EP0713058B1 - Multi-stage combustion chamber - Google Patents

Multi-stage combustion chamber Download PDF

Info

Publication number
EP0713058B1
EP0713058B1 EP95810698A EP95810698A EP0713058B1 EP 0713058 B1 EP0713058 B1 EP 0713058B1 EP 95810698 A EP95810698 A EP 95810698A EP 95810698 A EP95810698 A EP 95810698A EP 0713058 B1 EP0713058 B1 EP 0713058B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
combustion
space
burner
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95810698A
Other languages
German (de)
French (fr)
Other versions
EP0713058A1 (en
Inventor
Joseph Brostmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0713058A1 publication Critical patent/EP0713058A1/en
Application granted granted Critical
Publication of EP0713058B1 publication Critical patent/EP0713058B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • F23C7/06Disposition of air supply not passing through burner for heating the incoming air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the invention relates to a method for operating a multi-stage Combustion chamber, with at least one primary burner Premix type, in which within a premixing room the Fuel injected via nozzles prior to ignition is intensively mixed with primary combustion air, and with at least an afterburner, downstream of the pre-combustor is arranged and introduced into the secondary combustion air becomes. It also relates to a combustion chamber for implementation of the procedure.
  • Such a two-stage combustion chamber and a method for its operation is known from DE-C2 31 49 581.
  • Vortex cups with central fuel injection nozzles are used there as primary burners of the premix type.
  • the combustion chamber is a so-called "rich / lean two-stage combustion chamber", the gases having a fuel / air equivalence ratio in the first combustion stage which is greater than 1.
  • the gases In the second combustion stage, the gases have a fuel / air equivalence ratio that is less than 1.
  • the transition from the rich to the lean mixture can be realized as quickly as possible.
  • the mixture is therefore accelerated and the secondary combustion air is injected into the accelerated mixture.
  • the purpose of the acceleration is to keep the duration of the mixture in the zone in which the fuel / air equivalence ratio is 1 as short as possible. This is because the formation rate of NO X is greatest at this medium ratio.
  • the object of the invention is to create a "lean / lean" process and the associated combustion chamber using such modern premix burners, with which extremely low NO x emissions are achieved.
  • a combustion chamber for carrying out this method draws arranged from one at the head end of the combustion chamber Double-cone burner of the premix type, with a subsequent one Pre-combustion chamber, by one following the pre-combustion chamber Acceleration path for the flue gas, which in one Afterburner opens, and through air inlets in the area of the acceleration section in the double wall Combustion chamber boundary are arranged, as well as by at the entrance of the afterburner arranged injection means for Additional fuel.
  • the advantage of the invention can be seen in particular in the fact that the premix burner can be operated at the lower extinguishing limit, with only about 9 ppm NO x initially being produced;
  • the self-igniting afterburning process delivers gases with the desired high temperature of 1800K (approx. 1530 ° C), which gases only have NO x values below 6 ppm due to the supply of additional air and due to the short residence times.
  • Fig. 1 50 is a jacketed plenum, which is usually the one not shown Compressor-fed combustion air and one for example, supplies annular combustion chamber 60.
  • This The combustion chamber has two stages and essentially exists a pre-combustion chamber 61 and a downstream one located post-combustion chamber 62, both with a combustion chamber wall 63 are covered. Of all the combustion air part a of the pre-combustion chamber 61 is fed directly, while parts b and c initially have cooling functions exercise.
  • annular dome 55 On the pre-combustion chamber 61, which is at the head end of the combustion chamber 60 is located and its combustion chamber through a front panel 54 is limited, an annular dome 55 is placed.
  • a burner 110 is arranged in this dome in such a way that the burner outlet is at least approximately flush with the Front plate 54.
  • the longitudinal axis 51 of the primary burner 110 runs coaxially to the longitudinal axis 52 of the combustion chamber 60 a number of such burners are distributed around the circumference 110 side by side on the annular front plate 52 arranged.
  • the fuel will fed to the burner via a fuel lance 120 which penetrates the cathedral and plenum walls.
  • Double cone burner such as from EP-B1-0 321 809 is known. Essentially it consists of two hollow, conical part-bodies 111, 112, which are nested in the direction of flow.
  • the respective central axes 113, 114 of the two Partial body offset from each other.
  • the neighboring walls of the two partial bodies form in their longitudinal extent tangential slots 119 for the combustion air that on this way gets into the interior of the burner.
  • the fuel is injected into the at an acute angle Hollow cone injected.
  • the resulting tapered fuel profile is from the tangentially flowing combustion air enclosed.
  • the concentration of the Fuel continuously as a result of mixing with the Combustion air reduced.
  • the burner can also be operated with gaseous fuel.
  • Gas inflow openings 117 are provided in the area of the tangential slots 119 in the Walls of the two partial bodies distributed in the longitudinal direction.
  • the premix burner is operated with approx. 56% of the total available combustion air and that close to the lower extinguishing limit; ie the corresponding amount of fuel is set so that a temperature of 1640K (approx. 1370 ° C.) and a NO x content of 9 ppm prevail in the combustion chamber 61.
  • Such fuel lances are at the entrance to the afterburning chamber 62 121 arranged. In the case of an annular combustion chamber several such lances are distributed over the circumference. Out the additional fuel is supplied to them - evenly over the Flow cross section distributed - injected into the main flow.
  • the remaining ones are upstream of this fuel injection 44% air is appropriately mixed into the combustion process.
  • This is the air that initially is used to cool the combustion chamber walls.
  • These combustion chamber walls are both in the area of the pre-combustion chamber 61 and in the area of the afterburner 62 double-walled.
  • the inner wall 63a is in the Plane of the intended air supply with inlet openings 64 see.
  • the amount of air that is added to the main flow is composed of two partial flows.
  • the cooling air b of the pre-combustion chamber which is approximately 16% of the total and the cooling air c of the afterburner, which makes up about 28% of the total.
  • the pressure drop is the air via the wall cooling approx. 4%, that via the Mixture of combustion gases and cooling air approx. 2%.
  • the mixing temperature after admixing the cooling air to the combustion gases in the pre-combustion chamber is approximately 980 ° C., so that the fuel / air mixture present at the inlet into the afterburning chamber 62 is self-igniting.
  • the amount of additional fuel is selected so that the desired final temperature of 1700 K (approx. 1430 ° C.) prevails in the afterburning chamber 62.
  • the NO x content of 9 ppm resulting from the pre-combustion is reduced to less than 6 ppm by the dilution.
  • afterburning chamber 62 is in its axial Extension is dimensioned so that it is complete Burnout takes place.
  • FIG. 2 schematically shows a five-stage combustion chamber which can be operated as follows: Fuel is fed to the premix burner 110 via the fuel lance 120 and burned with approximately 10% of the combustion air a. The amount of fuel supplied via the lance 120 is adjusted so that a temperature of 1640 K (approx. 1370 ° C.) and a NO x content of 9 ppm prevail in the combustion chamber A. The mixture is accelerated; A further 8% of air, in this case wall cooling air, is introduced in level b, and a corresponding amount of fuel is introduced via fuel lances 121, so that a temperature of 1500 K (approx. 1230 ° C.) prevails in combustion chamber B.
  • a further 14% of air is introduced in level c and a corresponding amount of fuel is introduced via fuel lances 130, so that a temperature of 1500 K (approx. 1230 ° C.) also prevails in combustion chamber C.
  • a further 26% of air is introduced in level d and a corresponding amount of fuel is introduced via fuel lances 131, so that a temperature of 1500K (approx. 1230 ° C.) also prevails in combustion chamber D.
  • the remaining 42% air is introduced in level e and the remaining amount of fuel is introduced via fuel lances 132, so that the desired final temperature of 1700 K (approx. 1430 ° C.) prevails in combustion chamber E.
  • the NO x content in the combustion chamber E is only 3 ppm.
  • the optimal number of combustion stages with regard to the NO x value to be achieved is to be selected as a function of the pressure loss to be accepted and the combustion chamber length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

Technisches GebietTechnical field

Die Erfindung betrifft ein Verfahren zum Betrieb einer mehrstufigen Brennkammer, mit mindestens einem Primärbrenner der Vormischbauart, bei dem innerhalb eines Vormischraumes der über Düsen eingespritzte Brennstoff vorgängig der Zündung mit Primärbrennluft intensiv vermischt wird, und mit mindestens einer Nachbrennraum, der stromabwärts des Vorbrennraumes angeordnet ist und in den Sekundärbrennluft eingeleitet wird. Sie betrifft ebenfalls eine Brennkammer zur Durchführung des Vefahrens. The invention relates to a method for operating a multi-stage Combustion chamber, with at least one primary burner Premix type, in which within a premixing room the Fuel injected via nozzles prior to ignition is intensively mixed with primary combustion air, and with at least an afterburner, downstream of the pre-combustor is arranged and introduced into the secondary combustion air becomes. It also relates to a combustion chamber for implementation of the procedure.

Stand der TechnikState of the art

Eine solche zweistufige Brennkammer und ein Verfahren zu deren Betrieb ist bekannt aus der DE-C2 31 49 581. Als Primärbrenner der Vormischbauart werden dort Wirbelbecher mit zentralen Brennstoffeinspritzdüsen verwendet. Bei der Brennkammer handelt es sich um eine sogenannte "Fett/MagerZweistufenbrennkammer", wobei in der ersten Verbrennungsstufe die Gase ein Brennstoff/Luft-Äquivalenzverhältnis aufweisen, welches grösser als 1 ist. In der zweiten Verbrennungsstufe weisen die Gase ein Brennstoff/Luft-Äquivalenzverhältnis auf, welches kleiner als 1 ist. Der Übergang vom fetten auf das magere Gemisch ist schnellstmöglich zu realisieren. Deshalb wird das Gemisch beschleunigt, und die Sekundärbrennluft wird in das beschleunigte Gemisch eingedüst. Der Zweck der Beschleunigung ist darin zu sehen, die Aufenthaltsdauer des Gemisches in der Zone, in welcher das Brennstoff/Luft-Äquivalenzverhältnis 1 beträgt, möglichst klein zu halten. Denn bei diesem mittleren Verhältnissen ist die Bildungsgeschwindigkeit von NOX am grössten. Such a two-stage combustion chamber and a method for its operation is known from DE-C2 31 49 581. Vortex cups with central fuel injection nozzles are used there as primary burners of the premix type. The combustion chamber is a so-called "rich / lean two-stage combustion chamber", the gases having a fuel / air equivalence ratio in the first combustion stage which is greater than 1. In the second combustion stage, the gases have a fuel / air equivalence ratio that is less than 1. The transition from the rich to the lean mixture can be realized as quickly as possible. The mixture is therefore accelerated and the secondary combustion air is injected into the accelerated mixture. The purpose of the acceleration is to keep the duration of the mixture in the zone in which the fuel / air equivalence ratio is 1 as short as possible. This is because the formation rate of NO X is greatest at this medium ratio.

Moderne Brenner der Vormischbauart bieten die Möglichkeit, auch die erste Verbrennungstufe mager zu betreiben, was sich aufgrund der grossen Luftzahl und der niedrigeren Flammentemperaturen vorteilhaft auf die NOX-Bildung auswirkt. Bei einer solchen Vormischverbrennungtechnik muss nur sichergestellt werden, dass die Flammstabilität, insbesondere bei Teillast, nicht an die Löschgrenze stösst. Als Regel gilt, dass solche Vormischbrenner, wenn sie einstufig betrieben werden und wenn Temperaturen von 1800K (ca. 1530°C) verlangt werden, etwa 25-30 ppm NOX erzeugen. Modern burners of the premix type offer the possibility of also operating the first combustion stage lean, which has an advantageous effect on the NO x formation due to the large air ratio and the lower flame temperatures. With such a premixed combustion technology, it only has to be ensured that the flame stability, especially at partial load, does not reach the extinguishing limit. As a rule, such premix burners, when operated in one stage and when temperatures of 1800K (approx. 1530 ° C) are required, produce about 25-30 ppm NO X.

Darstellung der ErfindungPresentation of the invention

Die Erfindung liegt die Aufgabe zugrunde, unter Benutzung solcher moderner Vormischbrenner ein "Mager/Mager"-Verfahren und die zugehörige Brennkammer zu schaffen, mit denen extrem tiefe NOX-Emissionen erzielt werden. The object of the invention is to create a "lean / lean" process and the associated combustion chamber using such modern premix burners, with which extremely low NO x emissions are achieved.

Erfindungsgemäss wird dies dadurch erreicht,

  • dass der Primärbrenner ein flammenstabilisierender Vormischbrenner ist, welcher an der unteren Stabilitätsgrenze betrieben wird,
  • dass zwischen Vorbrennraum und Nachbrennraum das Rauchgas beschleunigt wird,
  • und dass in die den Vorbrennraum verlassende Rauchgasströmung zwecks Bildung eines selbstzündenden Gemisches Kühlluft aus der doppelwandigen Brennkammerbegrenzung und Zusatzbrennstoff eingeführt wird.
According to the invention, this is achieved by
  • that the primary burner is a flame-stabilizing premix burner which is operated at the lower stability limit,
  • that the flue gas is accelerated between the pre-combustion chamber and the after-combustion chamber,
  • and that cooling air from the double-walled combustion chamber boundary and additional fuel is introduced into the flue gas flow leaving the pre-combustion chamber to form a self-igniting mixture.

Eine Brennkammer zur Durchführung dieses Verfahrens zeichnet sich aus durch einen am Kopfende der Brennkammer angeordneten Doppelkegelbrenner der Vormischbauart, mit anschliessendem Vorbrennraum, durch eine dem Vorbrennraum folgende Beschleunigungsstrecke für das Rauchgas, welche in einen Nachbrennraum mündet, und durch Luft-Einströmöffnungen, die im Bereich der Beschleunigungsstrecke in der doppelwandigen Brennkammerbegrenzung angeordnet sind, sowie durch am Eintritt des Nachbrennraumes angeordnete Einspritzmittel für Zusatzbrennstoff. A combustion chamber for carrying out this method draws arranged from one at the head end of the combustion chamber Double-cone burner of the premix type, with a subsequent one Pre-combustion chamber, by one following the pre-combustion chamber Acceleration path for the flue gas, which in one Afterburner opens, and through air inlets in the area of the acceleration section in the double wall Combustion chamber boundary are arranged, as well as by at the entrance of the afterburner arranged injection means for Additional fuel.

Zwar ist aus der DE-A1 37 07 773 im Zusammenhang mit Prozesswärmeerzeugug bereits ein zweistufiges Verfahren und eine entsprechende Brennkammer bekannt, welche mit einem flammenstabilisierenden Doppelkegelbrenner als Primärbrenner arbeitet, bei welchem zwischen Vorbrennraum und Nachbrennraum das Gas beschleunigt wird und bei welchem der zweiten Stufe Luft beigemischt wird. Allerdings wird - wie beim bereits eingangs erwähnten Stand der Technik - diese Vorbrennkammer unterstöchiometrisch mit einer Luftzahl Lambda = 0.7 betrieben. Hierdurch erreicht das teilverbrannte Gas eine Temperatur von 1800-1900 °C. Bei der in die beschleunigte Gasströmung eingeleiteten Luft handelt es sich um sogenannte Abschreckluft (Quenchluft), die rasch in die Hauptströmung einzudüsen ist, um ein Oxidieren des Luftstickstoffs zu vermeiden. It is from DE-A1 37 07 773 in connection with process heat already a two step process and a corresponding combustion chamber known, which with a flame-stabilizing double cone burner as primary burner works in which between pre-combustion chamber and post-combustion chamber the gas is accelerated and at which of the second Stage air is added. However - as with the State of the art already mentioned at the beginning - this Pre-combustion chamber sub-stoichiometric with an air ratio Lambda = 0.7 operated. This achieves the partially burned Gas a temperature of 1800-1900 ° C. At the in the accelerated gas flow introduced air so-called quenching air (quench air), which quickly enters the The main flow is to inject to oxidize the atmospheric nitrogen to avoid.  

Der Vorteil der Erfindung ist insbesondere darin zu sehen, dass der Vormischbrenner an der unteren Löschgrenze betrieben werden kann, wobei zunächt nur ca. 9 ppm NOX produziert werden; der selbstzündende Nachverbrennprozess liefert Gase mit der gewünschten hohen Temperatur von 1800K (ca. 1530°C), welche Gase infolge der Zufuhr von weiterer Luft und aufgrund der kurzen Aufenthaltszeiten nur noch NOX-Werte kleiner als 6 ppm aufweisen. The advantage of the invention can be seen in particular in the fact that the premix burner can be operated at the lower extinguishing limit, with only about 9 ppm NO x initially being produced; The self-igniting afterburning process delivers gases with the desired high temperature of 1800K (approx. 1530 ° C), which gases only have NO x values below 6 ppm due to the supply of additional air and due to the short residence times.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung sind zwei Ausführungsbeispiele der Erfindung anhand vn Gasturbinen-Brennkammern schematisch dargestellt. In the drawing are two embodiments of the invention schematically represented by gas turbine combustion chambers.

Es zeigen:

Fig. 1
einen Teillängsschnitt einer ersten zweistufigen Brennkammer;
Fig. 2
einen Teillängsschnitt einer zweiten fünf stufigen Brennkammer;
Fig. 3A
einen Querschnitt durch einen Vormischbrenner der Doppelkegel-Bauart im Bereich seines Austritts;
Fig. 3B
einen Querschnitt durch denselben Vormischbrenner im Bereich der Kegelspitze;
Show it:
Fig. 1
a partial longitudinal section of a first two-stage combustion chamber;
Fig. 2
a partial longitudinal section of a second five-stage combustion chamber;
Figure 3A
a cross section through a premix burner of the double cone type in the region of its outlet;
Figure 3B
a cross section through the same premix burner in the region of the cone tip;

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind beispielsweise die vollständige Brennkammer und deren Zuordnung zu einer Anlage, die Brennstoffbereitstellung, die Regeleinrichtungen und dergleichen, Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet. It is only essential for understanding the invention Elements shown. For example, are not shown the complete combustion chamber and its assignment to a Plant, fuel supply, control devices and the like, the flow direction of the work equipment is marked with arrows.  

Weg zur Ausführung der ErfindungWay of carrying out the invention

In Fig. 1 ist mit 50 ein ummanteltes Plenum bezeichnet, welches in der Regel die von einem nicht dargestellten Verdichter geförderte Verbrennungsluft aufnimmt und einer beispielsweisen ringförmigen Brennkammer 60 zuführt. Diese Brennkammer ist zweistufig augebildet und besteht im wesentlichen aus einer Vorbrennkammer 61 und einer stromabwärts gelegenen Nachbrennkammer 62, welche beide mit einer Brennkammerwand 63 ummmantelt sind. Von der gesamten Verbrennungsluft wird ein Teil a der Vorbrennkammer 61 direkt zugeführt, während die Teile b und c zunächst Kühlfunktionen ausüben. In Fig. 1, 50 is a jacketed plenum, which is usually the one not shown Compressor-fed combustion air and one for example, supplies annular combustion chamber 60. This The combustion chamber has two stages and essentially exists a pre-combustion chamber 61 and a downstream one located post-combustion chamber 62, both with a combustion chamber wall 63 are covered. Of all the combustion air part a of the pre-combustion chamber 61 is fed directly, while parts b and c initially have cooling functions exercise.

Auf die Vorbrennkammer 61, die sich am Kopfende der Brennkammer 60 befindet und deren Brennraum durch eine Frontplatte 54 begrenzt ist, ist ein ringförmiger Dom 55 aufgesetzt. In diesem Dom ist ein Brenner 110 so angeordnet, dass der Brenneraustritt zumindest annähernd bündig ist mit der Frontplatte 54. Die Längsachse 51 des Primärbrenners 110 verläuft koaxial zur Längsachse 52 der Brennkammer 60. Über den Umfang verteilt ist eine Mehrzahl von solchen Brennern 110 nebeneinander auf der kreisringförmigen Frontplatte 52 angeordnet. Über die an ihrem äusseren Ende gelochte Domwandung strömt die Verbrennungsluft a aus dem Plenum 50 in das Dominnere und beaufschlagt die Brenner. Der Brennstoff wird dem Brenner über eine Brennstofflanze 120 zugeführt, welche die Dom- und die Plenumwand durchdringt. On the pre-combustion chamber 61, which is at the head end of the combustion chamber 60 is located and its combustion chamber through a front panel 54 is limited, an annular dome 55 is placed. A burner 110 is arranged in this dome in such a way that the burner outlet is at least approximately flush with the Front plate 54. The longitudinal axis 51 of the primary burner 110 runs coaxially to the longitudinal axis 52 of the combustion chamber 60 a number of such burners are distributed around the circumference 110 side by side on the annular front plate 52 arranged. About the dome wall perforated at its outer end the combustion air a flows from the plenum 50 into the Dominnere and acts on the burners. The fuel will fed to the burner via a fuel lance 120 which penetrates the cathedral and plenum walls.

Beim schematisch in Fig. 3A und 3B dargestellten Vormischbrenner 110 handelt es sich jeweils um einen sogenannten Doppelkegelbrenner, wie er beispielsweise aus EP-B1-0 321 809 bekannt ist. Im wesentlichen besteht er aus zwei hohlen, kegelförmigen Teilkörpern 111, 112, die in Strömungsrichtung ineinandergeschachtelt sind. In the premix burner shown schematically in FIGS. 3A and 3B 110 is a so-called Double cone burner, such as from EP-B1-0 321 809 is known. Essentially it consists of two hollow, conical part-bodies 111, 112, which are nested in the direction of flow.  

Dabei sind die jeweiligen Mittelachsen 113, 114 der beiden Teilkörper gegeneinander versetzt. Die benachbarten Wandungen der beiden Teilkörper bilden in deren Längserstreckung tangentiale Schlitze 119 für die Verbrennungsluft, die auf diese Weise in das Brennerinnere gelangt. Dort ist eine erste Brennstoffdüse 116 für flüssigen Brennstoff angeordnet. Der Brennstoff wird in einem spitzen Winkel in die Hohlkegel eingedüst. Das entstehende kegelige Brennstoffprofil wird von der tangential einströmenden Verbrennungsluft umschlossen. In axialer Richtung wird die Konzentration des Brennstoffes fortlaufend infolge der Vermischung mit der Verbrennungsluft abgebaut. Im Beispielsfall kann der Brenner ebenfalls mit gasförmigem Brennstoff betrieben werden. Hierzu sind im Bereich der tangentialen Schlitze 119 in den Wandungen der beiden Teilkörper in Längsrichtung verteilte Gaseinströmöffnungen 117 vorgesehen. Im Gasbetrieb beginnt die Gemischbildung mit der Verbrennungsluft somit bereits in der Zone der Eintrittsschlitze 119. Es versteht sich, dass auf diese Weise auch ein Mischbetrieb mit beiden Brennstoffarten möglich ist. The respective central axes 113, 114 of the two Partial body offset from each other. The neighboring walls of the two partial bodies form in their longitudinal extent tangential slots 119 for the combustion air that on this way gets into the interior of the burner. There is one arranged first fuel nozzle 116 for liquid fuel. The fuel is injected into the at an acute angle Hollow cone injected. The resulting tapered fuel profile is from the tangentially flowing combustion air enclosed. In the axial direction, the concentration of the Fuel continuously as a result of mixing with the Combustion air reduced. In the example, the burner can can also be operated with gaseous fuel. For this purpose, in the area of the tangential slots 119 in the Walls of the two partial bodies distributed in the longitudinal direction Gas inflow openings 117 are provided. Starts in gas operation the mixture formation with the combustion air is therefore already in the zone of the entry slots 119. It is understood that in this way also a mixed operation with both types of fuel is possible.

Am Brenneraustritt 118 des Brennes 110 stellt sich eine möglichst homogene Brennstoffkonzentration über dem beaufschlagten kreisringförmigen Querschnitt ein. Es entsteht am Brenneraustritt eine definierte kalottenförmige Rezirkulationszone 122, an deren Spitze die Zündung erfolgt. Die Flamme selbst wird durch die Rezirkulationszone vor dem Brenner stabilisiert, ohne einen mechanischen Flammenhalter zu benötigen. At the burner outlet 118 of the burner 110 there is one if possible homogeneous fuel concentration over the acted upon circular cross-section. It arises on A defined dome-shaped recirculation zone emerges from the burner 122, at the tip of which the ignition takes place. The flame itself is through the recirculation zone in front of the burner stabilized without the need for a mechanical flame holder.

Im Beispielsfall wird der Vormischbrenner mit ca. 56% der insgesamt zur Verfügung stehenden Verbrennungluft betrieben und zwar nahe an der unteren Löschgrenze; d.h. die entsprechende Brennstoffmenge wird so eingestellt, dass im Brennraum 61 eine Temperatur von 1640K (ca. 1370°C) und ein NOX-Gehalt von 9 ppm vorherrschen. In the example, the premix burner is operated with approx. 56% of the total available combustion air and that close to the lower extinguishing limit; ie the corresponding amount of fuel is set so that a temperature of 1640K (approx. 1370 ° C.) and a NO x content of 9 ppm prevail in the combustion chamber 61.

Gemäss Fig. 1 bildet der Übergang vom Vorbrennraum 61 in den Nachbrennraum 62 eine Verengung, welche eine Beschleunigungszone 70 für das Arbeitsmittel darstellt. Hierdurch soll ein geeignetes Temperatur/Geschwindigkeitsfeld für eine stabile Selbstzündung stromabwärts von Brennstofflanzen geschaffen werden. 1 forms the transition from the pre-combustion chamber 61 in the Afterburner 62 is a constriction, which is an acceleration zone 70 represents for the work equipment. This is supposed to a suitable temperature / speed field for a stable auto-ignition downstream of fuel lances be created.

Am Eintritt in den Nachbrennraum 62 sind derartige Brennstofflanzen 121 angeordnet. Im Falle einer Ringbrennkammer sind mehrere solcher Lanzen über dem Umfang verteilt. Aus ihnen wird der Zusatzbrennstoff - gleichmässig über den Strömungsquerschnitt verteilt - in die Hauptströmung eingedüst. Such fuel lances are at the entrance to the afterburning chamber 62 121 arranged. In the case of an annular combustion chamber several such lances are distributed over the circumference. Out the additional fuel is supplied to them - evenly over the Flow cross section distributed - injected into the main flow.

Stromaufwärts dieser Brennstoffeindüsung werden die restlichen 44% Luft dem Verbrennungsprozess auf geeignete Art beigemischt. Hierbei handelt es sich um jene Luft, die zunächst zur Kühlung der Brennkammerwandungen herangezogen wird. Diese Brennkammerwandungen sind sowohl im Bereich des Vorbrennraumes 61 als auch im Bereich des Nachbrennraumes 62 doppelwandig ausgeführt. Die innere Wand 63a ist in der Ebene der vorgesehenen Luftzufuhr mit Einlassöffnungen 64 vesehen. Die Luftmenge, die der Hauptströmung beigemischt wird, setzt sich aus zwei Teilströmen zusammen. Zum einen die Kühlluft b der Vorbrennkammer, die ca. 16% der Gesamtmenge ausmacht und zum andern die Kühlluft c der Nachbrennkammer, die ca. 28% der Gesamtmenge ausmacht. The remaining ones are upstream of this fuel injection 44% air is appropriately mixed into the combustion process. This is the air that initially is used to cool the combustion chamber walls. These combustion chamber walls are both in the area of the pre-combustion chamber 61 and in the area of the afterburner 62 double-walled. The inner wall 63a is in the Plane of the intended air supply with inlet openings 64 see. The amount of air that is added to the main flow is composed of two partial flows. On the one hand the cooling air b of the pre-combustion chamber, which is approximately 16% of the total and the cooling air c of the afterburner, which makes up about 28% of the total.

Es versteht sich, dass dieser Vorgang mit Druckverlusten verbunden ist. So beträgt beispielsweise der Druckverlust der Luft über die Wandkühlung ca. 4%, jener über die Mischung von Verbrennungsgasen und Kühlluft ca. 2%. It is understood that this process involves pressure loss connected is. For example, the pressure drop is the air via the wall cooling approx. 4%, that via the Mixture of combustion gases and cooling air approx. 2%.  

Die Mischtemperatur nach dem Zumischen der Kühlluft zu den Verbrennungsgasen des Vorbrennraumes beträgt ca. 980°C, so dass das am Eintritt in den Nachbrennraum 62 vorliegende Brennstoff/Luft-Gemisch selbstzündend ist. Die Menge an Zusatzbrennstoff wird dabei so gewählt, dass im Nachbrennraum 62 die gewünschte Endtemperatur von 1700K (ca. 1430°C) herrscht. Der anlässlich der Vorverbrennung entstandene NOX-Gehalt von 9 ppm ist durch die Verdünnung auf weniger als 6 ppm reduziert. The mixing temperature after admixing the cooling air to the combustion gases in the pre-combustion chamber is approximately 980 ° C., so that the fuel / air mixture present at the inlet into the afterburning chamber 62 is self-igniting. The amount of additional fuel is selected so that the desired final temperature of 1700 K (approx. 1430 ° C.) prevails in the afterburning chamber 62. The NO x content of 9 ppm resulting from the pre-combustion is reduced to less than 6 ppm by the dilution.

Es versteht sich, dass der Nachbrennraum 62 in seiner axialen Erstreckung so dimensioniert ist, dass darin ein vollständiger Ausbrand stattfindet. It is understood that the afterburning chamber 62 is in its axial Extension is dimensioned so that it is complete Burnout takes place.

Fig. 2 zeigt schematisch eine fünfstufige Brennkammer, die folgendermassen betrieben werden kann:
Über die Brenstofflanze 120 wird Brennstoff dem Vormischbrenner 110 zugeleitet und mit ca. 10% der Verbrennungsluft a verbrannt. Die über die Lanze 120 zugeführte Brennstoffmenge wird dabei so eingestellt, dass im Brennraum A eine Temperatur von 1640K (ca. 1370°C) und ein NOX-Gehalt von 9 ppm vorherrscht. Das Gemisch wird beschleunigt; in der Ebene b werden weitere 8% Luft, in diesem Fall Wand-Kühlluft, und über die Brennstofflanzen 121 eine entsprechende Menge Brennstoff eingeführt, so dass im Brennraum B eine Temperatur von 1500K (ca. 1230°C) herrscht. In der Ebene c werden weitere 14% Luft und über die Brennstofflanzen 130 eine entsprechende Menge Brennstoff eingeführt, so dass im Brennraum C ebenfalls eine Temperatur von 1500K (ca. 1230°C) herrscht. In der Ebene d werden weitere 26% Luft und über die Brennstofflanzen 131 eine entsprechende Menge Brennstoff eingeführt, so dass auch im Brennraum D eine Temperatur von 1500K (ca. 1230°C) herrscht. In der Ebene e werden die restlichen 42% Luft und über die Brennstofflanzen 132 die restliche Menge Brennstoff eingeführt, so dass im Brennraum E die gewünschte Endtemperatur von 1700K (ca. 1430°C) herrscht. Durch die sukksessive Reduzierung des anlässlich der Vorverbrennung entstandenen NOX ist es durchaus möglich, dass im Brennraum E nur noch ein NOX-Gehalt von 3 ppm vorliegt.
2 schematically shows a five-stage combustion chamber which can be operated as follows:
Fuel is fed to the premix burner 110 via the fuel lance 120 and burned with approximately 10% of the combustion air a. The amount of fuel supplied via the lance 120 is adjusted so that a temperature of 1640 K (approx. 1370 ° C.) and a NO x content of 9 ppm prevail in the combustion chamber A. The mixture is accelerated; A further 8% of air, in this case wall cooling air, is introduced in level b, and a corresponding amount of fuel is introduced via fuel lances 121, so that a temperature of 1500 K (approx. 1230 ° C.) prevails in combustion chamber B. A further 14% of air is introduced in level c and a corresponding amount of fuel is introduced via fuel lances 130, so that a temperature of 1500 K (approx. 1230 ° C.) also prevails in combustion chamber C. A further 26% of air is introduced in level d and a corresponding amount of fuel is introduced via fuel lances 131, so that a temperature of 1500K (approx. 1230 ° C.) also prevails in combustion chamber D. The remaining 42% air is introduced in level e and the remaining amount of fuel is introduced via fuel lances 132, so that the desired final temperature of 1700 K (approx. 1430 ° C.) prevails in combustion chamber E. As a result of the successive reduction in the NO x created on the basis of the pre-combustion, it is entirely possible that the NO x content in the combustion chamber E is only 3 ppm.

Im Ergebnis ist festzustellen, dass die optimale Anzahl Verbrennungsstufen hinsichtlich des zu errreichnenden NOX-Wertes in Funktion des in Kauf zu nehmenden Druckverlustes sowie der Brennkammerlänge zu wählen ist. As a result, it can be determined that the optimal number of combustion stages with regard to the NO x value to be achieved is to be selected as a function of the pressure loss to be accepted and the combustion chamber length.

Claims (3)

  1. Method of operating a multi-stage combustion chamber, having at least one primary burner (110) of the premixing type of construction, in which the fuel injected via nozzles is intensively mixed with primary combustion air inside a premixing space in advance of the ignition, and having at least one secondary combustion space (62, B, C, D, E) which is arranged downstream of the precombustion space (61, A) and into which secondary combustion air is directed, characterized
    in that the primary burner (110) is a flame-stabilizing premixing burner which is operated at the lower stability limit,
    in that the burnt gas is accelerated between precombustion space (61, A) and secondary combustion space (62, B, C, D, E),
    and in that, for the purpose of forming a self-igniting mixture, cooling air from the double-wall combustion-chamber boundary and additional fuel are introduced into the burnt-gas flow leaving the precombustion space.
  2. Combustion chamber for carrying out the method according to Claim 1,
    a premixing burner (110), having an adjoining precombustion space (61, A), being arranged at the head end of the combustion chamber, characterized
    in that an acceleration section (70) for the burnt gas is provided, which acceleration section (70) follows the precombustion space and leads into a secondary combustion space (62, B, C, D, E),
    in that inflow openings (64) are arranged in the area of the acceleration section (70) in the double-wall combustion-chamber boundary,
    and in that injection means for additional fuel are arranged at the inlet of the at least one secondary combustion space (62, B, C, D, E).
  3. Combustion chamber according to Claim 2, characterized in that the premixing burner is a double-cone burner (110) without a mechanical flame retention baffle.
EP95810698A 1994-11-19 1995-11-08 Multi-stage combustion chamber Expired - Lifetime EP0713058B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4441235A DE4441235A1 (en) 1994-11-19 1994-11-19 Combustion chamber with multi-stage combustion
DE4441235 1994-11-19

Publications (2)

Publication Number Publication Date
EP0713058A1 EP0713058A1 (en) 1996-05-22
EP0713058B1 true EP0713058B1 (en) 1998-05-13

Family

ID=6533665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810698A Expired - Lifetime EP0713058B1 (en) 1994-11-19 1995-11-08 Multi-stage combustion chamber

Country Status (5)

Country Link
US (1) US5645410A (en)
EP (1) EP0713058B1 (en)
JP (1) JPH08219445A (en)
CN (1) CN1130741A (en)
DE (2) DE4441235A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2155663T3 (en) * 1997-03-18 2001-05-16 Alstom Power Schweiz Ag PROCEDURE FOR THE OPERATION OF A BURNER STABILIZED BY TORBELLINOS, AS WELL AS A BURNER FOR THE PERFORMANCE OF THE PROCEDURE.
US5997596A (en) * 1997-09-05 1999-12-07 Spectrum Design & Consulting International, Inc. Oxygen-fuel boost reformer process and apparatus
EP0918190A1 (en) * 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
DE19757189B4 (en) * 1997-12-22 2008-05-08 Alstom Method for operating a burner of a heat generator
US6298654B1 (en) 1999-09-07 2001-10-09 VERMES GéZA Ambient pressure gas turbine system
DE10049205A1 (en) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Process for supplying fuel to a premix burner for operating a gas turbine comprises introducing premix gas separately via two axially divided regions along the burner shell
DE10055408A1 (en) 2000-11-09 2002-05-23 Alstom Switzerland Ltd Process for fuel injection into a burner
FR2825448B1 (en) * 2001-05-30 2003-09-12 Inst Francais Du Petrole THERMAL GENERATOR FOR LIMITING EMISSIONS OF NITROGEN OXIDES BY RECOMBUSTION OF FUMES AND METHOD FOR IMPLEMENTING SUCH A GENERATOR
EP1262714A1 (en) * 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Burner with exhausts recirculation
DE10164099A1 (en) * 2001-12-24 2003-07-03 Alstom Switzerland Ltd Burner with staged fuel injection
US6929469B2 (en) * 2002-02-28 2005-08-16 North American Manufacturing Company Burner apparatus
FR2872887B1 (en) * 2004-07-07 2006-09-08 Inst Francais Du Petrole HOMOGENEOUS COMBUSTION METHOD AND THERMAL GENERATOR USING SUCH A METHOD
CN101243287B (en) * 2004-12-23 2013-03-27 阿尔斯托姆科技有限公司 Premix burner with mixing section
US7402038B2 (en) * 2005-04-22 2008-07-22 The North American Manufacturing Company, Ltd. Combustion method and apparatus
US7832365B2 (en) * 2005-09-07 2010-11-16 Fives North American Combustion, Inc. Submerged combustion vaporizer with low NOx
JP2007113888A (en) * 2005-10-24 2007-05-10 Kawasaki Heavy Ind Ltd Combustor structure of gas turbine engine
EP2058590B1 (en) * 2007-11-09 2016-03-23 Alstom Technology Ltd Method for operating a burner
EP2220433B1 (en) * 2007-11-27 2013-09-04 Alstom Technology Ltd Method and device for burning hydrogen in a premix burner
US20100095649A1 (en) * 2008-10-20 2010-04-22 General Electric Company Staged combustion systems and methods
US20100223930A1 (en) * 2009-03-06 2010-09-09 General Electric Company Injection device for a turbomachine
US8202470B2 (en) * 2009-03-24 2012-06-19 Fives North American Combustion, Inc. Low NOx fuel injection for an indurating furnace
US20110219776A1 (en) * 2010-03-15 2011-09-15 General Electric Company Aerodynamic flame stabilizer
EP2644997A1 (en) 2012-03-26 2013-10-02 Alstom Technology Ltd Mixing arrangement for mixing fuel with a stream of oxygen containing gas
WO2014029512A2 (en) * 2012-08-24 2014-02-27 Alstom Technology Ltd Sequential combustion with dilution gas mixer
AU2013219140B2 (en) 2012-08-24 2015-10-08 Ansaldo Energia Switzerland AG Method for mixing a dilution air in a sequential combustion system of a gas turbine
RU2627759C2 (en) * 2012-10-24 2017-08-11 Ансалдо Энерджиа Свитзерлэнд Аг Consequent burning with the dilution gas mixer
US9194583B2 (en) * 2013-02-20 2015-11-24 Jorge DE LA SOVERA Mixed fuel vacuum burner-reactor
CN103277804B (en) * 2013-05-17 2015-07-22 江苏奥能耐火材料有限公司 Flue gas incinerator
EP2933559A1 (en) * 2014-04-16 2015-10-21 Alstom Technology Ltd Fuel mixing arragement and combustor with such a fuel mixing arrangement
EP2957835B1 (en) 2014-06-18 2018-03-21 Ansaldo Energia Switzerland AG Method for recirculation of exhaust gas from a combustion chamber of a combustor of a gas turbine and gas turbine for conducting said method
CN104832912A (en) * 2015-04-08 2015-08-12 石家庄新华能源环保科技股份有限公司 Multistage relay burner
US10465907B2 (en) 2015-09-09 2019-11-05 General Electric Company System and method having annular flow path architecture
CN106500102B (en) * 2016-11-04 2018-11-13 中国科学技术大学 A kind of controlled thermal Atmosphere Combustion device
CN106402856B (en) * 2016-11-22 2018-10-19 北京航空航天大学 A kind of the high-temperature fuel gas generating means and method of continuous, quick, a wide range of linear regulation temperature
FI128444B (en) * 2017-12-22 2020-05-15 Valmet Technologies Oy Method and apparatus for burning primary fuel
CN113124422B (en) * 2020-01-13 2024-05-28 中国科学院工程热物理研究所 Axial staged combustor
CN114353121B (en) * 2022-01-18 2022-12-20 上海交通大学 Multi-nozzle fuel injection method for gas turbine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2098720B (en) * 1979-01-12 1983-04-27 Gen Electric Stationary gas turbine combustor arrangements
DE2937631A1 (en) * 1979-09-18 1981-04-02 Daimler-Benz Ag, 7000 Stuttgart COMBUSTION CHAMBER FOR GAS TURBINES
GB2097113B (en) 1981-04-22 1985-09-18 Gen Electric Low nox combustor
DE3662462D1 (en) * 1985-07-30 1989-04-20 Bbc Brown Boveri & Cie Dual combustor
US4735052A (en) * 1985-09-30 1988-04-05 Kabushiki Kaisha Toshiba Gas turbine apparatus
JP2644745B2 (en) * 1987-03-06 1997-08-25 株式会社日立製作所 Gas turbine combustor
DE3707773C2 (en) 1987-03-11 1996-09-05 Bbc Brown Boveri & Cie Process heat generation facility
CH674561A5 (en) 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
US4928481A (en) * 1988-07-13 1990-05-29 Prutech Ii Staged low NOx premix gas turbine combustor
US5013236A (en) * 1989-05-22 1991-05-07 Institute Of Gas Technology Ultra-low pollutant emission combustion process and apparatus
US5158445A (en) * 1989-05-22 1992-10-27 Institute Of Gas Technology Ultra-low pollutant emission combustion method and apparatus
CH680467A5 (en) * 1989-12-22 1992-08-31 Asea Brown Boveri
CH682952A5 (en) * 1991-03-12 1993-12-15 Asea Brown Boveri Burner for a premixing combustion of a liquid and / or gaseous fuel.
EP0540167A1 (en) * 1991-09-27 1993-05-05 General Electric Company A fuel staged premixed dry low NOx combustor
GB2278431A (en) * 1993-05-24 1994-11-30 Rolls Royce Plc A gas turbine engine combustion chamber

Also Published As

Publication number Publication date
JPH08219445A (en) 1996-08-30
DE4441235A1 (en) 1996-05-23
US5645410A (en) 1997-07-08
EP0713058A1 (en) 1996-05-22
DE59502165D1 (en) 1998-06-18
CN1130741A (en) 1996-09-11

Similar Documents

Publication Publication Date Title
EP0713058B1 (en) Multi-stage combustion chamber
DE69024081T2 (en) Method of combustion with gas premix and a combustion device for carrying out the method
EP0436113B1 (en) Method for operating a combustion plant
EP0029619B1 (en) Gas-turbine combustor with premixing-prevaporizing elements
EP0801268B1 (en) Operating method of a gas turbine combustor
DE10064259B4 (en) Burner with high flame stability
DE4411624A1 (en) Combustion chamber with premix burners
DE4416650A1 (en) Combustion process for atmospheric combustion plants
EP0571782A1 (en) Gasturbine combustor and operating method
DE2621496A1 (en) Eddy current burners for industrial furnaces, such as blast furnaces and the like
DE4446842A1 (en) Method and device for feeding a gaseous fuel into a premix burner
EP0718561A2 (en) Combustor
EP1235033B1 (en) Annular combustor and method of operating the same
EP0816759B1 (en) Premix burner and method of operating the burner
EP0276397B1 (en) Gas turbine combustor
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
EP0602396B1 (en) Method of operating a heat generator
EP0961905B1 (en) Fuel combustion device and method
DE4422535A1 (en) Process for operating a furnace
DE19510743A1 (en) Combustion chamber with two stage combustion
EP1555484B1 (en) Process to operate a gas turbine combustor
DE60018148T2 (en) Burner with stepped air and fuel supply
DE4408256A1 (en) Method and device for flame stabilization of premix burners
DE19542644B4 (en) premixed
EP0589226A1 (en) Burner for liquid ot gaseous fuels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19961014

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19971024

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19980513

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980513

REF Corresponds to:

Ref document number: 59502165

Country of ref document: DE

Date of ref document: 19980618

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19980513

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011031

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603