EP0716699A1 - Glycerin-3-phosphat-dehydrogenase (gpdh) - Google Patents

Glycerin-3-phosphat-dehydrogenase (gpdh)

Info

Publication number
EP0716699A1
EP0716699A1 EP94927553A EP94927553A EP0716699A1 EP 0716699 A1 EP0716699 A1 EP 0716699A1 EP 94927553 A EP94927553 A EP 94927553A EP 94927553 A EP94927553 A EP 94927553A EP 0716699 A1 EP0716699 A1 EP 0716699A1
Authority
EP
European Patent Office
Prior art keywords
dna
plants
genomic clones
gene
glycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94927553A
Other languages
English (en)
French (fr)
Inventor
Reinhard TÖPFER
Lüdger HAUSMANN
Jozef Schell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of EP0716699A1 publication Critical patent/EP0716699A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition

Definitions

  • Glycerin-3-phosphate dehydroqenase GPDH
  • the invention relates to DNA sequences which code for a glycerol-3-phosphate dehydrogenase (GPDH) and to the alleles and the derivatives of these DNA sequences.
  • GPDH glycerol-3-phosphate dehydrogenase
  • the invention further relates to genomic clones which contain the complete gene of a glycerol-3-phosphate dehydrogenase and alleles as well as derivatives of this gene.
  • the invention also relates to promoters and other regulatory elements of the glycerol-3-phosphate dehydrogenase genes.
  • the glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8), also known as dihydr 'xyacetone phosphate reductase, is significantly involved in the triacylglyceride biosynthesis in plants by providing glycerol-3-phosphate.
  • the fatty acid and triacylglyceride biosynthesis can be regarded as separate biosynthetic pathways due to the compartmentalization, but with regard to the end product, as a biosynthetic pathway.
  • the de novo biosynthesis of fatty acids takes place in the plastids and is catalyzed by three enzymes or enzyme systems, i.e.
  • Acetyl-CoA carboxylase ACCase
  • FAS fatty acid synthase
  • TE acyl- [ACP] thioesterase
  • GPDH dihydroxyacetone phosphate
  • the cytoplasmic isoform can be activated by F2, 6DP, while the plastid isoform is activated by thioredoxin (RW Gee et al, Plant Physiol. J36., Pages 98-103 (1988) and RW Gee et al. Plant Physiol. 8_7, pages 379-383 (1988).
  • the invention relates to DNA sequences which code for a glycerol-3-phosphate dehydrogenase, and the alleles and derivatives of these DNA sequences.
  • the invention further relates to genomic clones which contain a complete gene of a glycerol-3-phosphate dehydrogenase comprising the structural gene, the promoter and other regulator sequences, and the alleles and derivatives of this gene.
  • the invention also relates to the promoters and other regulatory elements of the glycerol-3-phosphate dehydrogenase genes from the aforementioned genomic clones, and the alleles and derivatives of these promoters.
  • the invention also relates to a process for the production of plants, parts of plants and plant products whose triacylglyceride content or fatty acid pattern is changed, in which the said DNA sequences or the genes are transferred from the genomic clones by genetic engineering.
  • the invention also relates to the use of said DNA sequences or one of the genomic clones mentioned derived gene for changing the triacylglyceride content or its fatty acid pattern in plants.
  • the invention relates to transgenic plants, plant parts and plant products which have been produced by the aforementioned process.
  • FIG. 1 shows the comparison of the derived amino acid sequences of the cDNAs C1GPDH30 and C1GPDH109 and of the gene from the genomic clone ClGPDHg3 with the GPDH amino acid sequence of the mouse (Mm GPDH);
  • FIG. 1 shows the gel electrophoretic separation
  • Figure 3 shows the mapping of the genomic clones
  • ClGPDHg5, ClGPDHg9 and ClGPDHg3 contained insertions with different restriction enzymes
  • FIG. 4 shows the schematic representation of the functional regions of the genes contained in the genomic clones C1GPDH5, C1GPDH9 and C1GPDH3;
  • Figure 5 shows the Northern blot with RNAs from different
  • allelic variants and derivatives of the DNA sequences or genes according to the invention are also included in the scope of the invention, provided that these modified DNA sequences or the modified genes code for glycerol-3-phosphate dehydrogenase .
  • allelic variants and derivatives include, for example, deletions, substitutions, insertions, inversions or additions of the DNA sequences or genes according to the invention.
  • Any plant material which produces this enzyme in sufficient quantity is suitable as a starting material for the isolation of cDNAs which code for glycerol-3-phosphate dehydrogenase.
  • isolated embryos from the Cuphea lanceolata plant native to Central America have proven to be a particularly suitable starting material.
  • a functional complementation was used to isolate the DNA sequences according to the invention. This is the complementation of mutants of a microorganism with heterologous cDNA.
  • the functional complementation took place after infection of the E. coli strain BB26-36, which is auxotrophic for glycerol, with phagemids which contained plasmids with cDNAs from Cuphea lanceolata. Plasmids were isolated from functionally complemented bacteria, which were cleaved with restriction endonucleases and separated electrophoretically.
  • the cDNAs contained in the plasmids could be divided into two classes, which could be distinguished by the size of the insertions. The retransformation confirmed that the isolated cDNAs were able to complement the mutant BB26-36.
  • the complete coding region of one of the two classes codes for a glycerol-3-phosphate dehydrogenase and is contained in the cDNA clone C1GPDH20. It is about an Eco RI-Apal fragment that is 1354 bp in size.
  • the complete 1354 bp DNA sequence of the cDNA C1GPDH20 and the amino acid sequence derived therefrom is shown as SEQ ID NO: 1 in the sequence listing.
  • the cDNA C1GPDH20 was sequenced in a double strand. Starting from the start codon "ATG”, the cDNA encodes from position 17 to 1132 for a protein with 372 amino acids (end at the stop codon "TAG”), which is expressed as a fusion to lacZ without reading frame shift.
  • the calculated molecular weight is 40.8 kDa.
  • ATG In front of the "ATG” are two base pairs (CA), which are to be counted as cDNA.
  • CA base pairs
  • the first 14 nucleotides are assigned to the DNA sequence of the lacZ fusion, and the linker sequence is given at the 3 'end.
  • the polyA signal is located at positions 1329 to 1334 in the 3 'untranslated area.
  • the cDNA C1GPDH20 represents a cytoplasmic isoform, since a transit peptide is not recognizable in homology comparisons with the mouse GPDH (see FIG. 1). Due to the location of a putative NADH binding site which corresponds to the consensus sequence GxGxxG (see positions 29 to 34 in the amino acid sequence of C1GPDH20 in FIG. 1 (RK Wierenga et al, Biochem ____., Pages 1346-1357 (1985)), the range is sufficient N-terminal sequence of 28 amino acids is not sufficient to code for a transit peptide, the length of which varies between 32 and 75 amino acids (Y. Gavel et . A_L, FEBS Lett 261, pages 455-458 (1990)).
  • a cDNA library from Cuphea lanceolata was searched with the cDNA C1GPDH20 as a probe, a total of 52 cDNA clones being isolated. The 18 longest cDNAs were completely or partially sequenced. cDNAs with the complete coding region or an almost complete cDNA of the GPDH are contained in the cDNA clones C1GPDH109, C1GPDH30 and C1GPDH132.
  • the cDNA clone C1GPDH109 contains on a 1464 bp EcoRI-Apal DNA fragment the complete coding region of the GPDH, which codes for a protein with 381 amino acids.
  • the DNA sequence and the amino acid sequence derived therefrom are reproduced as SEQ ID NO: 2 in the sequence listing.
  • the DNA fragment was sequenced in a double strand.
  • the coding area begins with the start codon "ATG” at position 45 and ends at position 1187, which is followed by the stop codon "TAG” (positions 1188 to 1190).
  • the cDNA itself begins at position 15.
  • the first 14 nucleotides are assigned to the DNA sequence of the lacZ fusion.
  • the polyA signal (positions 1414 to 1419) and the polyA region (positions 1446 to 1454) and the linker sequence (positions 1459 to 1464) are located in the non-translated region at the 3 'end.
  • C1GPDH30 also contains on a 1390 bp EcoRI-XhoI fragment the complete coding region of the GPDH, which codes for a protein with 372 amino acids.
  • the double-stranded DNA sequence and the DNA sequence derived therefrom is shown as SEQ ID NO: 4 in the sequence listing.
  • the protein coding sequence begins with the start codon "ATG" at position 34 and ends before the stop codon at position 1149.
  • the first 14 base pairs are to be assigned to the sequence of the fusion with lacZ.
  • the 3 'non-translated area contains the polyA signal (positions 1349 to 1354) and the polyA area (positions 1366 to 1384).
  • the cDNA clone C1GPDH132 with a size of 1490 bp is present as an Eco RI-Xhol fragment, the DNA sequence and the amino acid sequence derived therefrom is shown in the sequence listing as SEQ ID NO: 3.
  • the DNA fragment was sequenced in a double strand.
  • cDNA C1GPDH132 lacks 14 amino acids at the N-terminus.
  • the open reading frame begins at position 15 and ends at position 1115, followed by the stop codon at positions 1116 to 1118.
  • FIG. 2 shows the gel electrophoretic separation of the BB26-36 cell extracts.
  • the proteins of cells with the expression vector pGX without fusion; 26 kDa protein
  • the proteins of cells with the expression vector pGXGPDH20 which encodes a fusion protein of 67 kDa
  • the hourly values given indicate the times of sampling after IPTG induction. You can clearly see an accumulation of the fusion protein after two hours.
  • an enzyme activity determination was then carried out in an enzyme assay of the GPDH and significant enzyme activity was measured. This result clearly shows that the C1GPDH20 cDNA contains a functional gene for the expression of GPDH.
  • genomic clones were isolated, whereby a bank of Cuphea lanceolata genomic DNA was screened with the cDNA C1GPDH20 as a probe. In this way, 31 genomic clones could be isolated.
  • the genomic clones contain a complete structural gene of a glycerol-3-phosphate dehydrogenase and the alleles and derivatives of this gene together with the promoter sequence and other regulator elements. This means that they form complete transcription units.
  • genomic clones Three genomic clones are characterized below. These are the genomic clone ClGPDHg3 with a DNA insert of 15.9 kb, the genomic clone ClGPDHg5 with a DNA insert of 17.7 kb and the genomic clone ClGPDHg9 with a DNA insert of 15.6 kb.
  • FIG. 3 shows the mapping of the DNA insertions of the genomic clones with different restriction enzymes. The black bars indicate the fragments that hybridize with a 5 'probe of the cDNA GPDH20. The white bars show that Areas of DNA inserts that have been sequenced and listed in the sequence listing.
  • the sequence analysis of the regions (white bars) shown in FIG. 3 of the three genomic clones ClGPDHg5, CLGPDHg3 and ClGPDHg9 has shown that in them the complete or partly complete structural gene of the GPDH with considerable portions of the promoter sequence or with the entire promoter sequence (5 ' Direction) are included.
  • a schematic representation of the sequenced regions of the genomic clones is shown in FIG. 4.
  • the genomic clones ClGPDHg5, ClGPDHg9 and ClGPDHg3 contain promoter sequences as well as the complete structural genes of the GPDH.
  • the entire promoter of the GPDH was sequenced from the genomic clone ClGPDHg9.
  • a 4434 bp DNA fragment of the genomic clone ClGPDHg5 in the 5 'region contains parts of the promoter and the complete structural gene of the GPDH.
  • the double-stranded DNA sequence and the amino acid sequence derived from it are shown as SEQ ID NO: 5 in the sequence listing.
  • the protein coding sequence with 372 amino acids interrupted by non-translated DNA areas (introns) begins with the start codon "ATG” at position 1394 and ends before the stop codon "TAG” at position 4005.
  • the putative TATA box is located at positions 1332 to 1336.
  • the putative transcription start is at position 1364 (Joshi, NAR _5, pages 6643 to 6653, 1987).
  • the polyA signal is located at the 3 'end at positions 4205 to 4210.
  • Position 4221 corresponds to the last nucleotide before the polyA region of the cDNA C1GPDH30 (see position 1365 in SEQ ID NO: 4).
  • the complete structural gene of the GPDH and parts of the promoter in the 5 'direction are contained in a 4006 bp DNA fragment from the genomic clone ClGPDHg3.
  • the largely Double-strand sequenced DNA sequence of the DNA fragment from ClGPDHg3 and the amino acid sequence derived therefrom are shown as SEQ ID NO: 6a and SEQ ID NO: 6b in the sequence listing.
  • the protein-coding region interrupted by intron sequences begins at position 1182 (see SEQ ID NO: 6a) with the start codon "ATG” and ends before the stop codon "TAG” at position 190 (see SEQ ID NO: 6b).
  • the signal sequences CAAT-Box and TATA-Box are at positions 1055 to 1058 and 1103 to 1107 before the start of transcription.
  • Suspected transcription start points are at positions 1136 and 1148. Due to the lack of sequence data, there is no area of approximately 480 bp within the coding sequence identified.
  • the polyA signal is located in the untranslated 3 'region at positions 393 to 398. (SEQ ID NO: 6b).
  • the entire promoter and the first exon of the sequence coding for a GPDH are contained in a 1507 bp DNA fragment from the genomic clone ClGPDHg9.
  • the largely double-stranded DNA sequence and the amino acid sequence derived therefrom are reproduced as SEQ ID NO: 7 in the sequence listing.
  • the TATA box is located at positions 1108 to 1112 before the start of the T_.anscription.
  • the protein-coding sequence begins with the start codon "ATG" at position 1193 and ends at position 1376, where an untranslated region (intron) begins .
  • the putative transcription start is at position 1144.
  • the cDNA C1GPDH30 which comprises a complete protein reader for the GPDH, is identical to the GPDH gene from the genomic clone ClGPDHg ⁇ .
  • the genomic clone ClGPDHg5 can thus be classified in class A (see above).
  • the cDNA C1GPDH132 with an almost complete protein reading frame for the GPDH is identical to the gene from the genomic clone ClGPDHg9, which can thus be classified in class B (see above).
  • the gene from the genomic clone ClGPDHg3 could not be assigned to either of the two classes and therefore forms another class C.
  • the DNA sequences according to the invention which code for a glycerol-3-phosphate dehydrogenase, can be introduced into plants using genetic engineering methods (in the form of anti-sense or overexpression) to produce these dehydrogenases in order to change the biosynthetic performance in these plants or transferred.
  • the DNA sequences according to the invention are preferably introduced into the plants together with suitable promoters, in particular in recombinant vectors, such as, for example, binary vectors.
  • the genomic clones can be used as separate complete transcription units for the transformation of plants in order to influence the triacylglyceride content and its fatty acid pattern.
  • Oil plants such as, for example, rapeseed, sunflower, linseed, oil palm and soya, are preferably transformed in order to influence the triacylglyceride biosynthesis in these plants in the desired manner.
  • the genetic engineering introduction of the DNA sequences according to the invention which code for a glycerol-3-phosphate dehydrogenase and the complete genes of a glycerol-3-phosphate dehydrogenase contained in the genomic clones can be carried out with the aid of conventional transformation techniques.
  • Such techniques include methods such as direct gene transfer, such as microinjection, electroporation, particle gun, the swelling of plant parts in DNA solutions, pollen or pollen tube transformation, viral vectors and liposome-mediated transfer as well as the transfer of corresponding recombinant Ti plasmids or Ri plasmids by Agrobacterium tumefaciens and the transformation by plant viruses.
  • the DNA sequences according to the invention and the complete genes of a glycerol-3-phosphate dehydrogenase contained in the genomic clones are outstandingly suitable for causing a considerable increase in oil yield in transgenic plants.
  • This increase in oil yield can be obtained with an increase in the triacylglyceride content in the seed due to overexpression of the GPDH.
  • a reduction in the glycerol-3-phosphate concentration can be achieved by anti-sense expression or cosuppression, which means that building blocks for triacylglyceride synthesis are missing. This effect is particularly useful if, for example, the formation of wax esters (jojoba wax esters) in the seeds of transgenic plants is to be improved.
  • DNA sequences according to the invention and the genes from the genomic clones is to be found in suppressing triacylglyceride biosynthesis in transgenic plants and in making the CoA esters and glycerol-3-phosphate available for other biosynthesis.
  • the promoters of the glycerol-3-phosphate dehydrogenase genes from the clones according to the invention can be used, for example, for the directed expression of chimeric genes in embryo-specific tissue. Based on experimental data with regard to the specificity of the promoters, it can be assumed that the promoters of the genes from the genomic clones ClGPDHg5 and ClGPDHg9 are seed-specific, whereas the promoter of the gene from the genomic clone ClGPDHg3 is not or not very active in the embryo.
  • a 1387 bp BamHI / AlwNI fragment from ClGPDHg ⁇ is suitable for transcriptional fusions, and an 1189 bp Sphl / Narl fragment from ClGPDHg9 for translational fusions and an 1172 bp BamHI / BsmAI (part.) fragment from ClGPDHg3 for transcriptional fusions.
  • Larger (or smaller) promoter fragments can be used for the expression of chimeric genes due to the cloned sections also present on the genomic clones.
  • Regulatory sequences which may be located downstream of the first codon of the GPDH genes, can also be obtained from the cloned fragments of genomic DNA for targeted expression of chimeric genes.
  • a Northern blot analysis with polyA + RNA from different tissues of Cuphea lanceolata with the cDNA C1GPDH20 as a probe shows very large amounts of RNA in embryos compared to other tissues (see FIG. 5).
  • the RNA accumulation is correlated with an increased gene expression and thus indicates an extraordinarily strong promoter.
  • the plant material used in the context of the present invention originated from Cuphea lanceolata (Lythraceae) (lancet-leaved quiver flower or hump flower).
  • a cDNA bank from Cuphea lanceolata (wild type) was produced using the cDNA ZAP ® synthesis kit according to the manufacturer's instructions (Stratagene, La Jolla USA).
  • cDNA ZAP ® synthesis kit As a starting material for the synthesis of the cDNAs, mRNA from iso- immature embryos, about two to three weeks old.
  • the cDNA library obtained in this way has a size of 9.5 ⁇ 10 5 recombinant phages.
  • phage adsorption 5 ml of 2xYT medium were added and shaken at a temperature of 37 ° C. for a further three hours. During this time, the cells secrete the pBluescript plasmids, which are packaged in the envelopes of the helper phages, the so-called phagemids, into the medium. The bacteria were killed and the ⁇ phages inactivated by heat treatment at 70 ° C. for 20 minutes. After centrifugation, the supernatant was removed, which contains helper phages in addition to the phagemids. This supernatant was used to infect the mutant strain of BB26-36.
  • the plasmids with cDNAs contain, which code for a glycerol-3-phosphate dehydrogenase.
  • M56-LP medium (Bell, supra) with 50 ⁇ g ampicillin (without glycerol-3-phosphate) was used for the selection.
  • the BB26-36 was retransformed using the method of D. Hanahan, J.Mol.Biol. 166, pages 557-580, (1983) with subsequent plating on said selective medium.
  • deletion clones were produced by means of exonuclease III (Stratagene), which were used according to the method of Sanger et. al. Proc. Nat. Acad. Be. 74, pages 5463-5467 (1977).
  • the DNA sequencing was partially radioactive using the T7 Sequencing ® kit or using a "Pharmacia Automated Laser Fluorescent ALF ® " DNA sequencer.
  • the sequences were analyzed using the computer software from the University of Wisconsin Genetics Computer Group (J. Devereux et a_l, Nucl. Acids Res. _L2, pages 387-394 (1984)).
  • cDNA clones were isolated by screening a cDNA bank from Cuphea lanceolata with the cDNA C1GPDH20 as a probe.
  • a cDNA bank from Cuphea lanceolata wild type was produced using the cDNA ZAP ® synthesis kit in accordance with the manufacturer's instructions.
  • the starting material for the synthesis of the cDNAs was mRNA from isolated, immature embryos about two to three weeks old.
  • the cDNA library obtained has a size of 9.6 ⁇ 10 5 recombinant phages with a proportion of approximately 50% of clones, the insertions of which exceed 500 bp.
  • the cDNA library was searched with C1GPDH20 as a probe and 18 cDNAs were isolated and partially or completely sequenced in the usual way. Of these cDNAs, 12 were class A and 6 cDNAs were class B.
  • the enzyme measurements were carried out with the fusion protein according to the protocol of Santora et a_l, Arch. Biochem. Biophys 196, pages 403-411 (1979)).
  • genomic DNA was isolated from young leaves of Cuphea lanceolata (S.L. Della Porta et a_L, Plant.Mol. Biol. Rep. I, pages 19-21 (1983)).
  • the DNA was then partially cleaved with the restriction enzyme Sau3A, after which DNA fragments of the order of magnitude between 11000 bp and 19000 bp were cloned into the Xhol-cleaved vector ⁇ FIXII (Stratagene) after the interfaces involved had been partially filled in with two nucleotides.
  • the non-replicated genomic DNA bank represented 5.4 times the genome of Cuphea lanceolata. With the C1GPDH20-cDl ⁇ A as a probe, 31 genomic clones were then isolated from this bank.
  • the three genomic clones ClGPDHg3 (15.9 kb DNA insertion), ClGPDHg ⁇ (17.7 kb DNA insertion) and ClGPDHg9 (15.6 kb DNA insertion) were characterized in more detail.
  • suitable subclones were produced in the usual way and their DNA insertions were sequenced with the ExoIII / Mungbean Kit and with oligonucleotide primers to bridge gaps.

Abstract

In der vorliegenden Erfindung werden DNA-Sequenzen, die für eine Glycerin-3-Phosphat-Dehydrogenase kodieren, und die Allele sowie Derivate dieser DNA-Sequenzen beschrieben. Diese Sequenzen eignen sich zur Transformation in Pflanzen zur Änderung der Biosyntheseleistung.

Description

Glycerin-3-Phosphat-Dehydroqenase (GPDH)
Die Erfindung betrifft DNA-Sequenzen, die für eine Glycerin-3- Phosphat-Dehydrogenase (GPDH) kodieren, und die Allele sowie die Derivate dieser DNA-Sequenzen.
Die Erfindung betrifft weiterhin genomische Klone, die das vollständige Gen einer Glycerin-3-Phosphat-Dehydrogenase und Allele sowie Derivate dieses Gens enthalten.
Die Erfindung betrifft außerdem Promotoren und andere Regulatorelemente der Glycerin-3-Phosphat-Dehydrogenase-Gene.
Die Glycerin-3-Phosphat-Dehydrogenase (GPDH; EC 1.1.1.8) , auch als Dihydr' xyacetonphosphat-Reduktase bezeichnet, ist ma߬ geblich durch die Bereitstellung von Glycerin-3-Phosphat an der Triacylglyceridbiosynthese in Pflanzen beteiligt. Die Fettsäure- und Triacylglyceridbiosynthese lassen sich aufgrund der Kompartimentierung als getrennte Biosynthesewege, jedoch im Hinblick auf das Endprodukt, als ein Biosyntheseweg ansehen. Die de novo Biosynthese von Fettsäuren erfolgt in den Piastiden und wird von drei Enzymen bzw. Enzymsystemen katalysiert, d.h. (1) der Acetyl-CoA Carboxylase (ACCase) , (2) der Fettsäuresynthase (FAS) und (3) der Acyl- [ACP] - Thioesterase (TE) . Die Endprodukte dieser Reaktionsfolge sind in den meisten Organismen entweder Palmitin-, Stearin- und, nach einer Desaturierung, Ölsäure.
Im Cytoplasma dagegen erfolgt die Triacylglyceridbiosynthese im sogenannten "Kennedy Pathway" am Endoplasmatischen Reticulum aus Glycerin-3-Phosphat, das durch die Aktivität der Glycerin-3-Phosphat-Dehydrogenase bereitgestellt wird (S.A. Finnlayson et a_L, Arch. Biochem. Biophys . 199, Seiten 179-185 (1980) ) , und den Fettsäuren, die als Acyl-CoA Substrate vorliegen.
Die enzymatische Aktivität der Glycerin-3-Phosphat-Dehydro¬ genase wurde bei Pflanzen wahrscheinlich erstmals in Kartoffelknollen festgestellt (G.T. Santora et al, Arch. Biochem. Biophys. 196, Seiten 403-411 (1979)) . In anderen Pflanzen konnte diese Aktivität zuvor nicht beobachtet werden (B. König und E. Heinz, Planta 118, Seiten 159-169 (1974)) , so daß die Existenz des Enzyms ungeklärt war. Daher wurde die Bildung von Glycerin-3-Phosphat aufgrund der Aktivität einer Glycerin-Kinase als alternativer Biosyntheseweg diskutiert. Später wiesen Santora et. a_L, supra, die GPDH in Spinatblättern nach und konnten das Enzym etwa um das 10 000-fache anrei¬ chern. Sie bestimmten das native Molekulargewicht mit 63,5 kDa und zeigten pH-Optima für die Reduktion von Dihydroxyaceton- phosphat (DHAP) von 6,8 bzw. 9,5 für die Rückreaktion. Aus Rizinus-Endosperm wurde die GPDH ebenfalls nachgewiesen (Finlayson et. a_L, Arch. Biochem. Biophys. 199, Seiten 179-185 (1980)) . Nach jüngeren Arbeiten (Gee et. a_L, Plant Physiol . 86, Seiten 98-103 (1988a) ) konnten in angereicherten Fraktionen zwei GPDH-Aktivitäten, eine cytoplasmatische (20-25%) und eine plastidäre (75-80%) festgestellt werden. Beide Formen werden unterschiedlich reguliert. So ist beispielsweise die cytoplas¬ matische Isoform durch F2, 6DP aktivierbar, während die plastidäre Isoform durch Thioredoxin aktiviert wird (R.W. Gee et al, Plant Physiol. J36., Seiten 98-103 (1988) und R.W. Gee et al. Plant Physiol. 8_7, Seiten 379-383 (1988) .
Molekularbiologische Methoden halten zunehmend Einzug in die pflanzenzüchterische Praxis. Mit Hilfe der Genmanipulation, z.B. Übertragung von Genen, die für Enzyme kodieren, können Änderungen in der Biosyntheseleistung unter Bildung neuer Inhaltsstoffe und/oder höherer Erträge dieser Inhaltsstoffe erzielt werden. Die GPDH als eines der wichtigsten Enzyme in der Triacylglyceridsynthese übt einen wesentlichen Einfluß auf die Ölproduktion von Pflanzen aus.
Es ist daher Aufgabe der Erfindung, den Ölertrag von Nutzpflanzen durch Beeinflussung des Triacylglyceridgehalts zu verbessern.
Diese Aufgabe wird mit den DNA-Sequenzen gemäß Anspruch 1 und den Genen aus den genomischen Klonen gemäß Patentanspruch 4 gelöst.
Die Erfindung betrifft DNA-Sequenzen, die für eine Glycerin-3- Phosphat-Dehydrogenase kodieren, und die Allele sowie Derivate dieser DNA-Sequenzen.
Die Erfindung betrifft weiterhin genomische Klone, die ein vollständiges Gen einer Glycerin-3-Phosphat-Dehydrogenase umfassend das Strukturgen, den Promotor und andere Regulator¬ sequenzen, und die Allele sowie Derivate dieses Gens enthalten.
Die Erfindung betrifft ebenso die Promotoren und andere Regulatorelemente der Glycerin-3-Phoεphat-Dehydrogenase-Gene aus den genannten genomischen Klonen, und die Allele sowie Derivate dieser Promotoren.
Die Erfindung betrifft außerdem ein Verfahren zur Herstellung von Pflanzen, Pflanzenteilen und Pflanzenprodukten, deren Triacylglyceridgehalt bzw. Fettsäuremuster verändert ist, bei dem die genannten DNA-Sequenzen bzw. die Gene aus den genomischen Klonen auf gentechnologischem Weg übertragen werden.
Die Erfindung betrifft zudem die Verwendung der genannten DNA- Sequenzen oder eines der aus den genannten genomischen Klonen stammenden Gens zur Veränderung des Triacylglyceridgehalts bzw. dessen Fettsäuremuster in Pflanzen.
Die Erfindung betrifft schließlich transgene Pflanzen, Pflanzenteile und Pflanzenprodukte, die nach dem zuvor genannten Verfahren hergestellt worden sind.
Die Figuren dienen zur Erläuterung der vorliegenden Erfindung.
Es zeigen:
Figur 1 den Vergleich der abgeleiteten Aminosäure¬ sequenzen der cDNAs C1GPDH30 und C1GPDH109 sowie des Gens aus dem genomischen Klon ClGPDHg3 mit der GPDH-Aminosäuresequenz der Maus (Mm GPDH) ;
Figur 2 die gelelektrophoretische Auftrennung von
Proteinen aus BB26-36-Zellen;
Figur 3 die Kartierung der in den genomischen Klonen
ClGPDHg5, ClGPDHg9 und ClGPDHg3 enthaltenen Insertionen mit verschiedenen Restriktions¬ enzymen;
Figur 4 die schematische Darstellung der funktionel- len Bereiche der in den genomischen Klonen C1GPDH5, C1GPDH9 und C1GPDH3 enthaltenen Gene; und
Figur 5 den Northern Blot mit RNAs aus verschiedenen
Pflanzengeweben, hybridisiert mit der cDNA C1GPDH20 als Sonde. Es ist selbstverständlich, daß im Rahmen der Erfindung auch allelische Varianten und Derivate der erfindungsgemäßen DNA- Sequenzen bzw. Gene erfaßt sind, unter der Voraussetzung, daß diese modifizierten DNA-Sequenzen bzw. die modifizierten Gene für die Glycerin-3-Phosphat-Dehydrogenase kodieren. Zu den allelischen Varianten und Derivaten zählen beispielsweise Deletionen, Substitutionen, Insertionen, Inversionen oder Additionen der erfindungsgemäßen DNA-Sequenzen bzw. Gene.
Als Ausgangsmaterial für die Isolierung von cDNAs, die für Glycerin-3-Phosphat-Dehydrogenase kodieren, ist jedes Pflanzenmaterial geeignet, das dieses Enzym in ausreichender Menge produziert. Als besonders geeignetes Ausgangsmaterial haben sich in der vorliegenden Erfindung isolierte Embryonen aus der in Mittelamerika beheimateten Pflanze Cuphea lanceolata erwiesen.
Zur Isolierung der erfindungsgemäßen DNA-Sequenzen wurde eine funktionelle Komplementation angewendet . Hierbei handelt es sich um die Komplementation von Mutanten eines Mikroorganismus mit heterologer cDNA. Die funktioneile Komplementation erfolgte nach Infektion des E.coli-Stammes BB26-36, der für Glycerin auxotroph ist, mit Phagemids, die Plasmide mit cDNAs aus Cuphea lanceolata enthalten. Aus funktioneil komplemen¬ tierten Bakterien wurden Plasmide isoliert, welche mit Restriktions-Endonukleasen gespalten und elektrophoretisch aufgetrennt wurden. Die in den Plasmiden enthaltenen cDNAs konnten in zwei Klassen eingeteilt werden, die sich durch die Größe der Insertionen unterscheiden ließen. Die Retransfor- mation bestätigte, daß die isolierten cDNAs in der Lage waren, die Mutante BB26-36 zu komplementieren.
Der vollständige kodierende Bereich einer der beiden Klassen kodiert für eine Glycerin-3-Phosphat-Dehydrogenase und ist in dem cDNA-Klon C1GPDH20 enthalten. Es handelt sich hierbei um ein Eco RI-Apal-Fragment, das eine Größe von 1354 bp aufweist. Die vollständige 1354 bp DNA-Sequenz der cDNA C1GPDH20 und die davon abgeleitete Aminosäuresequenz ist als SEQ ID NO:l im Sequenzprotokoll gezeigt. Die cDNA C1GPDH20 wurde doppel- strängig sequenziert. Ausgehend vom Startkodon "ATG" kodiert die cDNA von Position 17 bis 1132 für ein Protein mit 372 Aminosäuren (Ende beim Stopkodon "TAG"), das ohne Leseraster¬ verschiebung als Fusion zu lacZ exprimiert wird. Das errechnete Molekulargewicht beträgt 40,8 kDa. Vor dem "ATG" befinden sich zwei Basenpaare (CA) , die zur cDNA zu zählen sind. Die ersten 14 Nukleotide sind der DNA-Sequenz der Fusion mit lacZ zuzuordnen, und am 3'-Ende ist die Linkersequenz angegeben. Das PolyA-Signal befindet sich an den Positionen 1329 bis 1334 im 3' -nicht translatierten Bereich.
Es ist anzunehmen, daß die cDNA C1GPDH20 eine cytoplasmatische Isoform darstellt, da bei Homologievergleichen mit der GPDH der Maus (siehe Figur 1) ein Transitpeptid nicht erkennbar ist. Aufgrund der Lage einer mutmaßlichen NADH-Bindungsstelle, die der Konsensus-Sequenz GxGxxG entspricht (siehe Positionen 29 bis 34 in der Aminosäuresequenz von C1GPDH20 in Figur 1 (R.K. Wierenga et al, Biochem ____., Seiten 1346-1357 (1985)) reicht die N-terminale Sequenz von 28 Aminosäuren nicht aus, um für ein Transitpeptid zu kodieren, deren Länge zwischen 32 und 75 Aminosäuren variiert (Y. Gavel et. a_L, FEBS Lett 261, Seiten 455-458 (1990) ) .
Zur Isolierung weiterer GPDH cDNAs wurde eine cDNA-Bank aus Cuphea lanceolata mit der cDNA C1GPDH20 als Sonde durchsucht, wobei insgesamt 52 cDNA-Klone isoliert wurden. Die 18 längsten cDNAs wurden vollständig oder zum Teil sequenziert. cDNAs mit dem vollständigen kodierenden Bereich bzw. eine fast vollständige cDNA der GPDH sind in den cDNA-Klonen C1GPDH109, C1GPDH30 und C1GPDH132 enthalten. Der cDNA-Klon C1GPDH109 enthält auf einem 1464 bp EcoRI-Apal- DNA-Fragment den vollständigen kodierenden Bereich der GPDH, der für ein Protein mit 381 Aminosäuren kodiert. Die DNA- Sequenz sowie die daraus abgeleitete Aminosäuresequenz ist als SEQ ID NO:2 im Sequenzprotokoll wiedergegeben. Das DNA- Fragment wurde doppelsträngig sequenziert. Der kodierende Bereich beginnt mit dem Startkodon "ATG" an Position 45 und endet an Position 1187, woran sich das Stopkodon "TAG" (Positionen 1188 bis 1190) anschließt. Die cDNA selbst beginnt an Position 15. Die ersten 14 Nukleotide sind der DNA-Sequenz der Fusion mit lacZ zuzuordnen. Im nicht translatierten Bereich am 3'-Ende befinden sich das PolyA-Signal (Positionen 1414 bis 1419) und der PolyA-Bereich (Positionen 1446 bis 1454) sowie die Linkersequenz (Positionen 1459 bis 1464) .
Eine weitere cDNA, C1GPDH30, enthält ebenfalls auf einem 1390 bp EcoRI-XhoI-Fragment den vollständigen kodierenden Bereich der GPDH, der für ein Protein mit 372 Aminosäuren kodiert. Die doppelsträngig sequenzierte DNA-Sequenz und die daraus abgeleitete DNA-Sequenz ist als SEQ ID NO:4 im Sequenzproto¬ koll gezeigt . Die proteinkodierende Sequenz beginnt mit dem Startkodon "ATG" an Position 34 und endet vor dem Stopkodon an Position 1149. Die ersten 14 Basenpaare sind der Sequenz der Fusion mit lacZ zuzuordnen. Im 3'-nicht translatierten Bereich befinden sich das PolyA-Signal (Positionen 1349 bis 1354) und der PolyA-Bereich (Positionen 1366 bis 1384) .
Der cDNA-Klon C1GPDH132 mit einer Größe von 1490 bp liegt als Eco Rl-Xhol-Fragment vor, dessen DNA-Sequenz sowie die davon abgeleitete Aminosäuresequenz als SEQ ID NO:3 im Sequenz- Protokoll gezeigt ist. Das DNA-Fragment wurde doppelsträngig sequenziert. Im Vergleich zur cDNA C1GPDH109 fehlen der cDNA C1GPDH132 14 Aminosäuren am N-Terminus. Das offene Leseraster beginnt an Position 15 und endet an Position 1115, gefolgt vom Stopkodon an den Positionen 1116 bis 1118. Somit kodiert die
deren Proteine gelelektrophoretisch aufgetrennt. In Figur 2 ist die gelelektrophoretische Auftrennung der BB26-36- Zellextrakte gezeigt . In der linken Spalte sind die Proteine von Zellen mit dem Expressionsvektor pGX (ohne Fusion; 26 kDa Protein) zu erkennen, während dessen auf der rechten Seite Proteine von Zellen mit dem Expressionsvektor pGXGPDH20, der ein Fusionsprotein von 67 kDa kodiert, aufgetragen worden ist. Die angegebenen Stundenwerte geben die Zeiten der Probe¬ entnahme nach IPTG-Induktion an. Man sieht deutlich eine Anreicherung des Fusionsproteins nach zwei Stunden. Mit isoliertem Fusionsprotein wurde anschließend eine Enzymaktivitätsbestimmung in einem Enzymassay der GPDH durchgeführt und signifikante Enzymaktivität gemessen. Diese Ergebnis belegt eindeutig, daß die cDNA C1GPDH20 ein funktionsfähiges Gen für die Expression von GPDH enthält.
Des weiteren wurden genomische Klone isoliert, wobei eine Bank aus genomischer DNA von Cuphea lanceolata mit der cDNA C1GPDH20 als Sonde gescreent wurde. Auf diese Weise konnten 31 genomische Klone isoliert werden. Die genomischen Klone enthalten ein vollständiges Strukturgen einer Glycerin-3- Phosphat-Dehydrogenase und die Allele sowie Derivate dieses Gens zusammen mit der Promotorsequenz und anderen Regulator¬ elementen. Das bedeutet also, daß sie vollständige Transkrip¬ tionseinheiten bilden.
Drei genomische Klone werden nachfolgend charakterisiert. Es handelt sich dabei um den genomischen Klon ClGPDHg3 mit einer DNA-Insertion von 15,9 kb, den genomischen Klon ClGPDHg5 mit einer DNA-Insertion von 17,7 kb und den genomischen Klon ClGPDHg9 mit einer DNA-Insertion von 15,6 kb. In Figur 3 ist die Kartierung der DNA-Insertionen der genomischen Klonen mit verschiedenen Restriktionsenzymen gezeigt. Die schwarzen Balken kennzeichnen die Fragmente, die mit einer 5' -Sonde der cDNA GPDH20 hybridisieren. Die weißen Balken zeigen die Bereiche der DNA-Insertionen, die sequenziert wurden und in den Sequenzprotokollen aufgeführt sind.
Die Sequenzanalyse der in Figur 3 angegebenen Bereiche (weiße Balken) der drei genomischen Klone ClGPDHg5, CLGPDHg3 und ClGPDHg9 hat ergeben, daß in diesen das vollständige oder zum Teil vollständige Strukturgen der GPDH mit erheblichen Anteilen der Promotorsequenz bzw. mit der gesamten Promotorsequenz (5' -Richtung) enthalten sind. Eine schematische Darstellung der sequenzierten Bereiche der genomischen Klone ist in Figur 4 wiedergegeben. Die genomischen Klone ClGPDHg5, ClGPDHg9 und ClGPDHg3 enthalten neben Promotorsequenzen die vollständigen Strukturgene der GPDH. Vom genomischen Klon ClGPDHg9 wurde der gesamte Promotor der GPDH sequenziert.
So enthält ein 4434 bp DNA-Fragment des genomischen Klons ClGPDHg5 im 5'-Bereich Teile des Promotors und das voll¬ ständige Strukturgen der GPDH. Die doppelsträngig sequenzierte DNA-Sequenz sowie die daraus abgeleitete Aminosäuresequenz sind als SEQ ID NO:5 im Sequenzprotokoll gezeigt. Die durch nicht translatierte DNA-Bereiche (Introns) unterbrochene proteinkodierende Sequenz mit 372 Aminosäuren beginnt mit dem Startkodon "ATG" an Position 1394 und endet vor dem Stopkodon "TAG" an Position 4005. Die putative TATA-Box befindet sich an den Positionen 1332 bis 1336. Der mutmaßliche Transkriptions- start ist bei Position 1364 (Joshi, NAR _5, Seiten 6643 bis 6653, 1987) . Das PolyA-Signal befindet sich am 3' -Ende an den Positionen 4205 bis 4210. Die Position 4221 entspricht dem letzten Nukleotid vor dem PolyA-Bereich der cDNA C1GPDH30 (siehe Position 1365 im SEQ ID NO:4) .
Das vollständige Strukturgen der GPDH sowie Teile des Promotors in 5' -Richtung sind in einem 4006 bp DNA-Fragment aus dem genomischen Klon ClGPDHg3 enthalten. Die weitgehend doppelsträngig sequenzierte DNA-Sequenz des DNA-Fragments aus ClGPDHg3 sowie die daraus abgeleitete Aminosäuresequenz sind als SEQ ID NO:6a und SEQ ID NO:6b im Sequenzprotokoll gezeigt. Der durch Intronsequenzen unterbrochene proteinkodierende Bereich beginnt an Position 1182 (siehe SEQ ID NO:6a) mit dem Startkodon "ATG" und endet vor dem Stopkodon "TAG" an Position 190 (siehe SEQ ID NO: 6b) . Die Signalsequenzen CAAT-Box und TATA-Box befinden sich vor dem Transkriptionsstart an den Positionen 1055 bis 1058 und 1103 bis 1107. Mutmaßliche Transkriptionsstartpunkte sind an den Positionen 1136 und 1148. Aufgrund fehlender Sequenzdaten ist innerhalb der kodierenden Sequenz ein Bereich von etwa 480 bp nicht identifiziert. Das PolyA-Signal befindet sich im nicht translatierten 3' -Bereich an den Positionen 393 bis 398. (SEQ ID NO:6b) .
Der gesamte Promotor sowie das erste Exon der für eine GPDH kodierenden Sequenz sind in einem 1507 bp DNA-Fragment aus dem genomischen Klon ClGPDHg9 enthalten. Die weitgehend doppel¬ strängig sequenzierte DNA-Sequenz sowie die daraus abgeleitete Aminosäuresequenz sind als SEQ ID NO:7 im Sequenzprotokoll wiedergegeben. Die TATA-Box befindet sich vor dem T_.ans- kriptionsstart an den Positionen 1108 bis 1112. Die protein¬ kodierende Sequenz beginnt mit dem Startkodon "ATG" an Position 1193 und endet an Position 1376, wo ein nicht translatierter Bereich (Intron) beginnt. Der mutmaßliche Transkriptionsstart ist bei Position 1144.
Aufgrund von DNA-Sequenzvergleichen ist festgestellt worder daß die cDNA C1GPDH30, die ein vollständiges Proteinlesera.- ..er für die GPDH umfaßt, identisch zu dem GPDH-Gen aus dem genomischen Klon ClGPDHgδ ist. Somit läßt sich der genomische Klon ClGPDHg5 in die Klasse A (siehe oben) einordnen. Die cDNA C1GPDH132 mit einem fast vollständigen Proteinleseraster für die GPDH ist identisch zu dem Gen aus dem genomischen Klon ClGPDHg9, der sich somit in die Klasse B (siehe oben) einordnen läßt. Das Gen aus dem genomischen Klon ClGPDHg3 konnte keiner der beiden Klassen zugeordnet werden und bildet daher eine weitere Klasse C.
Die erfindungsgemäßen DNA-Sequenzen, die für eine Glycerin-3- Phosphat-Dehydrogenase kodieren, können unter Anwendung gentechnologischer Verfahren (in Form von anti-sense- oder Überexpression) in Pflanzen zur Produktion dieser Dehydro- genasen zwecks Änderung von Biosyntheseleistungen in diesen Pflanzen eingeführt bzw. übertragen werden. Die erfindungs- gemäße DNA-Sequenzen werden, soweit sie nicht als vollständige Transkriptionseinheit vorliegen, vorzugsweise zusammen mit geeigneten Promotoren, insbesondere in rekombinanten Vektoren, wie beispielsweise binäre Vektoren, in die Pflanzen einge¬ führt. Die genomischen Klone können als eigene vollständige Transkriptionseinheiten zur Transformation von Pflanzen ver¬ wendet werden, um Einfluß auf den Triacylglyceridgehalt und dessen Fettsäuremuster zu nehmen.
Alle Arten von Pflanzen können für diesen Zweck transformiert werden. Es werden bevorzugt Ölpflanzen, wie beispielsweise Raps, Sonnenblume, Lein, Ölpalme und Soja, transformiert, um in diesen Pflanzen die Triacylglyceridbiosynthese in gewünsch¬ ter Weise zu beeinflussen.
Die gentechnologische Einführung der erfindungsgemäßen DNA- Sequenzen, die für eine Glycerin-3-Phosphat-Dehydrogenase kodieren sowie der in den genomischen Klonen enthaltenen vollständigen Gene einer Glycerin-3-Phosphat-Dehydrogenase können mit Hilfe üblicher Transformationstechniken durch¬ geführt werden. Solche Techniken umfassen Verfahren wie direkten Gentransfer, wie beispielsweise Mikroinjektion, Elektroporation, Particle gun, das Quellen von Pflanzenteilen in DNA-Lösungen, Pollen- oder Pollenschlauchtransformation, virale Vektoren und Liposomen- vermittelten Transfer sowie die Übertragung von entsprechenden rekombinanten Ti-Plasmiden oder Ri-Plasmiden durch Agrobacterium tumefaciens und die Trans¬ formation durch Pflanzenviren.
Die erfindungsgemäßen DNA-Sequenzen sowie die in den genomi¬ schen Klonen enthaltenen vollständigen Gene einer Glycerin-3- Phosphat-Dehydrogenase sind in hervorragender Weise geeignet, in transgenen Pflanzen eine beträchtliche Ölertragssteigerung hervorzurufen. Diese Ölertragssteigerung ist mit einer Erhöhung des Triacylglyceridgehaltes im Samen aufgrund einer Überexpression der GPDH zu erhalten. Darüber hinaus kann durch anti-sense-Expression bzw. Cosuppression eine Reduktion der Glycerin-3-Phosphat-Konzentration erreicht werden, womit Bausteine für die Triacylglyceridsynthese fehlen. Dieser Effekt ist dann von besonderem Nutzen, wenn beispielsweise die Bildung von Wachsestern (Jojoba-Wachsester) in den Samen transgener Pflanzen verbessert werden sollen. Eine weitere Anwendungsmöglichkeit der erfindungsgemäßen DNA-Sequenzen sowie der Gene aus den genomischen Klonen ist darin zu sehen, in transgenen Pflanzen die Triacylglycerid-Biosynthese zu unterdrücken und die CoA-Ester sowie Glycerin-3-Phosphat für andere Biosynthesen verfügbar zu machen.
Des weiteren sind die Promotoren der Glycerin-3-Phosphat- Dehydrogenase-Gene aus den erfindungsgemäßen Klonen bei¬ spielsweise einsetzbar für eine gerichtete Expression chimärer Gene in embryospezifischem Gewebe. Aufgrund experimenteller Daten ist im Hinblick auf die Spezifität der Promotoren anzunehmen, daß die Promotoren der Gene aus den genomischen Klonen ClGPDHg5 und ClGPDHg9 samenspezifisch sind, während¬ dessen der Promotor des Gens aus dem genomischen Klon ClGPDHg3 im Embryo nicht oder nicht sehr aktiv ist. So eignen sich beispielsweise ein 1387 bp BamHI/AlwNI-Fragment aus ClGPDHgδ für transkriptionelle Fusionen, ein 1189 bp Sphl/Narl-Fragment aus ClGPDHg9 für translationeile Fusionen und ein 1172 bp BamHI/BsmAI (part.) -Fragment aus ClGPDHg3 für transkriptionelle Fusionen. Größere (oder auch kleinere) Promotorfragmente lassen sich aufgrund der auf den genomischen Klonen darüber hinaus vorhandenen klonierten Abschnitten zur Expression chimärer Gene heranziehen. Ebenfalls regulatorische Sequenzen, die sich möglicherweise downstream des ersten Kodons der GPDH- Gene befinden, sind für eine gezielte Expression chimärer Gene aus den klonierten Fragmenten aus genomischer DNA zu erhalten.
Eine Northern-Blot-Analyse mit polyA+-RNA aus verschiedenen Geweben von Cuphea lanceolata mit der cDNA C1GPDH20 als Sonde zeigt sehr große Mengen an RNA in Embryonen im Vergleich zu anderen Geweben (siehe Figur 5) . Die RNA-Akkumulation ist mit einer erhöhten Genexpression korreliert und deutet somit auf einen außerordentlich starken Promotor.
Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung.
BEISPIELE
Das im Rahmen der vorliegenden Erfindung verwendete Pflanzenmaterial stammte von Cuphea lanceolata (Lythraceae) (lanzettblättriges Köcherblümchen oder Höckerblümchen) .
Beispiel 1
Herstellung von cDNAs der Glycerin-3-Phosphat-Dehydrogenase aus Cuphea lanceolata
Die Herstellung einer cDNA-Bank aus Cuphea lanceolata (Wildtyp) erfolgte mit Hilfe des cDNA ZAP®-Synthesekits gemäß den Angaben des Herstellers (Stratagene, La Jolla USA) . Als Ausgangsmaterial zur Synthese der cDNAs wurde mRNA aus iso- lierten, etwa zwei bis drei Wochen alten, unreifen Embryonen verwendet. Die auf diese Weise erhaltene cDNA-Bank hat eine Größe von 9,5 x 105 rekombinanten Phagen.
Die funktioneile Komplementation zur Isolation von cDNAs, die für eine Glycerin-3-Phosphat-Dehydrogenase kodieren, wurde mit dem E.coli Bakterienstamm BB26-36 (R.M. Bell, J. Bact. 117, Seiten 1065-1076 (1974)) durchgeführt. Das Bakterienmedium wurde zur Kultur von BB26-36, der unter anderem, die Mutationen plsB26 und plsX trägt, 0,1% Glycerin zugegeben und somit die Bakterien supplementiert. Zur funktionellen Komplementation wurde Medium ohne Glycerin verwendet.
Aus der oben beschriebenen cDNA-Bank in λ-ZAP II wurden die pBluescript-Plasmide mit den cDNA-Insertionen gemäß den Herstellerangaben (Stratagene) durch .in vivo Excision mittels Helferphagen ausgeschnitten und in Phagenhüllen verpackt: Es wurden 200 μl XLlBlue E.coli-Zellen (OD600 = 1) mit 5 x 106 pfu der λ-ZAP II cDNA-Bank und, um eine Koinfektion zu gewähr¬ leisten, mit einer zehnfachen Menge an f1-Helferphagen R408 infiziert. Nach einer 15 Minuten langen Inkubation bei einer Temperatur von 37°C zur Phagenadsorption wurden 5 ml 2xYT- Medium hinzugegeben und für weitere drei Stunden bei einer Temperatur von 37°C geschüttelt. Während dieser Zeit sekretieren die Zellen die pBluescript-Plasmide, welche in die Hüllen der Helferphagen verpackt sind, die sogenannten Phagemids, ins Medium. Durch eine 20 Minuten lange Hitze- behandlung bei 70°C wurden die Bakterien abgetötet und die λ-Phagen inaktiviert. Nach einer Zentrifugation wurde der Überstand abgenommen, der neben den Phagemids Helferphagen enthält . Dieser Überstand wurde zur Infektion des Mutanten¬ stamms von BB26-36 verwendet.
Die Komplementation erfolgte nach Infektion des E.coli-Stammes BB26-36 mit denjenigen Phagemids, die Plasmide mit cDNAs enthalten, die für eine Glycerin-3-Phosphat-Dehydrogenase kodieren. Zur Selektion wurde M56-LP-Medium (Bell, supra) mit 50 μg Ampicillin eingesetzt (ohne Glycerin-3-Phosphat) . Die Retransformation von BB26-36 erfolgte nach der Methode von D. Hanahan, J.Mol.Biol. 166, Seiten 557-580, (1983) mit anschließender Plattierung auf das genannte selektive Medium.
Zur Bestimmung der Sequenz der DNA-Fragmente der positiven cDNA-Klone wurden Deletionsklone mittels Exonuclease III hergestellt (Stratagene) , die nach der Methode von Sanger et. al. Proc. Nat. Acad. Sei. 74, Seiten 5463-5467 (1977) sequenziert wurden. Die DNA-Sequenzierung erfolgte teilweise radioaktiv mit Hilfe des T7 Sequencing® Kits bzw. mit Hilfe eines "Pharmacia Automated Laser Fluorescent A.L.F.®" DNA- Sequenziergerätes. Die Sequenzen wurden mit Hilfe der Computer Software der University of Wisconsin Genetics Computer Group (J. Devereux et a_l, Nucl. Acids Res. _L2, Seiten 387-394 (1984)) analysiert.
Des weiteren wurden cDNA-Klone durch Screenen einer cDNA-Bank aus Cuphea lanceolata mit der cDNA C1GPDH20 als Sonde iso¬ liert . Dazu wurde eine cDNA-Bank aus Cuphea lanceolata (Wildtyp) mit Hilfe des cDNA ZAP® Synthesekits gemäß den Angaben des Herstellers hergestellt. Ausgangsmaterial zur Synthese der cDNAs war mRNA aus isolierten, etwa zwei bis drei Wochen alten, unreifen Embryonen. Die erhaltene cDNA-Bank hat eine Größe von 9,6 x 105 rekombinanten Phagen mit einem Anteil von etwa 50% an Klonen, deren Insertionen 500 bp übersteigen. Die cDNA-Bank wurde mit C1GPDH20 als Sonde durchsucht und 18 cDNAs isoliert und teilweise bzw. vollständig in üblicherweise sequenziert. Von diesen cDNAs entfielen 12 auf die Klasse A und 6 cDNAs auf die Klasse B. Die Enzymmessungen wurden mit dem Fusionsprotein nach dem Protokoll von Santora et a_l, Arch. Biochem. Biophys 196, Seiten 403-411 (1979)) durchgeführt.
Beispiel 2
Herstellung von genomischen Klonen der Glvcerin-3-Phosphat-
Dehvdrogenase aus Cuphea lanceolata
Hierzu wurden genomische DNA aus jungen Blättern von Cuphea lanceolata isoliert (S.L. Della Porta et a_L, Plant.Mol .Biol . Rep. I, Seiten 19-21 (1983)) . Die DNA wurde dann partiell mit dem Restriktionsenzym Sau3A gespalten, wonach DNA-Fragmente der Größenordnung zwischen 11000 bp und 19000 bp in den mit Xhol gespaltenen Vektor λFIXII (Stratagene) kloniert wurden, nachdem die beteiligten Schnittstellen jeweils mit zwei Nukleotiden partiell aufgefüllt worden waren. Die nicht- vervielfältigte genomische DNA-Bank repräsentierte 5,4 mal das Genom von Cuphea lanceolata. Mit der C1GPDH20-cDl^A als Sonde wurden dann aus dieser Bank 31 genomische Klone isoliert.
Unter anderem wurden die drei genomischen Klone ClGPDHg3 (15,9 kb DNA-Insertion), ClGPDHgδ (17,7 kb DNA-Insertion) und ClGPDHg9 (15,6 kb DNA-Insertion) näher charakterisiert. Dazu wurden geeignete Subklone in üblicher Weise hergestellt und deren DNA-Insertionen mit dem ExoIII/Mungbean Kit, und zur Überbrückung von Lücken, mit Oligonukleotidprimern sequenziert.
Sollten in irgendeiner Weise molekularbiologische Arbeiten nicht hinreichend beschrieben worden sein, so wurden diese nach Standardmethoden, wie bei Sambrook et. al, A laboratory Manual, 2nd edn. (1989) beschrieben, durchgeführt.

Claims

Patentansprüche
1. DNA-Sequenzen, die für eine Glycerin-3-Phosphat- Dehydrogenase kodieren, und die Allele sowie Derivate dieser DNA-Sequenzen.
2. DNA-Sequenzen nach Anspruch 1, dadurch gekennzeichnet, daß sie aus Pflanzen isoliert sind.
3. DNA-Sequenzen nach Anspruch 2, dadurch gekennzeichnet, daß sie aus Cuphea lanceolata isoliert sind.
4. Genomische Klone, die ein vollständiges Gen einer Glycerin-3-Phosphat-Dehydrogenase und die Allele sowie Derivate dieses Gens enthalten.
5. Genomische Klone nach Anspruch 4, dadurch gekennezeichnet, daß das vollständige Gen neben dem Strukturgen die Promotorsequenz und andere Regulatorelemente umfaßt.
6. Genomische Klone nach Anspruch 4, dadurch gekennzeichnet, daß sie aus genomischer Pflanzen-DNA isoliert sind.
7. Genomische Klone nach Anspruch 6, dadurch gekennzeichnet, daß die Pflanzen-DNA von Cuphea lanceolata stammt.
8. Promotoren und andere Regulatorelemente der Glycerin-3- Phosphat-Gene aus einem der genomischen Klone nach den Ansprüchen 5 bis 7 und die Allele sowie Derivate dieser Promotoren.
9. DNA-Sequenzen nach Anspruch 1, erhalten durch funktioneile Komplementation mit Mutanten eines Mikroorganismus.
10. DNA-Sequenzen nach Anspruch 9, dadurch gekennzeichnet, daß der Mikroorganismus E.coli BB26-36 ist.
11. Verfahren zur Herstellung von Pflanzen, Pflanzenteilen und Pflanzenprodukten, deren Triacylglyceridgehalt bzw. dessen Fettsäuremuster verändert ist, bei dem eine DNA- Sequenz nach einem der Ansprüche 1 bis 3 oder ein aus den genomischen Klonen stammendes Gen nach einem der Ansprüche 4 bis 7 auf gentechnologischem Weg übertragen wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die DNA-Sequenz oder das Gen durch Mikroinjektion, Elektroporation, Particle gun, das Quellen von Pflanzenteilen in DNA-Lösungen, Pollen- oder Pollenschlauchtransformation, Übertragung von ent¬ sprechenden rekombinanten Ti-Plasmiden oder Ri-Plasmiden mit Agrobacterium tumefaciens, Liposomen-vermitteltem Transfer oder durch Pflanzenviren übertragen wird.
13. Verwendung einer DNA-Sequenz nach einem der Ansprüche 1 bis 3 oder eines aus den genomischen Klonen stammenden Gens nach einem der Ansprüche 4 bis 7 zur Änderung der Biosyntheseleistung in Pflanzen.
14. Pflanzen, Pflanzenteile und Pflanzenprodukte, hergestellt nach einem Verfahren der Ansprüche 11 oder 12.
EP94927553A 1993-09-03 1994-09-02 Glycerin-3-phosphat-dehydrogenase (gpdh) Withdrawn EP0716699A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4329827 1993-09-03
DE4329827 1993-09-03
PCT/EP1994/002936 WO1995006733A2 (de) 1993-09-03 1994-09-02 Glycerin-3-phosphat-dehydrogenase (gpdh)

Publications (1)

Publication Number Publication Date
EP0716699A1 true EP0716699A1 (de) 1996-06-19

Family

ID=6496790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94927553A Withdrawn EP0716699A1 (de) 1993-09-03 1994-09-02 Glycerin-3-phosphat-dehydrogenase (gpdh)

Country Status (5)

Country Link
US (1) US6103520A (de)
EP (1) EP0716699A1 (de)
AU (1) AU680551B2 (de)
CA (1) CA2170611A1 (de)
WO (1) WO1995006733A2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1214432A1 (de) * 1999-09-22 2002-06-19 National Research Council Of Canada Transgene manipulation von sn-glycerin-3-phosphat und glycerin herstellung durch verwendung eines feedback-defektiven glycerin-3-phosphat dehydrogenase-gens
US7759547B2 (en) 1999-09-22 2010-07-20 National Research Council Of Canada Methods of producing and growing plants having improved phosphorus utilization
EP1414288B1 (de) * 2001-08-10 2009-03-25 BASF Plant Science GmbH Zucker- und lipidmetabolismusregulatoren bei pflanzen iii
CA2484001A1 (en) * 2002-05-08 2003-11-20 Basf Plant Science Gmbh Methods for increasing oil content in plants
EP1597374A2 (de) * 2003-02-27 2005-11-23 CropDesign N.V. Arabidopsis promotoren
US20060166236A1 (en) * 2004-12-15 2006-07-27 Chong-Sheng Yuan Allosteric enzyme coupled immunoassay (AECIA)
US8207398B2 (en) * 2005-07-18 2012-06-26 University Of Kentucky Research Foundation Plants having an enhanced resistance to necrotrophic pathogens and method of making same
DE102005053318A1 (de) * 2005-11-07 2007-05-10 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur Erhöhung des Gesamtölgehaltes in Ölpflanzen
US20080163390A1 (en) * 2007-01-03 2008-07-03 University Of Kentucky Research Foundation Methods and compositions for providing sa-independent pathogen resistance in plants
CN108165566B (zh) * 2017-12-25 2021-05-04 大连民族大学 沙棘gpd1基因的构建方法
CN108034666B (zh) * 2017-12-25 2021-01-12 大连民族大学 沙棘gpd1基因

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0563191T4 (da) * 1990-12-20 2000-07-17 Du Pont Nucleotidsekvenser af sojabønne-acyl-ACP-thioesterase-gener

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9506733A3 *

Also Published As

Publication number Publication date
WO1995006733A3 (de) 1995-04-20
CA2170611A1 (en) 1995-03-09
AU680551B2 (en) 1997-07-31
US6103520A (en) 2000-08-15
WO1995006733A2 (de) 1995-03-09
AU7693894A (en) 1995-03-22

Similar Documents

Publication Publication Date Title
DE69103753T3 (de) Nukleotidsequenz des gens für stearoyl-acp-desaturase aus soja.
DE60034224T2 (de) Nukleinsäuresequenzen für proteine die an der isoprenoid-synthese beteiligt sind
DE69838613T2 (de) Gene, welche den phytat-metabolismus kontrollieren und daraus entstehende anwendungen
DE69433941T2 (de) Gen für die fettsäure-desaturase, besagtes gen enthaltender vektor, eine pflanze, in die besagtes gen eingebracht ist, und ein verfahren zur schaffung besagter pflanze
DE69533516T2 (de) Fae1gene und deren anwendungen
EP1506289B1 (de) Verfahren zum erhöhen des ölgehaltes in pflanzen
EP1222297B1 (de) Elongasepromotoren für gewebespezifische expression von transgenen in pflanzen
WO2001051647A2 (de) Verfahren zur erhöhung des gehalts an fettsäuren in pflanzen und mikroorganismen
EP0716708A1 (de) Mittelkettenspezifische thioesterasen
DE60127967T2 (de) Ein mit der synthese von delta-12 epoxy-gruppen in fettsäuren von pflanzen assoziiertes cytochrom p450 enzym
JPH08507923A (ja) Dna、dna構築物、細胞及びそれから誘導された植物
DE69937688T2 (de) S-adenosyl-l-methionin synthetase promotor und dessen verwendung zur transgen-expression in pflanzen
EP0716699A1 (de) Glycerin-3-phosphat-dehydrogenase (gpdh)
DE19752647C1 (de) Reduktiion des Chlorophyllgehaltes in Ölpflanzensamen
EP1212439B1 (de) Pflanzen mit verändertem aminosäuregehalt und verfahren zu deren herstellung
EP1185670B1 (de) Verfahren zur erhöhung des fettsäuregehalts in pflanzensamen
WO1994017188A2 (de) ACETYL-CoA-CARBOXYLASE-GEN
EP1301610A2 (de) Verfahren zur beeinflussung des sinapingehalts in transgenen pflanzenzellen und pflanzen
DE69633630T2 (de) Pflanzengen, das für ein koenzym a-carboxylase-biotin-carboxylase trägerprotein kodiert
EP0716707A1 (de) Promotoren
DE60120379T2 (de) Hydroperoxidlyase der Warzenmelone (Cucumis Melo) sowie deren Verwendungen
DE60008962T2 (de) Klonierung einer N-Methyltransferase, die an der Koffeinbiosynthese beteiligt ist
EP1025248A1 (de) Reduktion des chlorophyllgehaltes in ölpflanzensamen
DE4317260A1 (de) Acetyl-CoA-Carboxylase kodierende DNA-Sequenz
WO1999011805A1 (de) Rekombinante dna-moleküle und verfahren zur steigerung des ölgehaltes in pflanzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19980709

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 12N 15/53 A, 7C 12N 15/29 B

RTI1 Title (correction)

Free format text: GLYCEROL-3-PHOSPHATE-DEHYDROGENASE (GPDH)

RTI1 Title (correction)

Free format text: GLYCEROL-3-PHOSPHATE-DEHYDROGENASE (GPDH)

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: GLYCEROL-3-PHOSPHATE-DEHYDROGENASE (GPDH)

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030401

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE