EP0276397B1 - Gas turbine combustor - Google Patents

Gas turbine combustor Download PDF

Info

Publication number
EP0276397B1
EP0276397B1 EP87117059A EP87117059A EP0276397B1 EP 0276397 B1 EP0276397 B1 EP 0276397B1 EP 87117059 A EP87117059 A EP 87117059A EP 87117059 A EP87117059 A EP 87117059A EP 0276397 B1 EP0276397 B1 EP 0276397B1
Authority
EP
European Patent Office
Prior art keywords
burners
primary
combustion
combustion chamber
chamber according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87117059A
Other languages
German (de)
French (fr)
Other versions
EP0276397A1 (en
Inventor
Jaan Dr. Hellat
Jakob Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0276397A1 publication Critical patent/EP0276397A1/en
Application granted granted Critical
Publication of EP0276397B1 publication Critical patent/EP0276397B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/042Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones

Definitions

  • the present invention relates to a combustion chamber of gas turbines for operation with liquid fuels. It also relates to a method for operating such a combustion chamber.
  • the low NOx emission values still tolerated by law can only be maintained in the case of a planar combustion if the time the gas particles stay in hot oxygen-rich zones is as short as possible, namely not more than a few milliseconds.
  • the temperature in the reaction area must not fall below a certain limit.
  • This grading can mean either a substoichiometric primary combustion zone with subsequent afterburning at low temperatures or the stepwise connection of over-stoichiometric burner elements. In any case, the grading also requires a powerful mixing mechanism.
  • premix combustion has proven to be the technically best measure for NO x reduction for the combustion of gaseous fuels.
  • a premix combustion can consist, for example, of a premix process with a large air ratio taking place within a number of tubular elements between the fuel and the compressor air before the actual combustion process takes place downstream of a flame holder.
  • the emission values of pollutants from combustion can be significantly reduced.
  • Combustion with the largest possible air ratio - given that the flame is still burning at all and furthermore that not too much CO is produced - not only reduces the amount of NO x pollutants, but also causes a consistent reduction of other pollutants, namely as already mentioned of CO and unburned hydrocarbons.
  • this optimization process can be driven in such a way that the space for combustion and post-reaction is kept much longer than would be necessary for the actual combustion.
  • a combustion chamber of a gas turbine which is designed for the combustion of a gaseous fuel.
  • This combustion chamber is of tubular construction, with a further combustion zone being connected downstream of the main combustion part at the beginning of the combustion chamber.
  • the main burning part consists of a short, hollow cone, placed in the middle of the combustion chamber, which is surrounded by a number of fuel nozzles.
  • the fuel jet from these nozzles is admixed with air which flows from the outside into the front part of the combustion chamber and from the inside via the cone cavity in the area of these nozzles.
  • this proposal comes with the types of combustion already recognized above, which belong to the prior art, namely there is partial combustion with substoichiometric conditions and a premixed main combustion, the support of which is accomplished by the rear combustion chamber.
  • the object of the invention is to achieve, in a combustion chamber of the type mentioned at the beginning, comparable low NOx emission values as in combustion chambers operated with gaseous fuels, without taking the risk of self-ignition of the liquid fuels outside the combustion chamber.
  • the advantage of the invention can be seen essentially in the fact that a system is provided in a simple manner that generates low NO x emissions, this system being able to achieve the premixing without the technology and infrastructure which are per se quite complex.
  • the basic idea is to provide a primary burner and afterburner system.
  • the liquid fuel is injected directly into the combustion chamber.
  • the injected fuel is shielded with an air jacket, which is a non-self-sufficient burner.
  • the afterburner which is placed in a central chamber at the end of the primary burner chamber, is used in combination with one or more primary burners.
  • the hot gases generated by the primary burners should not be able to ignite the mixture produced by the afterburner in the immediate vicinity of the fuel nozzle of the afterburner, in order to avoid combustion under near-stoichiometric conditions. This is ensured by the shielding air jacket, which is not swirled and which initially effectively shields the fuel mist emanating from the afterburner nozzle against the external hot gases. Ignition of the afterburner mixture should only be possible when the liquid fuel introduced from the afterburner nozzle has mixed sufficiently with the shielding jacket air and with the hot gas containing air, so that the combustion in the lean mixture takes place at low temperatures.
  • Fig. 1 shows a combustion chamber for gas turbines, which is housed in the GT ring housing 1. If the entire combustion chamber is embedded in a GT ring housing 1, it is connected to the compressed air 11 from the compressor 10 like a chamber.
  • the gas turbine ring housing wall is designed to withstand the compressor end pressure.
  • the geometric shape of the combustion chamber, as the axial section 12 wants to symbolize, is cylindrical and consists of two primary combustion chambers 5, 5a arranged at the ends, which are arranged symmetrically and V-shaped with respect to the central combustion chamber 6. Of course, the primary combustion chambers 5, 5a can lie in a horizontal plane with respect to the central axis of the central combustion chamber 6.
  • the primary combustion chambers 5, 5a themselves are equipped at their front ends in the circumferential direction with a number of axially parallel primary burners 2, 2a which are dependent on the performance of the combustion chamber. These essentially consist of a fuel line 3, 3a and a swirl body 8, 8a.
  • a continuous circular cylindrical primary combustion chamber 5, 5a several self-contained combustion chamber units can be provided distributed over the circumference, each consisting of a pair of twin burners with preferably twist bodies oriented in opposite directions. This means that an effective mixing process can be generated in the individual combustion chamber units, an annular cylindrical outlet channel collecting the hot gases escaping from the individual combustion chamber units in order to then lead them to the central combustion chamber 6.
  • the continuous circular-cylindrical primary combustion chamber 5 and 5a shown here is provided, the primary burners 2 or 2a arranged axially parallel to one another there can also be alternately equipped with swirl bodies 8, 8a oriented in opposite directions.
  • an afterburner 4 is provided in each case.
  • liquid fuel 15 is fed directly into the combustion chamber and shielded with an air jacket 14.
  • the afterburner 4 is designed in such a way that it is not self-sufficient, ie its ignition requires permanent ignition.
  • the hot gases 13 generated by the primary burners 2, 2a should not be able to ignite the mixture 14/15 produced by the afterburner 4 in the immediate vicinity of the fuel nozzle of the afterburner 4.
  • This is ensured by the shielding air jacket 14, which should preferably be untwisted and initially effectively shields the fuel mist 15 emanating from the afterburner nozzle against the hot gases 13 of the primary burners 2, 2a arriving there.
  • An ignition of the afterburner mixture 14/15 should only be possible when the liquid fuel 15 introduced by the burner nozzle is sufficiently strong with the shielding air coat 14 has mixed.
  • the air ratio related to the fuel supply of the afterburner 4 and the air jacket 14 is determined according to the same criteria as for a premix burner.
  • the rapid mixing in of the hot gases 13 after they have initiated the first spark ignition of the afterburner mixture 14/15 plays an important role in the stability of the combustion, which is why it must be ensured that the pulse density ratio between primary burner gases 13 and afterburner mixture 14/15 is very high high - well over 1 - is selected. It has been confirmed that an optimally designed afterburner 4 produces hardly more NO x than a premix burner, while the primary burners 2, 2a, which of course have to be self-sufficient, for example designed as diffusion burners, cause significantly higher NO x emissions.
  • the primary burners 2, 2a should therefore be planned as small as possible and they should be operated with high air ratios: both measures make it possible to keep the NO x emissions from the operation of the primary burners 2, 2a as low as possible. Consequently, for the operation of a gas turbine combustion chamber, this means that the primary burners 2, 2a and the afterburner 4 are operated in stages.
  • the afterburner 4 is preferably switched on at a load point near zero load of the gas turbines.
  • the load is regulated only via the fuel supply to the afterburner 4, it being possible for a gradual reduction in the fuel supply to the primary burner 2, 2a to be initiated as the afterburner load increases.
  • the lower limit for the reduction of the fuel supply to the primary burners 2, 2a is given on the one hand by the extinguishing limit of the primary burner and on the other hand by the necessity that the temperature of the exhaust gas of the primary burner must be high enough to initiate the burnout of the afterburner fuel.
  • the air jacket 14 shields the afterburner 4 and its liquid fuel spray cone 15 from the incoming hot gases 13 from the primary burners 2, 2a.
  • the mixture 14/15 produced by the afterburner 4 should not come to ignition in the immediate vicinity of the fuel nozzle 15 under near-stoichiometric conditions. Ignition of the afterburner mixture 14/15 should only be possible when the liquid fuel 15 introduced from the afterburner nozzle has mixed sufficiently with the shielding air jacket 14, that is to say downstream of the central combustion chamber 6. Further downstream is the mixing chamber 7, which ensures that that a vortex-free flow with uniform overall pressure and temperature profile can arise before the turbine 9 is acted upon.
  • the length of the mixing chamber 7 is heavily dependent on the strength of the mixing process: observations have shown that a vortex-free flow with a uniform pressure is achieved well after a length of about three diameters of the corresponding combustion chamber unit.
  • the optimal design of the primary burners 2, 2a reference is made to the description according to EP-0 193 029, in particular under FIG. 2.
  • the solution shown in FIG. 2 intends to further protect the afterburner 4 from the hot gases 13 of the primary burners 2, 2a flowing in.
  • the inlet 16 of the shielding air 14 into the combustion chamber is at least 'extended such that the liquid fuel spray cone 15 is also shielded.
  • the hot gases 13 only flow further downstream to the afterburner mixture 14/15; there the mixing of the liquid fuel 15 with the shielding jacket air 14 has progressed to such an extent that this mixture 14/15 can be ignited.
  • FIG. 3 shows a further variant of how the afterburner 4 and its liquid fuel spray cone 15 can be shielded from the incoming hot gases 13 in the region of the central combustion chamber 6.
  • the shielding air 14 flows on the one hand along the afterburner 4 and on the other hand laterally between a plurality of fins 17 into the central combustion chamber 6.
  • Such a provision has the advantage that the mixing between liquid fuel 15 and shielding air 14 in front of the mixing chamber 7 is thereby optimized.
  • this mixture 14/15 is then ignited by the hot gases 13 flowing there.
  • the entire length of the mixing chamber 7 thus remains available in order to provide a vortex-free flow with a uniform pressure and temperature profile for the turbine to be acted upon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung betrifft eine Brennkammer von Gasturbinen für den Betrieb mit Flüssigbrennstoffen. Sie betrifft ebenfalls ein Verfahren zum Betrieb einer solchen Brennkammer.The present invention relates to a combustion chamber of gas turbines for operation with liquid fuels. It also relates to a method for operating such a combustion chamber.

STAND DER TECHNIKSTATE OF THE ART

Bei der vorliegenden Erfindung geht es um eine technische Neuerung bei Brennkammern von Gasturbinen, bei welchen eine trockene, NOx- arme Verbrennung von Flüssigbrennstoffen in Gasturbinenbrennkammern angestrebt wird. Zur Erzielung einer primärseitigen Reduktion der NOx-Emissionswerte beim Betrieb von Gasturbinenbrennkammern mit gasförmigen Brennstoffen sind grundsätzlich vier Prinzipien bekannt:

  • a) die Vormischverbrennung;
  • b) die Zweistufenverbrennung, bei welcher in einer ersten Stufe eine unterstöchiometrische Verbrennung eingeleitet wird, worauf in einer zweiten Stufe eine rasche Zumischung von Luft und eine überstöchiometrischen Nachverbrennung folgt;
  • c) die flächenartige Verbrennung, bei welcher das Ziel verfolgt wird, eine möglichst kurze Verweilzeit der Gase in der Reaktionszone zu erreichen;
  • d) das Eindüsen von Wasser oder Dampf in die Reaktionszonen zur Absackung der Reaktionstemperaturen.
In the present invention, it is a technical innovation in combustion chambers of gas turbines, in which a dry, NO x - Poor combustion of liquid fuels in gas turbine combustors is sought. Basically, four principles are known for achieving a reduction of the NOx emission values on the primary side when operating gas turbine combustion chambers with gaseous fuels:
  • a) premix combustion;
  • b) the two-stage combustion, in which a substoichiometric combustion is initiated in a first stage, followed by a rapid admixture of air and a superstoichiometric post-combustion in a second stage;
  • c) the area-like combustion, in which the aim is to achieve the shortest possible residence time of the gases in the reaction zone;
  • d) the injection of water or steam into the reaction zones to lower the reaction temperatures.

Die niedrigen vom Gesetzgeber noch tolerierten NOx-Emissionswerte können im Fall einer flächenartigen Verbrennung höchstens dann eingehalten werden, wenn die Aufenthaltszeit der Gasteilchen in heissen sauerstoffreichen Zonen möglichst kurz ist, nämlich nicht mehr als einige Millisekunden. Andererseits, damit niedrige CO-Emissionswerte erreicht werden können, darf im Reaktionsbereich eine gewisse Grenztemperatur nicht unterschritten werden.The low NOx emission values still tolerated by law can only be maintained in the case of a planar combustion if the time the gas particles stay in hot oxygen-rich zones is as short as possible, namely not more than a few milliseconds. On the other hand, to ensure that low CO emissions can be achieved, the temperature in the reaction area must not fall below a certain limit.

Ausserdem ist es bekannt, dass die Vermeidung von NOX mit Brennkammerkonzepten mit gestufter Verbrennung erzielbar ist. Diese Stufung kann bedeuten, entweder eine unterstöchiometrische Primärverbrennungszone mit anschliessender Nachverbrennung bei tiefen Temperaturen oder die stufenweise Zuschaltung überstöchiometrischer betriebener Brennerelemente. In jedem Fall erfordert die Stufung auch einen kraftvollen Mischmechanismus.In addition, it is known that the avoidance of NO x can be achieved with combustion chamber concepts with staged combustion. This grading can mean either a substoichiometric primary combustion zone with subsequent afterburning at low temperatures or the stepwise connection of over-stoichiometric burner elements. In any case, the grading also requires a powerful mixing mechanism.

Das Prinzip der Vormischverbrennung hat sich für die Verbrennung von gasförmigen Brennstoffen als technisch beste Massnahme zur NOx-Reduktion erwiesen.The principle of premix combustion has proven to be the technically best measure for NO x reduction for the combustion of gaseous fuels.

Eine Vormischverbrennung kann beispielsweise darin bestehen, dass innerhalb einer Anzahl rohrförmiger Elemente zwischen dem Brennstoff und der Verdichterluft ein Vormischprozess bei grosser Luftzahl abläuft, bevor der eigentliche Verbrennungsprozess stromabwärts eines Flammenhalters stattfindet. Hierdurch können die Emissionswerte an Schadstoffen aus der Verbrennung erheblich reduziert werden. Die Verbrennung mit der grösstmöglichen Luftzahl - einmal dadurch gegeben, dass die Flamme überhaupt noch brennt und im weiteren dadurch, dass nicht zuviel CO entsteht - vermindert indessen nicht nur die Schadstoffmenge von NOx, sondern bewirkt darüber hinaus auch eine konsistente Herabsetzung anderer Schadstoffe, nämlich wie bereits erwähnt von CO und von unverbrannten Kohlenwasserstoffen. Dieser Optimierungsprozess kann bei der bekannten Brennkammer, hinsichtlich tieferer NOx-Emissionswerte, dahingehend getrieben werden, dass der Raum für Verbrennung und Nachreaktion viel länger gehalten wird als es für die eigentliche Verbrennung notwendig wäre. Dies erlaubt die Wahl einer grossen Luftzahl, wobei dann zwar zunächst grössere Mengen an CO entstehen, diese aber zu C02 weiter reagieren können, so dass schliesslich die CO-Emissionen doch klein bleiben. Auf der anderen Seite bilden sich aber wegen der grossen Luftzahl eben tiefere NOx-Emissionswerte. Bei derartiger Vormischverbrennungstechnik muss lediglich sichergestellt werden, dass die Flammstabilität, insbesondere bei Teillast, nicht an die Löschgrenze aufgrund des sehr mageren Gemisches und der sich daraus ergebenden niedrigen Flammentemperatur stösst. Eine solche Vorkehrung ist beispielsweise anhand einer Brennstoffregulierung sowie der stufenweise in Betrieb genommenen Vormischelemente in Abhängigkeit zur Maschinendrehzahl zu bewerkstelligen.A premix combustion can consist, for example, of a premix process with a large air ratio taking place within a number of tubular elements between the fuel and the compressor air before the actual combustion process takes place downstream of a flame holder. As a result, the emission values of pollutants from combustion can be significantly reduced. Combustion with the largest possible air ratio - given that the flame is still burning at all and furthermore that not too much CO is produced - not only reduces the amount of NO x pollutants, but also causes a consistent reduction of other pollutants, namely as already mentioned of CO and unburned hydrocarbons. With the known combustion chamber, with regard to lower NOx emission values, this optimization process can be driven in such a way that the space for combustion and post-reaction is kept much longer than would be necessary for the actual combustion. This allows the selection of a large air ratio, whereby initially larger amounts of CO arise, but these can react further to C0 2 , so that ultimately the CO emissions remain small. On the other hand, however, due to the large air ratio, lower NOx emission values are formed. With this type of premixed combustion technology, it is only necessary to ensure that the flame stability, particularly at part load, does not reach the extinguishing limit due to the very lean mixture and the resulting low flame temperature. Such a precaution can be achieved, for example, using fuel regulation and the premixing elements which are gradually put into operation depending on the engine speed.

Aus EP-A-0 169 431 ist eine Brennkammer einer Gasturbine bekanntgeworden, welche für die Verbrennung eines gasförmigen Brennstoffes ausgelegt ist. Diese Brennkammer ist von rohrförmigem Aufbau, wobei dem Hauptbrennteil am Anfang der Brennkammer eine weitere Brennzone nachgeschaltet ist. Der Hauptbrennteil besteht aus einem kurzen, hohlen, in der Brennkammer mittig plazierten Kegel, der kranzförmig von einer Anzahl Brennstoffdüsen umgeben ist. Der Brennstoffstrahl aus diesen Düsen erfährt eine Zumischung mit Luft, die von aussen in den Vorderteil der Brennkammer und von innen über den Kegelhohlraum im Bereich dieser Düsen einströmt. Im wesentlichen kommt demnach bei diesem Vorschlag zu den bereits oben gewürdigten Verbrennungsarten, die zum Stand der Technik gehören, nämlich es findet hier partiell eine Verbrennung mit unterstöchiometrischen Bedingungen und eine vormischartige Hauptverbrennung statt, deren Stützung durch die hintere Brennkammer bewerkstelligt wird.From EP-A-0 169 431 a combustion chamber of a gas turbine has become known which is designed for the combustion of a gaseous fuel. This combustion chamber is of tubular construction, with a further combustion zone being connected downstream of the main combustion part at the beginning of the combustion chamber. The main burning part consists of a short, hollow cone, placed in the middle of the combustion chamber, which is surrounded by a number of fuel nozzles. The fuel jet from these nozzles is admixed with air which flows from the outside into the front part of the combustion chamber and from the inside via the cone cavity in the area of these nozzles. In essence, this proposal comes with the types of combustion already recognized above, which belong to the prior art, namely there is partial combustion with substoichiometric conditions and a premixed main combustion, the support of which is accomplished by the rear combustion chamber.

Zusammenfassend sind aus einer solchen Brennkammer folgende Unzulänglichkeiten zu erwarten:In summary, the following shortcomings can be expected from such a combustion chamber:

Aufgrund der kurzen Zündverzugszeiten bis zur Selbstzündung von flüssigen Brennstoffen, beispielsweise Diesel, kommt eine Vormischverbrennung von Flüssigbrennstoffen immer weniger in Frage, denn die Entwicklung im modernen Gasturbinenbau strebt eine weitere Erhöhung des an sich schon heute bereits sehr hoch gewählten Brennkammerdruckes an. Hier will die Erfindung Abhilfe schaffen.Due to the short ignition delay times until self-ignition of liquid fuels, e.g. diesel, premix combustion of liquid fuels is becoming less and less an option, because the development in modern gas turbine construction aims to further increase the combustion chamber pressure, which is already very high. The invention seeks to remedy this.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einer Brennkammer der eingangs genannten Art vergleichbare niedrige NOx-Emissionswerte wie bei mit gasförmigen Brennstoffen betriebenen Brennkammern zu erreichen, ohne das Risiko einer Selbstzündung der Flüssigbrennstoffe ausserhalb des Brennraumes einzugehen.The object of the invention, as characterized in the claims, is to achieve, in a combustion chamber of the type mentioned at the beginning, comparable low NOx emission values as in combustion chambers operated with gaseous fuels, without taking the risk of self-ignition of the liquid fuels outside the combustion chamber.

Der Vorteil der Erfindung ist im wesentlichen darin zu sehen, dass auf einfache Weise ein System bereitgestellt wird, das niedrige NOx-Emissionen erzeugt, wobei dieses System ohne die an sich recht aufwendige Technik und Infrastruktur zur Erzielung der Vormischung auskommt.The advantage of the invention can be seen essentially in the fact that a system is provided in a simple manner that generates low NO x emissions, this system being able to achieve the premixing without the technology and infrastructure which are per se quite complex.

Die Idee besteht grundsätzlich darin, ein Primärbrenner- und Nachbrennersystem vorzusehen. Der flüssige Brennstoff wird direkt in den Brennraum eingespritzt. Beim Nachbrenner wird der eingespritzte Brennstoff mit einem Luftmantel abgeschirmt, wobei es sich hier um einen nicht selbstgängigen Brenner handelt. Der Nachbrenner, der in einer Zentralkammer am Ende der Primärbrennerkammer plaziert ist, wird jeweils in Kombination mit einem oder mehreren Primärbrennern eingesetzt. Die von den Primärbrennern erzeugten Heissgase sollen das vom Nachbrenner erzeugte Gemisch nicht in unmittelbarer Nähe der Brennstoffdüse des Nachbrenners zünden können, um eine Verbrennung bei nahstöchiometrischen Bedingungen zu vermeiden. Dafür sorgt der abschirmende Luftmantel, der unverdrallt ist und der den von der Nachbrennerdüse ausgehenden Brennstoffnebel zunächst wirksam gegen die äusseren Heissgase abschirmt. Eine Zündung des Nachbrennergemisches soll erst dann möglich werden, wenn sich der von der Nachbrennerdüse eingebrachte Flüssigbrennstoff ausreichend stark mit der abschirmenden Mantelluft und mit dem lufthaltigen Heissgas vermischt hat, so dass die Verbrennung im mageren Gemisch bei tiefen Temperaturen stattfindet.The basic idea is to provide a primary burner and afterburner system. The liquid fuel is injected directly into the combustion chamber. In the afterburner, the injected fuel is shielded with an air jacket, which is a non-self-sufficient burner. The afterburner, which is placed in a central chamber at the end of the primary burner chamber, is used in combination with one or more primary burners. The hot gases generated by the primary burners should not be able to ignite the mixture produced by the afterburner in the immediate vicinity of the fuel nozzle of the afterburner, in order to avoid combustion under near-stoichiometric conditions. This is ensured by the shielding air jacket, which is not swirled and which initially effectively shields the fuel mist emanating from the afterburner nozzle against the external hot gases. Ignition of the afterburner mixture should only be possible when the liquid fuel introduced from the afterburner nozzle has mixed sufficiently with the shielding jacket air and with the hot gas containing air, so that the combustion in the lean mixture takes place at low temperatures.

Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den abhängigen Ansprüchen gekennzeichnet.Advantageous and expedient developments of the task solution according to the invention are characterized in the dependent claims.

KURZE BESCHREIBUNG DER ZEICHNUNGBRIEF DESCRIPTION OF THE DRAWING

Im folgenden werden anhand der Zeichnung Ausführungsbeispiele der Erfindung erläutert. Die Zeichnung zeigt:

  • Fig. 1 eine kreisringzylindrische Brennkammer mit Primär- und Nachbrennern;
  • Fig. 2 die Umgebung eines Nachbrenners und
  • Fig. 3 eine weitere Umgebung eines Nachbrenners.
Exemplary embodiments of the invention are explained below with reference to the drawing. The drawing shows:
  • Figure 1 is an annular cylindrical combustion chamber with primary and afterburner.
  • Fig. 2 shows the environment of an afterburner and
  • Fig. 3 shows another environment of an afterburner.

Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. Die Strömungsrichtung der Medien ist mit Pfeilen bezeichnet. In den verschiedenen Figuren sind jeweils gleiche Elemente mit den gleichen Bezugszeichen versehen.All elements not necessary for the immediate understanding of the invention have been omitted. The direction of flow of the media is indicated by arrows. In the various figures, the same elements are provided with the same reference symbols.

WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY OF CARRYING OUT THE INVENTION

Fig. 1 zeigt eine Brennkammer für Gasturbinen, die im GT-Ringgehäuse 1 untergebracht ist. Ist die ganze Brennkammer in ein GT-Ringgehäuse 1 eingebettet, so ist sie mit der verdichteten Luft 11 aus dem Verdichter 10 kammerartig verbunden. Die Gasturbinen-Ringgehäusewand ist so ausgelegt, dass sie dem Verdichterenddruck standhält. Die geometrische Form des Brennraumes ist, wie der axiale Schnitt 12 versinnbildlichen will, kreisringzylindrisch und besteht aus zwei endseitig angeordneten Primärbrennkammern 5, 5a, die gegenüber der Zentralbrennkammer 6 symmetrisch und V-förmig angeordnet sind. Selbstverständlich können die Primärbrennkammern 5, 5a gegenüber der Zentralachse der Zentralbrennkammer 6 in einer waagrechten Ebene liegen. Die Primärbrennkammern 5, 5a selbst sind an ihren stirnseitigen Enden in Umfangsrichtung mit einer von der Leistung der Brennkammer abhängigen Anzahl axialparallel angeordneter Primärbrenner 2, 2a bestückt. Diese bestehen im wesentlichen aus einer Brennstoffleitung 3, 3a und aus einem Drallkörper 8, 8a.Fig. 1 shows a combustion chamber for gas turbines, which is housed in the GT ring housing 1. If the entire combustion chamber is embedded in a GT ring housing 1, it is connected to the compressed air 11 from the compressor 10 like a chamber. The gas turbine ring housing wall is designed to withstand the compressor end pressure. The geometric shape of the combustion chamber, as the axial section 12 wants to symbolize, is cylindrical and consists of two primary combustion chambers 5, 5a arranged at the ends, which are arranged symmetrically and V-shaped with respect to the central combustion chamber 6. Of course, the primary combustion chambers 5, 5a can lie in a horizontal plane with respect to the central axis of the central combustion chamber 6. The primary combustion chambers 5, 5a themselves are equipped at their front ends in the circumferential direction with a number of axially parallel primary burners 2, 2a which are dependent on the performance of the combustion chamber. These essentially consist of a fuel line 3, 3a and a swirl body 8, 8a.

Statt einer durchgehenden kreisringzylindrischen Primärbrennkammer 5, 5a können auf den Umfang verteilt, mehrere in sich abgeschlossene Brennkammereinheiten vorgesehen werden, die jeweils aus einem Paar Zwillingsbrennern mit vorzugsweise drehsinnentgegengesetzt orientierten Drallkörpern bestehen. Dies bewirkt, dass in den einzelnen Brennkammereinheiten ein wirkungsvoller Mischvorgang erzeugt werden kann, wobei ein kreisringzylindrischer Austrittskanal die aus den einzelnen Brennkammereinheiten austretenden Heissgase sammelt, um sie dann zur Zentralbrennkammer 6 zu führen. Wird die hier dargestellte durchgehende kreisringzylindrische Primärbrennkammer 5 und 5a vorgesehen, so können die dort nebeneinander axialparallel angeordneten Primärbrenner 2 oder 2a wechselweise auch mit drehsinnentgegengesetzt orientierten Drallkörpern 8, 8a bestückt werden. In Kombination mit vorzugsweise zwei gegenüberliegenden Primärbrennern 2, 2a ist jeweils ein Nachbrenner 4 vorgesehen. Vom Nachbrenner 4 aus wird flüssiger Brennstoff 15 direkt in den Brennraum eingegeben und mit einem Luftmantel 14 abgeschirmt. Der Nachbrenner 4 ist so konzipiert, dass er nicht selbstgängig ist, d.h. zu dessen Gemischverbrennung braucht es eine permanente Zündung. Die von den Primärbrennern 2, 2a erzeugten Heissgase 13 sollen das vom Nachbrenner 4 erzeugte Gemisch 14/15 nicht in unmittelbarer Nähe der Brennstoffdüse des Nachbrenners 4 zünden können. Dafür sorgt der abschirmende Luftmantel 14, der vorzugsweise unverdrallt sein soll und den von der Nachbrennerdüse ausgehenden Brennstoffnebel 15 zunächst wirksam gegen die dort ankommenden Heissgase 13 der Primärbrenner 2, 2a abschirmt. Eine Zündung des Nachbrennergemisches 14/15 soll erst dann möglich sein, wenn sich der von der Brennerdüse eingebrachte Flüssigbrennstoff 15 ausreichend stark mit dem abschirmenden Luftmantel 14 vermischt hat. Die auf die Brennstoffzufuhr des Nachbrenners 4 und den Luftmantel 14 bezogene Luftzahl ist nach den gleichen Kriterien wie für einen Vormischbrenner festgelegt. Bei diesem Nachbrennerprinzip spielt die rasche Einmischung der Heissgase 13, nachdem diese die erste Fremdzündung des Nachbrennergemisches 14/15 eingeleitet haben, eine wichtige Rolle für die Stabilität der Verbrennung, weshalb zu achten ist, dass das Impulsdichtenverhältnis zwischen Primärbrennergasen 13 und Nachbrennergemisch 14/15 sehr hoch - weit über 1 - gewählt wird. Dabei ist erhärtet, dass ein optimal ausgelegter Nachbrenner 4 kaum mehr NOX als ein Vormischbrenner produziert, während die Primärbrenner 2, 2a, die selbstverständlich selbstgängig sein müssen, beispielsweise als Diffusionsbrenner ausgelegt, wesentlich höhere NOx-Emissionen verursachen. Aus diesem Grund ist in einer Gasturbinenbrennkammer vorzukehren, einen möglichst hohen Anteil des flüssigen Brennstoffes über die Nachbrenner 4 zuzuführen. Die Primärbrenner 2, 2a sind daher möglichst klein zu planen und sie sollen mit hohen Luftzahlen betrieben werden: Beide Massnahmen ermöglichen, die NOx-Emissionen aus dem Betrieb der Primärbrenner 2, 2a so niedrig als möglich zu halten. Folgerichtig ergibt dies für den Betrieb einer Gasturbinenbrennkammer, dass die Primärbrenner 2, 2a und die Nachbrenner 4 gestuft betrieben werden. Vorzugsweise bei einem Lastpunkt in der Nähe von Nullast der Gasturbinen werden die Nachbrenner 4 zugeschaltet. Zwischen dem Zuschaltpunkt und maximaler Last wird die Last nur über die Brennstoffzufuhr zu den Nachbrennern 4 geregelt, wobei dann mit zunehmender Nachbrennerlast eine schrittweise Reduktion der Brennstoffzufuhr zu den Primärbrennern 2, 2a eingeleitet werden kann. Die untere Grenze für die Reduktion der Brennstoffzufuhr zu den Primärbrennern 2, 2a ist gegeben einerseits durch die Löschgrenze der Primärbrenner und andererseits durch die Notwendigkeit, dass die Temperatur des Abgases der Primärbrenner genügend hoch sein muss, um den Ausbrand des Nachbrennerbrennstoffs einzuleiten. Der Luftmantel 14 schirmt den Nachbrenner 4 sowie dessen Flüssigbrennstoff-Sprühkegel 15 vor den heranströmenden Heissgasen 13 aus den Primärbrennern 2, 2a ab. Wie bereits erläutert, soll das vom Nachbrenner 4 erzeugte Gemisch 14/15 nicht in unmittelbarer Nähe der Brennstoffdüse 15 bei nahstöchiometrischen Bedingungen zur Zündung kommen. Eine Zündung des Nachbrennergemisches 14/15 soll erst dann möglich sein, wenn sich der von der Nachbrennerdüse eingebrachte Flüssigbrennstoff 15 ausreichend stark mit dem abschirmenden Luftmantel 14 vermischt hat, also stromabwärts der Zentralbrennkammer 6. Weiter stromabwärts befindet sich die Mischkammer 7, welche dafür sorgt, dass eine wirbelfreie Strömung mit gleichförmigem Gesamtdruck und Temperaturprofil entstehen kann, bevor die Turbine 9 beaufschlagt wird.Instead of a continuous circular cylindrical primary combustion chamber 5, 5a, several self-contained combustion chamber units can be provided distributed over the circumference, each consisting of a pair of twin burners with preferably twist bodies oriented in opposite directions. This means that an effective mixing process can be generated in the individual combustion chamber units, an annular cylindrical outlet channel collecting the hot gases escaping from the individual combustion chamber units in order to then lead them to the central combustion chamber 6. If the continuous circular-cylindrical primary combustion chamber 5 and 5a shown here is provided, the primary burners 2 or 2a arranged axially parallel to one another there can also be alternately equipped with swirl bodies 8, 8a oriented in opposite directions. In combination with preferably two opposing primary burners 2, 2a, an afterburner 4 is provided in each case. From the afterburner 4, liquid fuel 15 is fed directly into the combustion chamber and shielded with an air jacket 14. The afterburner 4 is designed in such a way that it is not self-sufficient, ie its ignition requires permanent ignition. The hot gases 13 generated by the primary burners 2, 2a should not be able to ignite the mixture 14/15 produced by the afterburner 4 in the immediate vicinity of the fuel nozzle of the afterburner 4. This is ensured by the shielding air jacket 14, which should preferably be untwisted and initially effectively shields the fuel mist 15 emanating from the afterburner nozzle against the hot gases 13 of the primary burners 2, 2a arriving there. An ignition of the afterburner mixture 14/15 should only be possible when the liquid fuel 15 introduced by the burner nozzle is sufficiently strong with the shielding air coat 14 has mixed. The air ratio related to the fuel supply of the afterburner 4 and the air jacket 14 is determined according to the same criteria as for a premix burner. With this afterburner principle, the rapid mixing in of the hot gases 13 after they have initiated the first spark ignition of the afterburner mixture 14/15 plays an important role in the stability of the combustion, which is why it must be ensured that the pulse density ratio between primary burner gases 13 and afterburner mixture 14/15 is very high high - well over 1 - is selected. It has been confirmed that an optimally designed afterburner 4 produces hardly more NO x than a premix burner, while the primary burners 2, 2a, which of course have to be self-sufficient, for example designed as diffusion burners, cause significantly higher NO x emissions. For this reason, in a gas turbine combustion chamber, provision must be made to supply the highest possible proportion of the liquid fuel via the afterburner 4. The primary burners 2, 2a should therefore be planned as small as possible and they should be operated with high air ratios: both measures make it possible to keep the NO x emissions from the operation of the primary burners 2, 2a as low as possible. Consequently, for the operation of a gas turbine combustion chamber, this means that the primary burners 2, 2a and the afterburner 4 are operated in stages. The afterburner 4 is preferably switched on at a load point near zero load of the gas turbines. Between the switch-on point and the maximum load, the load is regulated only via the fuel supply to the afterburner 4, it being possible for a gradual reduction in the fuel supply to the primary burner 2, 2a to be initiated as the afterburner load increases. The lower limit for the reduction of the fuel supply to the primary burners 2, 2a is given on the one hand by the extinguishing limit of the primary burner and on the other hand by the necessity that the temperature of the exhaust gas of the primary burner must be high enough to initiate the burnout of the afterburner fuel. The air jacket 14 shields the afterburner 4 and its liquid fuel spray cone 15 from the incoming hot gases 13 from the primary burners 2, 2a. As already explained, the mixture 14/15 produced by the afterburner 4 should not come to ignition in the immediate vicinity of the fuel nozzle 15 under near-stoichiometric conditions. Ignition of the afterburner mixture 14/15 should only be possible when the liquid fuel 15 introduced from the afterburner nozzle has mixed sufficiently with the shielding air jacket 14, that is to say downstream of the central combustion chamber 6. Further downstream is the mixing chamber 7, which ensures that that a vortex-free flow with uniform overall pressure and temperature profile can arise before the turbine 9 is acted upon.

Grundsätzlich ist die Länge der Mischkammer 7 stark von der Stärke des Mischvorganges abhängig: Beobachtungen haben ergeben, dass eine wirbelfreie Strömung mit gleichmässigem Druck nach einer Länge von etwa drei Durchmessern der entsprechenden Brennkammereinheit gut erreicht wird. Was die optimale Ausführung der Primärbrenner 2, 2a betrifft, so wird auf die Beschreibung gemäss EP-0 193 029, insbesondere unter Fig. 2, verwiesen.Basically, the length of the mixing chamber 7 is heavily dependent on the strength of the mixing process: observations have shown that a vortex-free flow with a uniform pressure is achieved well after a length of about three diameters of the corresponding combustion chamber unit. With regard to the optimal design of the primary burners 2, 2a, reference is made to the description according to EP-0 193 029, in particular under FIG. 2.

Die gemäss Fig. 2 ersichtliche Lösung will den Nachbrenner 4 weitergehend vor den heranströmenden Heissgasen 13 der Primärbrenner 2, 2a schützen. Zu diesem Zweck wird der Einlauf 16 der abschirmenden Luft 14 in die Brennkammer mindestens' so verlängert, dass der Flüssigbrennstoff-Sprühkegel 15 mitabgeschirmt wird. Die Heissgase 13 strömen erst weiter stromabwärts zum Nachbrennergemisch 14/15 hinzu; dort ist die Vermischung des Flüssigbrennstoffes 15 mit der abschirmenden Mantelluft 14 soweit fortgeschritten, dass eine Zündung dieses Gemisches 14/15 vonstatten gehen kann.The solution shown in FIG. 2 intends to further protect the afterburner 4 from the hot gases 13 of the primary burners 2, 2a flowing in. For this purpose, the inlet 16 of the shielding air 14 into the combustion chamber is at least 'extended such that the liquid fuel spray cone 15 is also shielded. The hot gases 13 only flow further downstream to the afterburner mixture 14/15; there the mixing of the liquid fuel 15 with the shielding jacket air 14 has progressed to such an extent that this mixture 14/15 can be ignited.

Fig. 3 zeigt eine weitere Variante, wie der Nachbrenner 4 und dessen Flüssigbrennstoff-Sprühkegel 15 vor den heranströmenden Heissgasen 13 im Bereich der Zentralbrennkammer 6 abgeschirmt werden können. Die abschirmende Luft 14 strömt einerseits entlang des Nachbrenners 4 und andererseits seitlich zwischen mehreren Lamellen 17 hindurch in die Zentralbrennkammer 6. Eine solche Vorkehrung bietet den Vorteil, dass damit die Vermischung zwischen Flüssigbrennstoff 15 und abschirmender Luft 14 vor der Mischkammer 7 optimiert wird. Bereits am Anfang der Mischkammer 7 findet dann die Zündung dieses Gemisches 14/15 durch die dort einmündenden Heissgase 13 statt. Damit verbleibt die ganze Länge der Mischkammer 7 zur Verfügung, um eine wirbelfreie Strömung mit gleichmässigem Druck und Temperaturprofil für die zu beaufschlagende Turbine bereit zu stellen.3 shows a further variant of how the afterburner 4 and its liquid fuel spray cone 15 can be shielded from the incoming hot gases 13 in the region of the central combustion chamber 6. The shielding air 14 flows on the one hand along the afterburner 4 and on the other hand laterally between a plurality of fins 17 into the central combustion chamber 6. Such a provision has the advantage that the mixing between liquid fuel 15 and shielding air 14 in front of the mixing chamber 7 is thereby optimized. At the beginning of the mixing chamber 7, this mixture 14/15 is then ignited by the hot gases 13 flowing there. The entire length of the mixing chamber 7 thus remains available in order to provide a vortex-free flow with a uniform pressure and temperature profile for the turbine to be acted upon.

Claims (8)

1. Combustion chamber of a gas turbine comprising a combination of primary burners which contain swirlers and after-burners, the fuel spray cone of the after-burners being screened against the hot gases of the primary burners by an enveloping airstream, characterized in that at least one after-burner (4) is assigned to one or more primary burners (2, 2a), in that the primary burners (2, 2a) form at least one annular combustion space (5, 5a) at a distance from one another, and in that the after-burners (4) assigned in each case to the primary burners (2, 2a) are situated on different axes with respect to the central axis of the primary burner (2, 2a).
2. Combustion chamber according to Claim 1, characterized in that the combustion chamber comprising a central combustion space (6) in which the after-burners (4) operate, and in that one annular combustion space (5, 5a) in which the primary burners (2, 2a) are located is present on either side of said combustion space (6) in mirror- image arrangement.
3. Combustion chamber according to Claim 2, characterized in that the combustion spaces (5, 5a) of the primary burners (2, 2a) are arranged in a V-shaped manner with respect to the central combustion space (6).
4. Combustion chamber according to Claim 1, characterized in that the combustion space (5, 5a) of the primary burners (2, 2a) is divided up into chamber units in the circumferential direction of the annular combustion space configuration, and in that two primary burners (2, 2a) arranged next to each other operate for each chamber unit.
5. Combustion chamber according to Claim 4, characterized in that the swirlers (8, 8a) are arranged counter-rotationally inside a chamber unit.
6. Combustion chamber according to Claim 1, characterized in that the after-burner (4) and its fuel spray cone (15) are protected against the hot gases of the primary burners (2, 2a) by additional mechanical aids (16, 17).
7. Method of operating a combustion chamber according to Claim 1, characterized in that the after-burner (4) sprays its fuel (15) directly into the central combustion space (6) and in that the screening airstream (14) is presented unswirled to the hot gases of the primary burners (2, 2a).
8. Method of operating a combustion chamber according to Claim 1, characterized in that the primary burners (2, 2a) and the after-burners (4) are operated in a stepped fashion, in that
at a load-point in the vicinity of the zero load of the gas turbine, the after-burners are switched on,
between the switch-on point of the after-burners and the maximum load, the fuel supply is regulated only by means of the after-burners,
as the load of the after-burners increases a stepwise reduction of the fuel supply to the primary burners is initiated.
EP87117059A 1986-12-09 1987-11-19 Gas turbine combustor Expired - Lifetime EP0276397B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4892/86A CH672366A5 (en) 1986-12-09 1986-12-09
CH4892/86 1986-12-09

Publications (2)

Publication Number Publication Date
EP0276397A1 EP0276397A1 (en) 1988-08-03
EP0276397B1 true EP0276397B1 (en) 1991-01-30

Family

ID=4284343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117059A Expired - Lifetime EP0276397B1 (en) 1986-12-09 1987-11-19 Gas turbine combustor

Country Status (5)

Country Link
US (1) US4805411A (en)
EP (1) EP0276397B1 (en)
JP (1) JPS63156926A (en)
CH (1) CH672366A5 (en)
DE (1) DE3767873D1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928481A (en) * 1988-07-13 1990-05-29 Prutech Ii Staged low NOx premix gas turbine combustor
US5199265A (en) * 1991-04-03 1993-04-06 General Electric Company Two stage (premixed/diffusion) gas only secondary fuel nozzle
US5259184A (en) * 1992-03-30 1993-11-09 General Electric Company Dry low NOx single stage dual mode combustor construction for a gas turbine
US5323604A (en) * 1992-11-16 1994-06-28 General Electric Company Triple annular combustor for gas turbine engine
DE19615910B4 (en) * 1996-04-22 2006-09-14 Alstom burner arrangement
GB2319078B (en) * 1996-11-08 1999-11-03 Europ Gas Turbines Ltd Combustor arrangement
DE59808754D1 (en) * 1997-12-19 2003-07-24 Mtu Aero Engines Gmbh Premix combustion chamber for a gas turbine
US6430919B1 (en) * 2000-03-02 2002-08-13 Direct Propulsion Devices, Inc. Shaped charged engine
WO2003058123A1 (en) * 2002-01-14 2003-07-17 Alstom Technology Ltd Burner arrangement for the annular combustion chamber of a gas turbine
US8387390B2 (en) 2006-01-03 2013-03-05 General Electric Company Gas turbine combustor having counterflow injection mechanism
US8178045B2 (en) * 2007-12-17 2012-05-15 University Of Louisville Research Foundation, Inc. Interchangeable preconcentrator connector assembly
US8448532B2 (en) * 2009-03-18 2013-05-28 The United States Of America As Represented By The Secretary Of The Navy Actively cooled vapor preconcentrator
RU2534189C2 (en) * 2010-02-16 2014-11-27 Дженерал Электрик Компани Gas turbine combustion chamber (versions) and method of its operation
US20120304660A1 (en) * 2011-06-06 2012-12-06 Kupratis Daniel B Turbomachine combustors having different flow paths
US20230280035A1 (en) * 2022-03-07 2023-09-07 General Electric Company Bimodal combustion system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2221621B1 (en) * 1973-03-13 1976-09-10 Snecma
US3872664A (en) * 1973-10-15 1975-03-25 United Aircraft Corp Swirl combustor with vortex burning and mixing
US4173118A (en) * 1974-08-27 1979-11-06 Mitsubishi Jukogyo Kabushiki Kaisha Fuel combustion apparatus employing staged combustion
US4052844A (en) * 1975-06-02 1977-10-11 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Gas turbine combustion chambers
US4012904A (en) * 1975-07-17 1977-03-22 Chrysler Corporation Gas turbine burner
US4168609A (en) * 1977-12-01 1979-09-25 United Technologies Corporation Folded-over pilot burner
US4249373A (en) * 1978-01-28 1981-02-10 Rolls-Royce Ltd. Gas turbine engine
GB2013788B (en) * 1978-01-28 1982-06-03 Rolls Royce Gas turbine engine
GB2043868B (en) * 1979-03-08 1982-12-15 Rolls Royce Gas turbine
US4292801A (en) * 1979-07-11 1981-10-06 General Electric Company Dual stage-dual mode low nox combustor
GB2072827A (en) * 1980-03-29 1981-10-07 Rolls Royce A tubo-annular combustion chamber
GB2073400B (en) * 1980-04-02 1984-03-14 United Technologies Corp Fuel injector
JPS5755975U (en) * 1980-09-16 1982-04-01
JPS57187531A (en) * 1981-05-12 1982-11-18 Hitachi Ltd Low nox gas turbine burner
JPS59202324A (en) * 1983-05-04 1984-11-16 Hitachi Ltd Low nox combustor of gas turbine
JPS6057131A (en) * 1983-09-08 1985-04-02 Hitachi Ltd Fuel feeding process for gas turbine combustor
EP0169431B1 (en) * 1984-07-10 1990-04-11 Hitachi, Ltd. Gas turbine combustor
EP0193029B1 (en) * 1985-02-26 1988-11-17 BBC Brown Boveri AG Gas turbine combustor

Also Published As

Publication number Publication date
DE3767873D1 (en) 1991-03-07
EP0276397A1 (en) 1988-08-03
CH672366A5 (en) 1989-11-15
JPS63156926A (en) 1988-06-30
US4805411A (en) 1989-02-21

Similar Documents

Publication Publication Date Title
DE60007946T2 (en) A combustion chamber
EP0710797B1 (en) Method and device for operating a premix burner
EP0276397B1 (en) Gas turbine combustor
EP0274630B1 (en) Arrangement for a burner
DE4426351B4 (en) Combustion chamber for a gas turbine
EP0571782B1 (en) Gasturbine combustor and operating method
DE69312208T2 (en) Gas turbine combustion chamber
DE69427843T2 (en) Vibration resistant burner with low NOx content
EP0801268B1 (en) Operating method of a gas turbine combustor
DE4446945B4 (en) Gas powered premix burner
EP1864056B1 (en) Premix burner for a gas turbine combustion chamber
DE69617290T2 (en) Combustion device for gas turbine engine
EP1504222B1 (en) Premix burner
DE4411624A1 (en) Combustion chamber with premix burners
EP0276696A2 (en) Hybrid burner for premix operation with gas and/or oil, particularly for gas turbine plants
DE4200073A1 (en) DUAL FUEL BURNER WITH REDUCED NO (DOWN ARROW) X (DOWN ARROW) EXHAUST
DE19510744A1 (en) Combustion chamber with two-stage combustion
EP1828684A1 (en) Premix burner comprising a mixing section
EP0713058A1 (en) Multi-stage combustion chamber
DE19717721A1 (en) Burner arrangement with separate inlet for fuel and combustion air into combustion chamber
EP1356236B1 (en) Premix burner and method for operating such a premix burner
DE2807853A1 (en) BURNER FOR GAS TURBINES
EP0433789A1 (en) Method for a premix burning of a liquid fuel
WO1999004196A1 (en) Arrangement of burners for heating installation, in particular a gas turbine combustion chamber
EP0193029A1 (en) Gas turbine combustor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19881209

17Q First examination report despatched

Effective date: 19890406

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19910130

Ref country code: GB

Effective date: 19910130

REF Corresponds to:

Ref document number: 3767873

Country of ref document: DE

Date of ref document: 19910307

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19911130

Ref country code: LI

Effective date: 19911130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931029

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941120

EAL Se: european patent in force in sweden

Ref document number: 87117059.3

EUG Se: european patent has lapsed

Ref document number: 87117059.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971113

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971122

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901