verfahren zum Detektieren von Metallgegenständen
    EP1046148A1 (de) Brandmelder
    EP0421100B1 (de) Verfahren und Vorrichtung zum Erkennen von Gefahrenzuständen in einem Raum
    DE2823411A1 (de) Flammenmelder

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

    RBV Designated contracting states (corrected)

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

    17P Request for examination filed

    Effective date: 19961216

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: SIEMENS BUILDING TECHNOLOGIES AG

    17Q First examination report despatched

    Effective date: 19991021

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: SIEMENS BUILDING TECHNOLOGIES AG

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010711

    REF Corresponds to:

    Ref document number: 203118

    Country of ref document: AT

    Date of ref document: 20010715

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20010711

    REF Corresponds to:

    Ref document number: 59409799

    Country of ref document: DE

    Date of ref document: 20010816

    ITF It: translation for a ep patent filed

    Owner name: JACOBACCI & PERANI S.P.A.

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011011

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011011

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011011

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020131

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: DETECTOMAT GMBH

    Effective date: 20020411

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBP Opposition withdrawn

    Free format text: ORIGINAL CODE: 0009264

    PLBD Termination of opposition procedure: decision despatched

    Free format text: ORIGINAL CODE: EPIDOSNOPC1

    PLBM Termination of opposition procedure: date of legal effect published

    Free format text: ORIGINAL CODE: 0009276

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

    27C Opposition proceedings terminated

    Effective date: 20050226

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

    Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8034 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: SIEMENS AKTIENGESELLSCHAFT

    Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20090514 AND 20090520

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20091214

    Year of fee payment: 16

    BECA Be: change of holder's address

    Owner name: SIEMENS A.G.WITTELSBACHERPLATZ 2, DE-80333 MUENCHE

    Effective date: 20100423

    BECH Be: change of holder

    Owner name: SIEMENS A.G.

    Effective date: 20100423

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20091216

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20101110

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20101229

    Year of fee payment: 17

    BERE Be: lapsed

    Owner name: SIEMENS A.G.

    Effective date: 20101231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101231

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20111227

    Year of fee payment: 18

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101219

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 203118

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20121219

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130830

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121219

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130102

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121219

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20131212

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20140313

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20140219

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59409799

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20141218

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20141218