EP0276397A1 - Gas turbine combustor - Google Patents

Gas turbine combustor Download PDF

Info

Publication number
EP0276397A1
EP0276397A1 EP87117059A EP87117059A EP0276397A1 EP 0276397 A1 EP0276397 A1 EP 0276397A1 EP 87117059 A EP87117059 A EP 87117059A EP 87117059 A EP87117059 A EP 87117059A EP 0276397 A1 EP0276397 A1 EP 0276397A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
afterburner
primary
combustion
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87117059A
Other languages
German (de)
French (fr)
Other versions
EP0276397B1 (en
Inventor
Jaan Dr. Hellat
Jakob Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0276397A1 publication Critical patent/EP0276397A1/en
Application granted granted Critical
Publication of EP0276397B1 publication Critical patent/EP0276397B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/042Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones

Definitions

  • the present invention relates to a combustion chamber of gas turbines for operation with liquid fuels. It also relates to a method for operating such a combustion chamber.
  • the low NO x emission values still tolerated by law can only be maintained in the case of a planar combustion if the residence time of the gas particles in hot oxygen-rich zones is as short as possible, namely not more than a few milliseconds.
  • the temperature in the reaction area must not fall below a certain limit.
  • This grading can mean either a sub-stoichiometric primary combustion zone with subsequent post-combustion at low temperatures or the stepwise connection of over-stoichiometric burner elements. In any case, the grading also requires a powerful mixing mechanism.
  • premix combustion has proven to be the technically best measure for NO x reduction for the combustion of gaseous fuels.
  • a premix combustion can consist, for example, of a premix process with a large air ratio taking place within a number of tubular elements between the fuel and the compressor air before the actual combustion process takes place downstream of a flame holder.
  • the emission values of pollutants from combustion can be significantly reduced.
  • Combustion with the largest possible air ratio - given that the flame is still burning and then that not too much CO is produced - not only reduces the amount of NO X pollutants, but also causes a consistent reduction in other pollutants, namely, as already mentioned, CO and unburned hydrocarbons.
  • this optimization process can be driven, with regard to lower NO x emission values, in such a way that the space for combustion and after-reaction is kept much longer than would be necessary for the actual combustion.
  • the invention is based on the object, in a combustion chamber of the type mentioned, having comparable low NO x emission values as in combustion chambers operated with gaseous fuels to achieve without the risk of self-ignition of the liquid fuels outside the combustion chamber.
  • the advantage of the invention is to be seen essentially in the fact that a system is provided in a simple manner that generates low NO x emissions, this system being able to achieve the premixing without the technology and infrastructure which are per se quite complex.
  • the basic idea is to provide a primary burner and afterburner system.
  • the liquid fuel is injected directly into the combustion chamber.
  • the injected fuel is shielded with an air jacket, which is a non-self-sufficient burner.
  • the afterburner which is placed in a central chamber at the end of the primary burner chamber, is used in combination with one or more primary burners.
  • the hot gases generated by the primary burners should not be able to ignite the mixture generated by the afterburner in the immediate vicinity of the fuel nozzle of the afterburner, in order to avoid combustion under near-stoichiometric conditions. This is ensured by the shielding air jacket, which is not swirled and which initially effectively shields the fuel mist emanating from the afterburner nozzle against the external hot gases.
  • Fig. 1 shows a combustion chamber for gas turbines, which is housed in the GT ring housing 1. If the entire combustion chamber is embedded in a GT ring housing 1, it is connected to the compressed air 11 from the compressor 10 like a chamber.
  • the gas turbine ring casing wall is designed to withstand the compressor end pressure.
  • the geometric shape of the combustion chamber, as the axial section 12 wants to symbolize, is cylindrical and consists of two primary combustion chambers 5, 5a arranged at the ends, which are arranged symmetrically and V-shaped with respect to the central combustion chamber 6. Of course, the primary combustion chambers 5, 5a can lie in a horizontal plane with respect to the central axis of the central combustion chamber 6.
  • the primary combustion chambers 5, 5a themselves are equipped at their front ends in the circumferential direction with a number of axially parallel primary burners 2, 2a which depend on the performance of the combustion chamber. These essentially consist of a fuel line 3, 3a and a swirl body 8, 8a. Instead of a continuous circular cylindrical primary combustion chamber 5, 5a, several self-contained combustion chamber units can be provided distributed over the circumference, each consisting of a pair of twin burners with preferably twist bodies oriented in opposite directions. This has the effect that an effective mixing process can be generated in the individual combustion chamber units, an annular cylindrical outlet channel collecting the hot gases emerging from the individual combustion chamber units in order to then lead them to the central combustion chamber 6.
  • one after burner 4 is provided in each case. From the afterburner 4, liquid fuel 15 is fed directly into the combustion chamber and shielded with an air jacket 14.
  • the afterburner 4 is designed in such a way that it is not self-sufficient, ie its ignition requires a permanent ignition.
  • the hot gases 13 generated by the primary burners 2, 2a should not be able to ignite the mixture 14/15 produced by the afterburner 4 in the immediate vicinity of the fuel nozzle of the afterburner 4.
  • the shielding air jacket 14 which should preferably be untwisted and initially effectively shields the fuel mist 15 emanating from the afterburner nozzle against the hot gases 13 of the primary burners 2, 2a arriving there.
  • An ignition of the afterburner mixture 14/15 should only be possible when the liquid fuel 15 introduced by the burner nozzle has mixed sufficiently with the shielding air jacket 14.
  • the air ratio related to the fuel supply of the afterburner 4 and the air jacket 14 is determined according to the same criteria as for a premix burner.
  • the rapid intermixing of the hot gases 13 plays after it is the first foreign ignition of the afterburner mixture 14/15 have played an important role in the stability of the combustion, which is why it must be ensured that the pulse density ratio between primary burner gases 13 and afterburner mixture 14/15 is chosen to be very high - well over 1. It is confirmed that an optimally inserted afterburner 4 hardly produces NO X as a premix burner, while the primary burner 2, 2a, which must of course be self-sustaining, for example, designed as a diffusion burner, causing significantly higher NO x emissions. For this reason, in a gas turbine combustion chamber, provision must be made to supply the highest possible proportion of the liquid fuel via the afterburner 4.
  • the primary burners 2, 2a should therefore be planned as small as possible and they should be operated with high air ratios: both measures make it possible to keep the NO x emissions from the operation of the primary burners 2, 2a as low as possible. Consequently, for the operation of a gas turbine combustion chamber, this means that the primary burners 2, 2a and the afterburner 4 are operated in stages.
  • the afterburner 4 is preferably switched on at a load point near zero load of the gas turbines. Between the switch-on point and the maximum load, the load is regulated only via the fuel supply to the afterburner 4, it being possible for a gradual reduction in the fuel supply to the primary burner 2, 2a to be initiated as the afterburner load increases.
  • the lower limit for the reduction of the fuel supply to the primary burners 2, 2a is given on the one hand by the extinguishing limit of the primary burner and on the other hand by the necessity that the temperature of the exhaust gas of the primary burner must be high enough to initiate the burnout of the afterburner fuel.
  • the air jacket 14 shields the afterburner 4 and its liquid fuel spray cone 15 from the incoming hot gases 13 from the primary burners 2, 2a. As already explained, the mixture 14/15 produced by the afterburner 4 should not come to ignition in the immediate vicinity of the fuel nozzle 15 under near-stoichiometric conditions.
  • the length of the mixing chamber 7 is heavily dependent on the strength of the mixing process: observations have shown that a vortex-free flow with a uniform pressure is achieved well after a length of about three diameters of the corresponding combustion chamber unit.
  • the optimal design of the primary burners 2, 2a reference is made to the description according to EP-0 193 029, in particular under FIG. 2.
  • the solution shown in FIG. 2 wants to further protect the afterburner 4 from the incoming hot gases 13 of the primary burners 2, 2a.
  • the inlet 16 of the shielding air 14 into the combustion chamber is extended at least so that the liquid fuel spray cone 15 is also shielded.
  • the hot gases 13 only flow further downstream to the afterburner mixture 14/15; there the mixing of the liquid fuel 15 with the shielding jacket air 14 has progressed to such an extent that ignition of this mixture 14/15 can take place.
  • FIG 3 shows a further variant of how the afterburner 4 and its liquid fuel spray cone 15 can be shielded from the incoming hot gases 13 in the area of the central combustion chamber 6.
  • the shielding air 14 flows on the one hand along the afterburner 4 and on the other hand laterally between a plurality of fins 17 into the central combustion chamber 6.
  • Such a provision offers the advantage that the mixture between the liquid fuel 15 and the shielding mixture Air 14 is optimized in front of the mixing chamber 7. At the beginning of the mixing chamber 7, this mixture 14/15 is then ignited by the hot gases 13 flowing there. The entire length of the mixing chamber 7 thus remains available in order to provide a vortex-free flow with a uniform pressure and temperature profile for the turbine to be acted upon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Im Brennraum einer mit Flüssigbrennstoff betriebenen Brennkammer einer Gasturbine wird in Kombination mit einem oder mehreren Primärbrennern (2, 2a) jeweils mindestens ein Nachbrenner (4) eingesetzt. Der Nachbrenner (4) und mindestens dessen Brennstoffsprühkegel (15), der direkt in die Zentralbrennkammer (6) wirkt, werden durch einen unverdrallten ummantelnden Luftstrom (14) vor den Heissgasen (13) aus der Verbrennung in den Primärbrennern (2, 2a) abgeschirmt. Der Nachbrenner (4) selbst ist nicht selbstgängig, d.h. die Zündung seines Gemisches (14/15) findet weiter stromabwärts statt, vorzugsweise am Anfang der Mischkammer (7), wodurch für die Beaufschlagung der Turbine (9) eine wirbelfreie Strömung mit gleichmässigem Druck und Temperaturprofil bereitgestellt wird.In the combustion chamber of a combustion chamber of a gas turbine operated with liquid fuel, at least one afterburner (4) is used in combination with one or more primary burners (2, 2a). The afterburner (4) and at least its fuel spray cone (15), which acts directly in the central combustion chamber (6), are shielded from the combustion in the primary burners (2, 2a) by an untwisted, enveloping air stream (14) from the hot gases (13) . The afterburner (4) itself is not self-sufficient, i.e. the ignition of its mixture (14/15) takes place further downstream, preferably at the beginning of the mixing chamber (7), as a result of which a vortex-free flow with a uniform pressure and temperature profile is provided for the application of the turbine (9).

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung betrifft eine Brennkammer von Gastur­binen für den Betrieb mit Flüssigbrennstoffen. Sie betrifft ebenfalls ein Verfahren zum Betrieb einer solchen Brennkammer.The present invention relates to a combustion chamber of gas turbines for operation with liquid fuels. It also relates to a method for operating such a combustion chamber.

STAND DER TECHNIKSTATE OF THE ART

Bei der vorliegenden Erfindung geht es um eine technische Neuerung bei Brennkammern von Gasturbinen, bei welchen eine trockene, NOX-arme Verbrennung von Flüssigbrennstoffen in Gasturbinenbrennkammern angestrebt wird. Zur Erzielung einer primärseitigen Reduktion der NOX-Emissionswerte beim Betrieb von Gasturbinenbrennkammern mit gasförmigen Brennstoffen sind grundsätzlich vier Prinzipien bekannt:

  • a) die Vormischverbrennung;
  • b) die Zweistufenverbrennung, bei welcher in einer ersten Stufe eine unterstöchiometrische Verbrennung eingeleitet wird, worauf in einer zweiten Stufe eine rasche Zumischung von Luft und eine überstöchiometrischen Nachverbrennung folgt;
  • c) die flächenartige Verbrennung, bei welcher das Ziel verfolgt wird, eine möglichst kurze Verweilzeit der Gase in der Reaktionszone zu erreichen;
  • d) das Eindüsen von Wasser oder Dampf in die Reaktionszonen zur Absackung der Reaktionstemperaturen.
In the present invention, it is a technical innovation in combustion chambers of gas turbines, in which a dry, low NOx combustion of liquid fuels in gas turbine combustors is sought. Basically, four principles are known for achieving a reduction in the NO x emission values on the primary side when operating gas turbine combustion chambers with gaseous fuels:
  • a) premix combustion;
  • b) the two-stage combustion, in which a sub-stoichiometric combustion is initiated in a first stage, followed by a rapid admixture of air and an over-stoichiometric post-combustion in a second stage;
  • c) the area-like combustion, in which the aim is to achieve the shortest possible residence time of the gases in the reaction zone;
  • d) the injection of water or steam into the reaction zones to lower the reaction temperatures.

Die niedrigen vom Gesetzgeber noch tolerierten NOX-Emissions­werte können im Fall einer flächenartigen Verbrennung höchstens dann eingehalten werden, wenn die Aufenthaltszeit der Gasteil­chen in heissen sauerstoffreichen Zonen möglichst kurz ist, nämlich nicht mehr als einige Millisekunden. Andererseits, damit niedrige CO-Emissionswerte erreicht werden können, darf im Reaktionsbereich eine gewisse Grenztemperatur nicht unter­schritten werden.The low NO x emission values still tolerated by law can only be maintained in the case of a planar combustion if the residence time of the gas particles in hot oxygen-rich zones is as short as possible, namely not more than a few milliseconds. On the other hand, to ensure that low CO emissions can be achieved, the temperature in the reaction area must not fall below a certain limit.

Ausserdem ist es bekannt, dass die Vermeidung von NOX mit Brennkammerkonzepten mit gestufter Verbrennung erzielbar ist. Diese Stufung kann bedeuten, entweder eine unterstöchiometri­sche Primärverbrennungszone mit anschliessender Nachverbrennung bei tiefen Temperaturen oder die stufenweise Zuschaltung über­stöchiometrischer betriebener Brennerelemente. In jedem Fall erfordert die Stufung auch einen kraftvollen Mischmechanismus.In addition, it is known that the avoidance of NO x can be achieved with combustion chamber concepts with staged combustion. This grading can mean either a sub-stoichiometric primary combustion zone with subsequent post-combustion at low temperatures or the stepwise connection of over-stoichiometric burner elements. In any case, the grading also requires a powerful mixing mechanism.

Das Prinzip der Vormischverbrennung hat sich für die Verbrennung von gasförmigen Brennstoffen als technisch beste Massnahme zur NOX-Reduktion erwiesen.The principle of premix combustion has proven to be the technically best measure for NO x reduction for the combustion of gaseous fuels.

Eine Vormischverbrennung kann beispielsweise darin bestehen, dass innerhalb einer Anzahl rohrförmiger Elemente zwischen dem Brennstoff und der Verdichterluft ein Vormischprozess bei grosser Luftzahl abläuft, bevor der eigentliche Verbren­nungsprozess stromabwärts eines Flammenhalters stattfindet. Hierdurch können die Emissionswerte an Schadstoffen aus der Verbrennung erheblich reduziert werden. Die Verbrennung mit der grösstmöglichen Luftzahl - einmal dadurch gegeben, dass die Flamme überhaupt noch brennt und im weiteren dadurch, dass nicht zuviel CO entsteht - vermindert indessen nicht nur die Schadstoffmenge von NOX, sondern bewirkt darüber hinaus auch eine konsistente Herabsetzung anderer Schadstoffe, nämlich wie bereits erwähnt von CO und von unverbrannten Kohlenwasser­stoffen. Dieser Optimierungsprozess kann bei der bekannten Brennkammer, hinsichtlich tieferer NOX-Emissionswerte, dahin­gehend getrieben werden, dass der Raum für Verbrennung und Nachreaktion viel länger gehalten wird als es für die eigent­liche Verbrennung notwendig wäre. Dies erlaubt die Wahl einer grossen Luftzahl, wobei dann zwar zunächst grössere Mengen an CO entstehen, diese aber zu CO₂ weiter reagieren können, so dass schliesslich die CO-Emissionen doch klein bleiben. Auf der anderen Seite bilden sich aber wegen der grossen Luft­zahl eben tiefere NOX-Emissionswerte. Bei derartiger Vormisch­verbrennungstechnik muss lediglich sichergestellt werden, dass die Flammstabilität, insbesondere bei Teillast, nicht an die Löschgrenze aufgrund des sehr mageren Gemisches und der sich daraus ergebenden niedrigen Flammentemperatur stösst. Eine solche Vorkehrung ist beispielsweise anhand einer Brenn­stoffregulierung sowie der stufenweise in Betrieb genommenen Vormischelemente in Abhängigkeit zur Maschinendrehzahl zu bewerkstelligen.A premix combustion can consist, for example, of a premix process with a large air ratio taking place within a number of tubular elements between the fuel and the compressor air before the actual combustion process takes place downstream of a flame holder. As a result, the emission values of pollutants from combustion can be significantly reduced. Combustion with the largest possible air ratio - given that the flame is still burning and then that not too much CO is produced - not only reduces the amount of NO X pollutants, but also causes a consistent reduction in other pollutants, namely, as already mentioned, CO and unburned hydrocarbons. In the known combustion chamber, this optimization process can be driven, with regard to lower NO x emission values, in such a way that the space for combustion and after-reaction is kept much longer than would be necessary for the actual combustion. This allows the choice of a large air ratio, whereby initially larger amounts of CO arise, but these can react further to CO₂, so that ultimately the CO emissions remain small. On the other hand, due to the large air ratio, lower NO X emission values are formed. With this type of premixed combustion technology, it is only necessary to ensure that the flame stability, particularly at part load, does not reach the extinguishing limit due to the very lean mixture and the resulting low flame temperature. Such a precaution can be achieved, for example, using fuel regulation and the premixing elements which are gradually put into operation depending on the engine speed.

Aufgrund der kurzen Zündverzugszeiten bis zur Selbstzündung von flüssigen Brennstoffen, beispielsweise Diesel, kommt eine Vormischverbrennung von Flüssigbrennstoffen immer weniger in Frage, denn die Entwicklung im modernen Gasturbinenbau strebt eine weitere Erhöhung des an sich schon heute bereits sehr hoch gewählten Brennkammerdruckes an. Hier will die Erfin­dung Abhilfe schaffen.Due to the short ignition delay times until self-ignition of liquid fuels, e.g. diesel, premix combustion of liquid fuels is becoming less and less an option, because the development in modern gas turbine construction aims to further increase the combustion chamber pressure, which is already very high. The invention seeks to remedy this.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einer Brennkammer der eingangs genannten Art vergleichbare niedrige NOX-Emissionswerte wie bei mit gasförmigen Brennstoffen betriebenen Brennkammern zu erreichen, ohne das Risiko einer Selbstzündung der Flüssig­brennstoffe ausserhalb des Brennraumes einzugehen.The invention, as characterized in the claims, is based on the object, in a combustion chamber of the type mentioned, having comparable low NO x emission values as in combustion chambers operated with gaseous fuels to achieve without the risk of self-ignition of the liquid fuels outside the combustion chamber.

Der Vorteil der Erfindung ist im wesentlichen darin zu sehen, dass auf einfache Weise ein System bereitgestellt wird, das niedrige NOX-Emissionen erzeugt, wobei dieses System ohne die an sich recht aufwendige Technik und Infrastruktur zur Erzielung der Vormischung auskommt.The advantage of the invention is to be seen essentially in the fact that a system is provided in a simple manner that generates low NO x emissions, this system being able to achieve the premixing without the technology and infrastructure which are per se quite complex.

Die Idee besteht grundsätzlich darin, ein Primärbrenner- und Nachbrennersystem vorzusehen. Der flüssige Brennstoff wird direkt in den Brennraum eingespritzt. Beim Nachbrenner wird der eingespritzte Brennstoff mit einem Luftmantel abgeschirmt, wobei es sich hier um einen nicht selbstgängigen Brenner han­delt. Der Nachbrenner, der in einer Zentralkammer am Ende der Primärbrennerkammer plaziert ist, wird jeweils in Kombi­nation mit einem oder mehreren Primärbrennern eingesetzt. Die von den Primärbrennern erzeugten Heissgase sollen das vom Nachbrenner erzeugte Gemisch nicht in unmittelbarer Nähe der Brennstoffdüse des Nachbrenners zünden können, um eine Verbrennung bei nahstöchiometrischen Bedingungen zu vermeiden. Dafür sorgt der abschirmende Luftmantel, der unverdrallt ist und der den von der Nachbrennerdüse ausgehenden Brennstoffnebel zunächst wirksam gegen die äusseren Heissgase abschirmt. Eine Zündung des Nachbrennergemisches soll erst dann möglich werden, wenn sich der von der Nachbrennerdüse eingebrachte Flüssig­brennstoff ausreichend stark mit der abschirmenden Mantelluft und mit dem lufthaltigen Heissgas vermischt hat, so dass die Verbrennung im mageren Gemisch bei tiefen Temperaturen statt­findet.
Vorteilhafte und zweckmässige Weiterbildungen der erfindungs­gemässen Aufgabenlösung sind in den abhängigen Ansprüchen gekennzeichnet.
The basic idea is to provide a primary burner and afterburner system. The liquid fuel is injected directly into the combustion chamber. In the afterburner, the injected fuel is shielded with an air jacket, which is a non-self-sufficient burner. The afterburner, which is placed in a central chamber at the end of the primary burner chamber, is used in combination with one or more primary burners. The hot gases generated by the primary burners should not be able to ignite the mixture generated by the afterburner in the immediate vicinity of the fuel nozzle of the afterburner, in order to avoid combustion under near-stoichiometric conditions. This is ensured by the shielding air jacket, which is not swirled and which initially effectively shields the fuel mist emanating from the afterburner nozzle against the external hot gases. An ignition of the afterburner mixture should only be possible when the liquid fuel introduced from the afterburner nozzle has mixed sufficiently with the shielding jacket air and with the hot gas containing air, so that the combustion in the lean mixture takes place at low temperatures.
Advantageous and expedient developments of the task solution according to the invention are characterized in the dependent claims.

KURZE BESCHREIBUNG DER ZEICHNUNGBRIEF DESCRIPTION OF THE DRAWING

Im folgenden werden anhand der Zeichnung Ausführungsbeispiele der Erfindung erläutert. Die Zeichnung zeigt:

  • Fig. 1 eine kreisringzylindrische Brennkammer mit Primär­und Nachbrennern;
  • Fig. 2 die Umgebung eines Nachbrenners und
  • Fig. 3 eine weitere Umgebung eines Nachbrenners.
Exemplary embodiments of the invention are explained below with reference to the drawing. The drawing shows:
  • Figure 1 shows an annular cylindrical combustion chamber with primary and afterburner.
  • Fig. 2 shows the environment of an afterburner and
  • Fig. 3 shows another environment of an afterburner.

Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. Die Strömungsrichtung der Medien ist mit Pfeilen bezeichnet. In den verschiedenen Figuren sind jeweils gleiche Elemente mit den gleichen Bezugs­zeichen versehen.All elements not necessary for the immediate understanding of the invention have been omitted. The direction of flow of the media is indicated by arrows. In the different figures, the same elements are provided with the same reference symbols.

WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY OF CARRYING OUT THE INVENTION

Fig. 1 zeigt eine Brennkammer für Gasturbinen, die im GT-Ring­gehäuse 1 untergebracht ist. Ist die ganze Brennkammer in ein GT-Ringgehäuse 1 eingebettet, so ist sie mit der verdichte­ten Luft 11 aus dem Verdichter 10 kammerartig verbunden. Die Gasturbinen-Ringgehäusewand ist so ausgelegt, dass sie dem Verdichterenddruck standhält. Die geometrische Form des Brenn­raumes ist, wie der axiale Schnitt 12 versinnbildlichen will, kreisringzylindrisch und besteht aus zwei endseitig angeordneten Primärbrennkammern 5, 5a, die gegenüber der Zentralbrennkammer 6 symmetrisch und V-förmig angeordnet sind. Selbstverständlich können die Primärbrennkammern 5, 5a gegenüber der Zentralachse der Zentralbrennkammer 6 in einer waagrechten Ebene liegen. Die Primärbrennkammern 5, 5a selbst sind an ihren stirnseitigen Enden in Umfangsrichtung mit einer von der Leistung der Brenn­kammer abhängigen Anzahl axialparallel angeordneter Primär­brenner 2, 2a bestückt. Diese bestehen im wesentlichen aus einer Brennstoffleitung 3, 3a und aus einem Drallkörper 8, 8a. Statt einer durchgehenden kreisringzylindrischen Primärbrenn­kammer 5, 5a können auf den Umfang verteilt, mehrere in sich abgeschlossene Brennkammereinheiten vorgesehen werden, die jeweils aus einem Paar Zwillingsbrennern mit vorzugsweise drehsinnentgegengesetzt orientierten Drallkörpern bestehen. Dies bewirkt, dass in den einzelnen Brennkammereinheiten ein wirkungsvoller Mischvorgang erzeugt werden kann, wobei ein kreisringzylindrischer Austrittskanal die aus den einzelnen Brennkammereinheiten austretenden Heissgase sammelt, um sie dann zur Zentralbrennkammer 6 zu führen. Wird die hier darge­stellte durchgehende kreisringzylindrische Primärbrennkammer 5 und 5a vorgesehen, so können die dort nebeneinander axial­parallel angeordneten Primärbrenner 2 oder 2a wechselweise auch mit drehsinnentgegengesetzt orientierten Drallkörpern 8, 8a bestückt werden. In Kombination mit vorzugsweise zwei gegenüberliegenden Primärbrennern 2, 2a ist jeweils ein Nach brenner 4 vorgesehen. Vom Nachbrenner 4 aus wird flüssiger Brennstoff 15 direkt in den Brennraum eingegeben und mit einem Luftmantel 14 abgeschirmt. Der Nachbrenner 4 ist so konzi­piert, dass er nicht selbstgängig ist, d.h. zu dessen Gemisch­verbrennurg braucht es eine permanente Zündung. Die von den Primärbrernern 2, 2a erzeugten Heissgase 13 sollen das vom Nachbrenner 4 erzeugte Gemisch 14/15 nicht in unmittelbarer Nähe der Brennstoffdüse des Nachbrenners 4 zünden könnnen. Dafür sorgt der abschirmende Luftmantel 14, der vorzugsweise unverdrallt sein soll und den von der Nachbrennerdüse ausge­henden Brennstoffnebel 15 zunächst wirksam gegen die dort ankommenden Heissgase 13 der Primärbrenner 2, 2a abschirmt. Eine Zündung des Nachbrennergemisches 14/15 soll erst dann möglich sein, wenn sich der von der Brennerdüse eingebrachte Flüssigbrennstoff 15 ausreichend stark mit dem abschirmenden Luftmantel 14 vermischt hat. Die auf die Brennstoffzufuhr des Nachbrenners 4 und den Luftmantel 14 bezogene Luftzahl ist nach den gleichen Kriterien wie für einen Vormischbrenner festgelegt. Bei diesem Nachbrennerprinzip spielt die rasche Einmischung der Heissgase 13, nachdem diese die erste Fremd­ zündung des Nachbrennergemisches 14/15 eingeleitet haben, eine wichtige Rolle für die Stabilität der Verbrennung, weshalb zu achten ist, dass das Impulsdichtenverhältnis zwischen Primär­brennergasen 13 und Nachbrennergemisch 14/15 sehr hoch - weit über 1 - gewählt wird. Dabei ist erhärtet, dass ein optimal ausgelegter Nachbrenner 4 kaum mehr NOX als ein Vormischbrenner produziert, während die Primärbrenner 2, 2a, die selbstver­ständlich selbstgängig sein müssen, beispielsweise als Diffu­sionsbrenner ausgelegt, wesentlich höhere NOX-Emissionen ver­ursachen. Aus diesem Grund ist in einer Gasturbinenbrennkammer vorzukehren, einen möglichst hohen Anteil des flüssigen Brenn­stoffes über die Nachbrenner 4 zuzuführen. Die Primärbrenner 2, 2a sind daher möglichst klein zu planen und sie sollen mit hohen Luftzahlen betrieben werden: Beide Massnahmn er­möglichen, die NOX-Emissionen aus dem Betrieb der Primärbrenner 2, 2a so niedrig als möglich zu halten. Folgerichtig ergibt dies für den Betrieb einer Gasturbinenbrennkammer, dass die Primärbrenner 2, 2a und die Nachbrenner 4 gestuft betrieben werden. Vorzugsweise bei einem Lastpunkt in der Nähe von Nullast der Gasturbinen werden die Nachbrenner 4 zugeschaltet. Zwischen dem Zuschaltpunkt und maximaler Last wird die Last nur über die Brennstoffzufuhr zu den Nachbrennern 4 geregelt, wobei dann mit zunehmender Nachbrennerlast eine schrittweise Reduktion der Brennstoffzufuhr zu den Primärbrennern 2, 2a eingeleitet werden kann. Die untere Grenze für die Reduktion der Brennstoff­zufuhr zu den Primärbrennern 2, 2a ist gegeben einerseits durch die Löschgrenze der Primärbrenner und andererseits durch die Notwendigkeit, dass die Temperatur des Abgases der Primär­brenner genügend hoch sein muss, um den Ausbrand des Nach­brennerbrennstoffs einzuleiten. Der Luftmantel 14 schirmt den Nachbrenner 4 sowie dessen Flüssigbrennstoff-Sprühkegel 15 vor den heranströmenden Heissgasen 13 aus den Primärbrennern 2, 2a ab. Wie bereits erläutert, soll das vom Nachbrenner 4 erzeugte Gemisch 14/15 nicht in unmittelbarer Nähe der Brenn­stoffdüse 15 bei nahstöchiometrischen Bedingungen zur Zündung kommen. Eine Zündung des Nachbrennergemisches 14/15 soll erst dann möglich sein, wenn sich der von der Nachbrennerdüse einge­brachte Flüssigbrennstoff 15 ausreichend stark mit dem abschir­menden Luftmantel 14 vermischt hat, also stromabwärts der Zentralbrennkammer 6. Weiter stromabwärts befindet sich die Mischkammer 7, welche dafür sorgt, dass eine wirbelfreie Strö­mung mit gleichförmigem Gesamtdruck und Temperaturprofil ent­stehen kann, bevor die Turbine 9 beaufschlagt wird.Fig. 1 shows a combustion chamber for gas turbines, which is housed in the GT ring housing 1. If the entire combustion chamber is embedded in a GT ring housing 1, it is connected to the compressed air 11 from the compressor 10 like a chamber. The gas turbine ring casing wall is designed to withstand the compressor end pressure. The geometric shape of the combustion chamber, as the axial section 12 wants to symbolize, is cylindrical and consists of two primary combustion chambers 5, 5a arranged at the ends, which are arranged symmetrically and V-shaped with respect to the central combustion chamber 6. Of course, the primary combustion chambers 5, 5a can lie in a horizontal plane with respect to the central axis of the central combustion chamber 6. The primary combustion chambers 5, 5a themselves are equipped at their front ends in the circumferential direction with a number of axially parallel primary burners 2, 2a which depend on the performance of the combustion chamber. These essentially consist of a fuel line 3, 3a and a swirl body 8, 8a. Instead of a continuous circular cylindrical primary combustion chamber 5, 5a, several self-contained combustion chamber units can be provided distributed over the circumference, each consisting of a pair of twin burners with preferably twist bodies oriented in opposite directions. This has the effect that an effective mixing process can be generated in the individual combustion chamber units, an annular cylindrical outlet channel collecting the hot gases emerging from the individual combustion chamber units in order to then lead them to the central combustion chamber 6. If the continuous circular-cylindrical primary combustion chamber 5 and 5a shown here is provided, the primary burners 2 or 2a arranged axially parallel to one another there can also be alternately equipped with swirl bodies 8, 8a oriented in opposite directions. In combination with preferably two opposite primary burners 2, 2a, one after burner 4 is provided in each case. From the afterburner 4, liquid fuel 15 is fed directly into the combustion chamber and shielded with an air jacket 14. The afterburner 4 is designed in such a way that it is not self-sufficient, ie its ignition requires a permanent ignition. The hot gases 13 generated by the primary burners 2, 2a should not be able to ignite the mixture 14/15 produced by the afterburner 4 in the immediate vicinity of the fuel nozzle of the afterburner 4. This is ensured by the shielding air jacket 14, which should preferably be untwisted and initially effectively shields the fuel mist 15 emanating from the afterburner nozzle against the hot gases 13 of the primary burners 2, 2a arriving there. An ignition of the afterburner mixture 14/15 should only be possible when the liquid fuel 15 introduced by the burner nozzle has mixed sufficiently with the shielding air jacket 14. The air ratio related to the fuel supply of the afterburner 4 and the air jacket 14 is determined according to the same criteria as for a premix burner. With this afterburner principle, the rapid intermixing of the hot gases 13 plays after it is the first foreign ignition of the afterburner mixture 14/15 have played an important role in the stability of the combustion, which is why it must be ensured that the pulse density ratio between primary burner gases 13 and afterburner mixture 14/15 is chosen to be very high - well over 1. It is confirmed that an optimally inserted afterburner 4 hardly produces NO X as a premix burner, while the primary burner 2, 2a, which must of course be self-sustaining, for example, designed as a diffusion burner, causing significantly higher NO x emissions. For this reason, in a gas turbine combustion chamber, provision must be made to supply the highest possible proportion of the liquid fuel via the afterburner 4. The primary burners 2, 2a should therefore be planned as small as possible and they should be operated with high air ratios: both measures make it possible to keep the NO x emissions from the operation of the primary burners 2, 2a as low as possible. Consequently, for the operation of a gas turbine combustion chamber, this means that the primary burners 2, 2a and the afterburner 4 are operated in stages. The afterburner 4 is preferably switched on at a load point near zero load of the gas turbines. Between the switch-on point and the maximum load, the load is regulated only via the fuel supply to the afterburner 4, it being possible for a gradual reduction in the fuel supply to the primary burner 2, 2a to be initiated as the afterburner load increases. The lower limit for the reduction of the fuel supply to the primary burners 2, 2a is given on the one hand by the extinguishing limit of the primary burner and on the other hand by the necessity that the temperature of the exhaust gas of the primary burner must be high enough to initiate the burnout of the afterburner fuel. The air jacket 14 shields the afterburner 4 and its liquid fuel spray cone 15 from the incoming hot gases 13 from the primary burners 2, 2a. As already explained, the mixture 14/15 produced by the afterburner 4 should not come to ignition in the immediate vicinity of the fuel nozzle 15 under near-stoichiometric conditions. An ignition of the afterburner mixture 14/15 is only supposed to then be possible if the liquid fuel 15 introduced by the afterburner nozzle has mixed sufficiently with the shielding air jacket 14, that is to say downstream of the central combustion chamber 6. Further downstream is the mixing chamber 7, which ensures that a vortex-free flow with a uniform overall pressure and temperature profile can arise before the turbine 9 is acted upon.

Grundsätzlich ist die Länge der Mischkammer 7 stark von der Stärke des Mischvorganges abhängig: Beobachtungen haben ergeben, dass eine wirbelfreie Strömung mit gleichmässigem Druck nach einer Länge von etwa drei Durchmessern der entsprechenden Brennkammereinheit gut erreicht wird. Was die optimale Ausfüh­rung der Primärbrenner 2, 2a betrifft, so wird auf die Beschrei­bung gemäss EP-0 193 029, insbesondere unter Fig. 2, verwie­sen.Basically, the length of the mixing chamber 7 is heavily dependent on the strength of the mixing process: observations have shown that a vortex-free flow with a uniform pressure is achieved well after a length of about three diameters of the corresponding combustion chamber unit. With regard to the optimal design of the primary burners 2, 2a, reference is made to the description according to EP-0 193 029, in particular under FIG. 2.

Die gemäss Fig. 2 ersichtliche Lösung will den Nachbrenner 4 weitergehend vor den heranströmenden Heissgasen 13 der Primär­brenner 2, 2a schützen. Zu diesem Zweck wird der Einlauf 16 der abschirmenden Luft 14 in die Brennkammer mindestens so verlängert, dass der Flüssigbrennstoff-Sprühkegel 15 mitabge­schirmt wird. Die Heissgase 13 strömen erst weiter stromabwärts zum Nachbrennergemisch 14/15 hinzu; dort ist die Vermischung des Flüssigbrennstoffes 15 mit der abschirmenden Mantelluft 14 soweit fortgeschritten, dass eine Zündung dieses Gemisches 14/15 vonstatten gehen kann.The solution shown in FIG. 2 wants to further protect the afterburner 4 from the incoming hot gases 13 of the primary burners 2, 2a. For this purpose, the inlet 16 of the shielding air 14 into the combustion chamber is extended at least so that the liquid fuel spray cone 15 is also shielded. The hot gases 13 only flow further downstream to the afterburner mixture 14/15; there the mixing of the liquid fuel 15 with the shielding jacket air 14 has progressed to such an extent that ignition of this mixture 14/15 can take place.

Fig. 3 zeigt eine weitere Variante, wie der Nachbrenner 4 und dessen Flüssigbrennstoff-Sprühkegel 15 vor den heranströmen­den Heissgasen 13 im Bereich der Zentralbrennkammer 6 abgeschirmt werden können. Die abschirmende Luft 14 strömt einerseits entlang des Nachbrenners 4 und anderersets seitlich zwischen mehreren Lamellen 17 hindurch in die Zentralbrennkammer 6. Eine solche Vorkehrung bietet den Vorteil, dass damit die Vermischung zwischen Flüssigbrennstoff 15 und abschirmender Luft 14 vor der Mischkammer 7 optimiert wird. Bereits am Anfang der Mischkammer 7 findet dann die Zündung dieses Gemisches 14/15 durch die dort einmündenden Heissgase 13 statt. Damit verbleibt die ganze Länge der Mischkammer 7 zur Verfügung, um eine wirbelfreie Strömung mit gleichmässigem Druck und Temperaturprofil für die zu beaufschlagende Turbine bereit zu stellen.3 shows a further variant of how the afterburner 4 and its liquid fuel spray cone 15 can be shielded from the incoming hot gases 13 in the area of the central combustion chamber 6. The shielding air 14 flows on the one hand along the afterburner 4 and on the other hand laterally between a plurality of fins 17 into the central combustion chamber 6. Such a provision offers the advantage that the mixture between the liquid fuel 15 and the shielding mixture Air 14 is optimized in front of the mixing chamber 7. At the beginning of the mixing chamber 7, this mixture 14/15 is then ignited by the hot gases 13 flowing there. The entire length of the mixing chamber 7 thus remains available in order to provide a vortex-free flow with a uniform pressure and temperature profile for the turbine to be acted upon.

Claims (6)

1. Brennkammer einer Gasturbine für den Betrieb mit Flüssig­brennstoffen, dadurch gekennzeichnet, dass im Brennraum einer solchen Brennkammer in Kombination mit einem oder mehreren Primärbrennern (2, 2a) jeweils mindestens ein Nachbrenner (4) eingesetzt ist, wobei der Nachbrenner (4) und mindestens dessen Brennstoffsprühkegel (15) durch einen ummantelnden Luftstrom (14) vor den Heissgasen (13) der Primärbrenner (2, 2a) abgeschirmt sind.1. Combustion chamber of a gas turbine for operation with liquid fuels, characterized in that at least one afterburner (4) is used in the combustion chamber of such a combustion chamber in combination with one or more primary burners (2, 2a), the afterburner (4) and at least whose fuel spray cone (15) is shielded from the hot gases (13) of the primary burner (2, 2a) by a jacketing air flow (14). 2. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass der Brennraum aus einer kreisringzylindrischen Zentralbrenn­kammer (6) und aus je seitlich davon spiegelbildlich ange­ordneten kreisringzylindrischen Primärbrennkammern (5, 5a) besteht, wobei die Zentralbrennkammer (6) mit Nach­brennern (4) und die Primärbrennkammern (5, 5a) endseitig in Umfangsrichtung mit axial angeordneten Primärbrennern (2, 2a) bestückt sind.2. Combustion chamber according to claim 1, characterized in that the combustion chamber consists of a circular-cylindrical central combustion chamber (6) and each of which is arranged laterally mirror-image arranged circular-cylindrical primary combustion chambers (5, 5a), the central combustion chamber (6) with afterburner (4) and the primary combustion chambers (5, 5a) are equipped at the end in the circumferential direction with axially arranged primary burners (2, 2a). 3. Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass die Primärbrennkammern (5, 5a) gegenüber der Zentralbrenn­kammer (6) V-förmig angelegt sind.3. Combustion chamber according to claim 2, characterized in that the primary combustion chambers (5, 5a) with respect to the central combustion chamber (6) are V-shaped. 4. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass je seitlich in Umfangsrichtung der Zentralbrennkammer (6) in regelmässiger Verteilung Brennkammereinheiten angeordnet sind, die je mit zwei Primärbrennern (2, 2a) zu einer Zwil­lingsbrennkammer ausgestattet sind, wobei die Drallkörper (8, 8a) innerhalb einer Brennkammereinheit gegenrotierende Wirbel erzeugen.4. Combustion chamber according to claim 1, characterized in that combustion chamber units are arranged laterally in the circumferential direction of the central combustion chamber (6) in a regular distribution, each of which is equipped with two primary burners (2, 2a) to form a twin combustion chamber, the swirl bodies (8, 8a ) generate counter-rotating vortices within a combustion chamber unit. 5. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass der Nachbrenner (4) und dessen Brennstoffsprühkegel (15) vor den heranströmenden Heissgasen (13) zusätzlich durch mechanische Mittel (16, 17) geschützt sind.5. Combustion chamber according to claim 1, characterized in that the afterburner (4) and its fuel spray cone (15) are additionally protected from the incoming hot gases (13) by mechanical means (16, 17). 6. Verfahren zum Betrieb der Brennkammer gemäss Anspruch 1, dadurch gekennzeichnet, dass der Nachbrenner (4) den Flüssig­brennstoff (15) direkt in die Zentralbrennkammer (6) sprüht, wobei der Nachbrenner (4) nicht selbstgängig ist, und wobei der abschirmende Luftmantel (14) unverdrallt ist.6. A method of operating the combustion chamber according to claim 1, characterized in that the afterburner (4) sprays the liquid fuel (15) directly into the central combustion chamber (6), the afterburner (4) not being self-sufficient, and the shielding air jacket ( 14) is untwisted.
EP87117059A 1986-12-09 1987-11-19 Gas turbine combustor Expired - Lifetime EP0276397B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4892/86A CH672366A5 (en) 1986-12-09 1986-12-09
CH4892/86 1986-12-09

Publications (2)

Publication Number Publication Date
EP0276397A1 true EP0276397A1 (en) 1988-08-03
EP0276397B1 EP0276397B1 (en) 1991-01-30

Family

ID=4284343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117059A Expired - Lifetime EP0276397B1 (en) 1986-12-09 1987-11-19 Gas turbine combustor

Country Status (5)

Country Link
US (1) US4805411A (en)
EP (1) EP0276397B1 (en)
JP (1) JPS63156926A (en)
CH (1) CH672366A5 (en)
DE (1) DE3767873D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021527A1 (en) * 1996-11-08 1998-05-22 European Gas Turbines Limited Combustor arrangement
EP2532857A1 (en) * 2011-06-06 2012-12-12 United Technologies Corporation Turbomachine assembly with combustors having different flow directions and corresponding operating method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928481A (en) * 1988-07-13 1990-05-29 Prutech Ii Staged low NOx premix gas turbine combustor
US5199265A (en) * 1991-04-03 1993-04-06 General Electric Company Two stage (premixed/diffusion) gas only secondary fuel nozzle
US5259184A (en) * 1992-03-30 1993-11-09 General Electric Company Dry low NOx single stage dual mode combustor construction for a gas turbine
US5323604A (en) * 1992-11-16 1994-06-28 General Electric Company Triple annular combustor for gas turbine engine
DE19615910B4 (en) * 1996-04-22 2006-09-14 Alstom burner arrangement
DE59808754D1 (en) * 1997-12-19 2003-07-24 Mtu Aero Engines Gmbh Premix combustion chamber for a gas turbine
US6430919B1 (en) * 2000-03-02 2002-08-13 Direct Propulsion Devices, Inc. Shaped charged engine
EP1466124B1 (en) * 2002-01-14 2008-09-03 ALSTOM Technology Ltd Burner arrangement for the annular combustion chamber of a gas turbine
US8387390B2 (en) 2006-01-03 2013-03-05 General Electric Company Gas turbine combustor having counterflow injection mechanism
US8178045B2 (en) * 2007-12-17 2012-05-15 University Of Louisville Research Foundation, Inc. Interchangeable preconcentrator connector assembly
US8448532B2 (en) * 2009-03-18 2013-05-28 The United States Of America As Represented By The Secretary Of The Navy Actively cooled vapor preconcentrator
RU2534189C2 (en) * 2010-02-16 2014-11-27 Дженерал Электрик Компани Gas turbine combustion chamber (versions) and method of its operation
US20230280035A1 (en) * 2022-03-07 2023-09-07 General Electric Company Bimodal combustion system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2412120A1 (en) * 1973-03-13 1974-09-19 Snecma ENVIRONMENTALLY FRIENDLY COMBUSTION CHAMBER FOR GAS TURBINES
US4012904A (en) * 1975-07-17 1977-03-22 Chrysler Corporation Gas turbine burner
US4052844A (en) * 1975-06-02 1977-10-11 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Gas turbine combustion chambers
GB2010407A (en) * 1977-12-01 1979-06-27 United Technologies Corp Burner for gas turbine engine
GB2013788A (en) * 1978-01-28 1979-08-15 Rolls Royce Gas turbine engine combustion equipment
US4292801A (en) * 1979-07-11 1981-10-06 General Electric Company Dual stage-dual mode low nox combustor
GB2072827A (en) * 1980-03-29 1981-10-07 Rolls Royce A tubo-annular combustion chamber
GB2073400A (en) * 1980-04-02 1981-10-14 United Technologies Corp Fuel injector
DE3217674A1 (en) * 1981-05-12 1982-12-02 Hitachi, Ltd., Tokyo COMBUSTOR FOR A GAS TURBINE
GB2146425A (en) * 1983-09-08 1985-04-17 Hitachi Ltd Method of supplying fuel into gas turbine combustor
EP0169431A1 (en) * 1984-07-10 1986-01-29 Hitachi, Ltd. Gas turbine combustor
EP0193029A1 (en) * 1985-02-26 1986-09-03 BBC Brown Boveri AG Gas turbine combustor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872664A (en) * 1973-10-15 1975-03-25 United Aircraft Corp Swirl combustor with vortex burning and mixing
US4173118A (en) * 1974-08-27 1979-11-06 Mitsubishi Jukogyo Kabushiki Kaisha Fuel combustion apparatus employing staged combustion
US4249373A (en) * 1978-01-28 1981-02-10 Rolls-Royce Ltd. Gas turbine engine
GB2043868B (en) * 1979-03-08 1982-12-15 Rolls Royce Gas turbine
JPS5755975U (en) * 1980-09-16 1982-04-01
JPS59202324A (en) * 1983-05-04 1984-11-16 Hitachi Ltd Low nox combustor of gas turbine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2412120A1 (en) * 1973-03-13 1974-09-19 Snecma ENVIRONMENTALLY FRIENDLY COMBUSTION CHAMBER FOR GAS TURBINES
US4052844A (en) * 1975-06-02 1977-10-11 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Gas turbine combustion chambers
US4012904A (en) * 1975-07-17 1977-03-22 Chrysler Corporation Gas turbine burner
GB2010407A (en) * 1977-12-01 1979-06-27 United Technologies Corp Burner for gas turbine engine
GB2013788A (en) * 1978-01-28 1979-08-15 Rolls Royce Gas turbine engine combustion equipment
US4292801A (en) * 1979-07-11 1981-10-06 General Electric Company Dual stage-dual mode low nox combustor
GB2072827A (en) * 1980-03-29 1981-10-07 Rolls Royce A tubo-annular combustion chamber
GB2073400A (en) * 1980-04-02 1981-10-14 United Technologies Corp Fuel injector
DE3217674A1 (en) * 1981-05-12 1982-12-02 Hitachi, Ltd., Tokyo COMBUSTOR FOR A GAS TURBINE
GB2146425A (en) * 1983-09-08 1985-04-17 Hitachi Ltd Method of supplying fuel into gas turbine combustor
EP0169431A1 (en) * 1984-07-10 1986-01-29 Hitachi, Ltd. Gas turbine combustor
EP0193029A1 (en) * 1985-02-26 1986-09-03 BBC Brown Boveri AG Gas turbine combustor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021527A1 (en) * 1996-11-08 1998-05-22 European Gas Turbines Limited Combustor arrangement
US6360525B1 (en) 1996-11-08 2002-03-26 Alstom Gas Turbines Ltd. Combustor arrangement
EP2532857A1 (en) * 2011-06-06 2012-12-12 United Technologies Corporation Turbomachine assembly with combustors having different flow directions and corresponding operating method

Also Published As

Publication number Publication date
JPS63156926A (en) 1988-06-30
DE3767873D1 (en) 1991-03-07
CH672366A5 (en) 1989-11-15
EP0276397B1 (en) 1991-01-30
US4805411A (en) 1989-02-21

Similar Documents

Publication Publication Date Title
DE4426351B4 (en) Combustion chamber for a gas turbine
DE60007946T2 (en) A combustion chamber
EP0274630B1 (en) Arrangement for a burner
EP0580683B1 (en) Burner arrangement, especially for gas turbines, for the low-pollutant combustion of coal gas and other fuels
DE69024081T2 (en) Method of combustion with gas premix and a combustion device for carrying out the method
EP0675322B1 (en) Premix burner
EP0801268B1 (en) Operating method of a gas turbine combustor
EP0276397B1 (en) Gas turbine combustor
DE19510744A1 (en) Combustion chamber with two-stage combustion
DE4416650A1 (en) Combustion process for atmospheric combustion plants
DE69304810T2 (en) Combustion process and burner device
DE4200073A1 (en) DUAL FUEL BURNER WITH REDUCED NO (DOWN ARROW) X (DOWN ARROW) EXHAUST
EP1356236B1 (en) Premix burner and method for operating such a premix burner
DE2460740A1 (en) COMBUSTION CHAMBER FOR GAS TURBINE ENGINES
EP0193029B1 (en) Gas turbine combustor
DE2807853A1 (en) BURNER FOR GAS TURBINES
EP0433789A1 (en) Method for a premix burning of a liquid fuel
WO1999004196A1 (en) Arrangement of burners for heating installation, in particular a gas turbine combustion chamber
EP0394800A1 (en) Premix burner for generating a hot gas
EP1754937B1 (en) Burner head and method of combusting fuel
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
EP0602396B1 (en) Method of operating a heat generator
DE4412315A1 (en) Method of operating gas turbine combustion chamber
DE202008009650U1 (en) Multi-fuel burner
AT406706B (en) Burner for gas and oil heating boilers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19881209

17Q First examination report despatched

Effective date: 19890406

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19910130

Ref country code: GB

Effective date: 19910130

REF Corresponds to:

Ref document number: 3767873

Country of ref document: DE

Date of ref document: 19910307

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19911130

Ref country code: LI

Effective date: 19911130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931029

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941120

EAL Se: european patent in force in sweden

Ref document number: 87117059.3

EUG Se: european patent has lapsed

Ref document number: 87117059.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971113

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971122

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901