JPS59202324A - Low nox combustor of gas turbine - Google Patents

Low nox combustor of gas turbine

Info

Publication number
JPS59202324A
JPS59202324A JP58077462A JP7746283A JPS59202324A JP S59202324 A JPS59202324 A JP S59202324A JP 58077462 A JP58077462 A JP 58077462A JP 7746283 A JP7746283 A JP 7746283A JP S59202324 A JPS59202324 A JP S59202324A
Authority
JP
Japan
Prior art keywords
fuel
combustion
combustion chamber
inner cylinder
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58077462A
Other languages
Japanese (ja)
Other versions
JPH0440611B2 (en
Inventor
Takashi Omori
隆司 大森
Yoji Ishibashi
石橋 洋二
Isao Sato
勲 佐藤
Fumio Kato
文雄 加藤
Noriyuki Hayashi
則行 林
Yoshihiro Uchiyama
内山 好弘
Michio Kuroda
黒田 倫夫
Katsuo Wada
和田 克夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58077462A priority Critical patent/JPS59202324A/en
Publication of JPS59202324A publication Critical patent/JPS59202324A/en
Publication of JPH0440611B2 publication Critical patent/JPH0440611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • F23R3/32Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices being tubular

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To reduce NOX generated by providing a hollow cylindrical member in the vicinity of the upstream of an inner cylinder at the head portion of a combustion chamber, igniting the fuel by the tip end of the cylindrical member and igniting a gaseous mixture introduced from a cylindrical gap between an inner cylinder and the hollow cylindrical member. CONSTITUTION:The gaseous mixture of the fuel injected from a nozzle 3 by an ignition plug 7 inserted into the vicinity of the fuel nozzle 3. With the rise of the combustion intensity, the fuel 29 is injected from a fuel header 14 and a pipe 16 into an annular hollow part 13, and is mixed with an air current 31 and is rotated and jet-streamed within a pre-mixing chamber 11. At the time of a high intensity combustion, further a fuel 32 is injected through a header 20 into an annular hollow part 23, and mixed with an air current 34 and introduced into a main combustion chamber 8 through an annular swirler 18. This gaseous mixture is ignited by a flame of the nozzle 3. By supplying to burn a premixed gas in two stages in correspondence to the load, the flame stability of the fuel nozzle can be improved and generation of NOX can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はNO,の発生を低減せしめるように改良したガ
スタービン用の燃焼器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a combustor for a gas turbine that is improved to reduce the generation of NO.

〔発明の背景〕[Background of the invention]

ガスタービンの燃焼器において、NO,tl−低減せし
めるために従来用いられている方法には、大別して、(
イ)水、水蒸気等を使用する湿式法と、(ロ)燃焼性能
の改善に基づく乾式法とが有る。
Conventionally used methods for reducing NO, tl in gas turbine combustors can be roughly divided into (
There are (a) a wet method that uses water, steam, etc., and (b) a dry method that is based on improving combustion performance.

上記(イ)項の湿式法は、水、水蒸気などの媒体を用い
るため、タービン効率を低下せしめる虞れが有る。
Since the wet method described in item (a) above uses a medium such as water or steam, there is a risk of reducing turbine efficiency.

また、上記(ロ)項の乾式法は、均一温度で希薄燃焼を
行わせてNO,の発生を抑制するものであって、その燃
焼形態に極めて厳しい条件が昧される。
Further, the dry method described in item (b) above suppresses the generation of NO by performing lean combustion at a uniform temperature, and is subject to extremely strict conditions regarding the combustion form.

上記の乾式法におけるNO,低減の原理について、次に
略述する。
The principle of NO reduction in the above dry method will be briefly described below.

一般に燃焼時のNOx生成は、燃焼領域の局所的な高温
部(1800t:’以上)の燃焼ガスに支配され、主に
燃料の未燃焼排出物の窒素分と燃焼空気中の窒素の酸化
等によって発生する。これ等は、サーマルNOと7ユエ
ルNOと呼れ、特にサーマルNOは酸素濃度、反応時間
の依存度が大きく、ガス温度にかなシ影響される。した
がって、燃焼過程において局所的な高温度領域が形成さ
れない均一低温度燃焼(1500U以下)を実現すれば
効果的な低NO,化燃焼が可能となる。
In general, NOx generation during combustion is dominated by the combustion gas in the local high-temperature area (over 1800 tons) of the combustion area, and is mainly caused by the nitrogen content of unburned fuel exhaust and the oxidation of nitrogen in the combustion air. Occur. These are called thermal NO and 7-well NO. In particular, thermal NO is highly dependent on oxygen concentration and reaction time, and is strongly influenced by gas temperature. Therefore, if uniform low-temperature combustion (1500 U or less) is achieved in which no local high-temperature regions are formed during the combustion process, effective low-NO and chemical combustion will be possible.

従来、ガスタービンの低NO,化を目的とした燃焼技術
は、過剰の空気を燃焼領域に導入して希薄拡散燃焼方式
で、局所高温部に空気や水あるいは水蒸気を導入して高
温領域を抑制する手段がとられている。特にこの燃焼形
態は、空気に対して燃料が拡散混合しながら燃焼が継続
するので均一な可燃混合気を生成することは難しく、燃
焼過程において、燃料の濃淡が形成され、結果的に局所
高温部ができること、また、過剰の空気や水及び水蒸気
の導入は、火炎面を過冷却してco等の未燃焼排出物の
増加、不安定燃焼の原因となp1水等を導入した場合は
タービン効率の低下の因子となっている。したがって、
燃焼形態のみによって理想的にNOx及びCOの生成を
抑制するためには、燃焼の前に燃料と空気を完全に混合
し、均一化した火炎温度でしかも比軟的低温度燃焼を行
うことが必要となる。
Conventionally, combustion technology aimed at reducing NO in gas turbines is a lean diffusion combustion method in which excess air is introduced into the combustion region, and air, water, or steam is introduced into local high-temperature areas to suppress the high-temperature areas. Measures are being taken to do so. In particular, with this type of combustion, combustion continues while the fuel diffuses and mixes with the air, making it difficult to generate a homogeneous combustible mixture.During the combustion process, the fuel becomes concentrated, resulting in locally high temperature areas. In addition, the introduction of excess air, water, and steam can supercool the flame surface, increase unburned emissions such as co, and cause unstable combustion.If P1 water is introduced, the turbine efficiency This is a factor in the decline in therefore,
In order to ideally suppress the production of NOx and CO through only the combustion mode, it is necessary to thoroughly mix the fuel and air before combustion, and to perform specific soft low-temperature combustion with a uniform flame temperature. becomes.

上に述べたような、均一かつ低温の燃焼形態を実現させ
る手段として、従来においては、燃料と突気と全燃焼室
内に導く過程で完全に混合(予混合)してから燃焼室内
に埼、入する構造が用いられる。また燃焼室の一部に混
合室ヲ設けて上記の予混合を行わせるとともに、この領
域においては火炎の発生を極力抑制して均一、低温の燃
焼を行わせることも考えられる。
Conventionally, as a means of achieving a uniform and low-temperature combustion mode as described above, the fuel and air are completely mixed (premixed) in the process of introducing the air into the combustion chamber, and then the air is introduced into the combustion chamber. The structure that enters is used. It is also conceivable to provide a mixing chamber in a part of the combustion chamber to perform the above-mentioned premixing, and to suppress the generation of flame as much as possible in this region to achieve uniform, low-temperature combustion.

しかし、上記の予混合燃焼lrt来技術によって行わせ
ようとすると、予混合室において逆火を発生する虞れが
あり、その上、予混合気の希薄化によって、CO等の未
燃排出物が生成及び保炎安定性が低下して燃焼振動等の
発生領域が形成されることが避けられない。特にガスタ
ービン燃焼器では、燃焼室内外の差圧によづ°て空気が
導入され、かつ各燃焼室内の一定空気量に対して燃焼負
荷制御を燃料の導入量によって行う方法においては、前
記の諸問題をいかに解決するかが大きな課題となる。
However, if the above-mentioned premix combustion LRT technology is attempted, there is a risk of flashback occurring in the premix chamber, and in addition, unburned emissions such as CO will be generated due to the dilution of the premix mixture. It is unavoidable that the generation and flame holding stability deteriorate and a region where combustion oscillations occur is formed. In particular, in a gas turbine combustor, air is introduced based on the pressure difference between the inside and outside of the combustion chamber, and the combustion load control is performed based on the amount of fuel introduced for a constant amount of air in each combustion chamber. The big challenge is how to solve these problems.

上記の問題を従来技術における燃焼装置の具体的な一例
について説明すると、燃焼器の一部に混合室を設置し、
その下流側に燃料ノズルを置き、逆火防止構造として予
混合家出ロ全一部絞シ形状で構成した場合、 I) 予混合室出口の予混合気流が高速で噴流するよう
に構成しなければならないので、燃料流量の低い領域で
は極端に燃料が希薄となシ、安定燃焼を維持するために
は更に下流側に設けた燃料ノズルに大きい燃焼負荷を与
える必要を生じる。これはNO,の低減について不利な
条件となる。
To explain the above problem with a specific example of a combustion device in the prior art, a mixing chamber is installed in a part of the combustor,
If a fuel nozzle is placed on the downstream side of the fuel nozzle and the premixing chamber is partially constricted as a backfire prevention structure, then: Therefore, in a region where the fuel flow rate is low, the fuel becomes extremely lean, and in order to maintain stable combustion, it becomes necessary to apply a large combustion load to the fuel nozzle provided further downstream. This is a disadvantageous condition for reducing NO.

II)  予混合室内での着火立上げを考慮した燃焼形
態をとろうとすると、作動領域内で部分的な不安定燃焼
を生じて燃焼振動の原因となり、また、燃焼室が独立し
ていると着火時の火炎伝播について難しい技術的問題を
伴う。
II) If an attempt is made to adopt a combustion mode that takes into account ignition start-up within the premixing chamber, partial unstable combustion will occur within the operating region, causing combustion oscillations, and if the combustion chamber is independent, ignition will occur. When flame propagation involves difficult technical problems.

■)前記の絞り構造は、火炎を燃焼室中央部に集中せし
めるため、火炎集中部に局部的な高温を生じてNO,低
減を妨げることになる。
(2) Since the above-mentioned throttle structure concentrates the flame in the center of the combustion chamber, a localized high temperature is generated in the flame concentration area, which hinders the reduction of NO.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為され、NO,の発生を低
減し得る、予混合方式のガスタービン燃焼器全提供しよ
うとするものである。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a premixing type gas turbine combustor that can reduce the generation of NO.

〔発明の概要〕[Summary of the invention]

前述のような不具合を誘発すること雇<、予混合燃焼に
よってNO,全低減せしめるには、効果的な予混合を行
わせ得る予混合機構と、安定燃焼を行わせ得る燃焼機構
と、逆火防止手段とが必要である。
In order to completely reduce NO by premix combustion, it is necessary to have a premixing mechanism that can perform effective premixing, a combustion mechanism that can perform stable combustion, and a combustion mechanism that can prevent backfire. Prevention measures are necessary.

本発明は上記の考察に基づいて前記の目的を達成するた
め燃焼室頭部内筒の上流端付近の内部に、中空円錐状の
部材を設け、上記中空円錐状部材の下流側先端部に燃料
ノズルを設け、上記燃料ノズルの近傍に点火栓を設け、
前記の頭部内筒と中空円錐状部材との間に形成される筒
状の間隙の上流端に空気と燃料との送入手段を設け、送
入された空気と燃料とによって形成される可燃混合気に
対して前記の燃料ノズルの火炎によって着火し得るよう
にしたことを%徴とする。
In order to achieve the above object based on the above considerations, the present invention provides a hollow conical member inside near the upstream end of the inner cylinder at the head of the combustion chamber, and provides fuel at the downstream end of the hollow conical member. A nozzle is provided, an ignition plug is provided near the fuel nozzle,
An air and fuel supply means is provided at the upstream end of the cylindrical gap formed between the head inner cylinder and the hollow conical member, and the combustible material formed by the supplied air and fuel is provided. The percentage indicates that the air-fuel mixture can be ignited by the flame of the fuel nozzle.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例を第1図乃至第3図について説
明する。
Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

第1図は本発明のガスタービン低NO,燃焼器の一実施
例の縦断面図、第2図は第1図のA、 −A断面図、第
3図は燃焼器の頭部付近を破断して描いた斜視図である
Fig. 1 is a longitudinal sectional view of an embodiment of the gas turbine low NO combustor of the present invention, Fig. 2 is a sectional view of A and -A in Fig. 1, and Fig. 3 is a cutaway near the head of the combustor. FIG.

1は燃焼器外筒、2はその上流側の電図に固着したエン
ドカバー、3は燃料ノズル、4,5は燃料導入機構、6
は内筒、7は点火栓で、上記の各部材は燃焼器の構成部
材である。
1 is a combustor outer cylinder, 2 is an end cover fixed to the electrical diagram on the upstream side, 3 is a fuel nozzle, 4 and 5 are fuel introduction mechanisms, 6
is an inner cylinder, 7 is a spark plug, and each of the above members is a component of the combustor.

上記の内筒6の頭部(燃焼ガス流に関して上流側、第1
図において左方をいう)は、後部に設ける円筒形主燃焼
室8よシ断面部が小さく頭部方向に断面部を漸減した内
筒壁9で外枠を形成し、頭部上流端よシ下流側に先細形
状の円筒コーン部10を、前記内筒壁9に対応して内周
側に間隙を置いて同心状に突起させ、内筒頭部に末広空
間部をイ1する予混合室11全形成する。また、円筒コ
ーン部10の下流端に旋回器を有する燃料ノズル3を配
設し、前記予混合室11の頭部近傍に第1段目の現状旋
回器12を取付け、その上流部に環状旋回器12の有効
開口部全内外枠を延長して環状中空部13を形成し、外
周側に円形環状の燃料へツタ一部14を設けて、前記環
状中空部13内に燃料噴出孔15を付けたパイプ16(
第3図)を多数突設し、燃料導入機構4を構成する。
The head of the inner cylinder 6 (on the upstream side with respect to the combustion gas flow, the first
The cylindrical main combustion chamber 8 (left side in the figure) has a smaller cross-section than the cylindrical main combustion chamber 8 provided at the rear, and the outer frame is formed by an inner cylinder wall 9 whose cross-section gradually decreases in the direction of the head. A premixing chamber in which a tapered cylindrical cone portion 10 is protruded concentrically on the downstream side with a gap on the inner circumferential side corresponding to the inner cylinder wall 9, and a widening space is formed in the inner cylinder head. 11 Complete formation. Further, a fuel nozzle 3 having a swirler is disposed at the downstream end of the cylindrical cone portion 10, a first-stage current swirler 12 is attached near the head of the premixing chamber 11, and an annular swirler is installed at the upstream end of the fuel nozzle 3. An annular hollow part 13 is formed by extending the entire inner and outer frames of the effective opening of the container 12, a circular annular fuel ivy part 14 is provided on the outer circumferential side, and a fuel injection hole 15 is provided in the annular hollow part 13. pipe 16 (
(Fig. 3) are provided protrudingly from a large number to constitute the fuel introduction mechanism 4.

本実施例は以上のようにして燃焼室頭部内筒の上流、=
、Mt付近の内部に、中空円錐状の部材を設け、上記中
空円錐状部材の下流側先端部に燃料ノズル全段け、上記
燃料ノズルの近傍に点火栓を設け、前記の頭部内筒と中
空円錐状部材との間に形成される筒状の間隙の上流端に
空気と燃料との送入手段を設け、送入された柴気と燃料
とによって形成される可燃混合気に対してその下流側に
燃料ノズルを設け、該燃料ノズルの火炎によって予混合
した可燃混合気に着火し得るように構成しておる。
In this embodiment, as described above, the upstream of the inner cylinder at the head of the combustion chamber, =
, a hollow conical member is provided inside near Mt, a fuel nozzle is provided in all stages at the downstream end of the hollow conical member, a spark plug is provided near the fuel nozzle, and the head inner cylinder and An air and fuel supply means is provided at the upstream end of the cylindrical gap formed between the hollow conical member and the combustible mixture formed by the supplied carbon dioxide and fuel. A fuel nozzle is provided on the downstream side, and the premixed combustible mixture can be ignited by the flame of the fuel nozzle.

本実施例においては更に予混合室11の出口近傍で主燃
焼室8へ連なる内筒拡太部17に第2段環状旋回器18
を設け、前記した如く環状旋回器18の上流側の有効開
口部に環状中空部19を形成して外周部に円形環状の燃
料へツタ一部20を取付け、燃料噴出孔21を有するパ
イプ22を環状中空部23に突起して多数設けて燃料導
入機構5を形成せしめる。一方、内筒の主燃焼室8の後
流側断面部を縮少した円筒で形成させ、内筒後部近傍の
前記縮少断面部24に希釈空気孔25を設置する。
In this embodiment, a second-stage annular swirler 18 is further provided in the inner cylinder enlarged portion 17 connected to the main combustion chamber 8 near the outlet of the premixing chamber 11.
As described above, the annular hollow part 19 is formed in the effective opening on the upstream side of the annular swirler 18, and the ivy part 20 is attached to the outer circumference of the annular fuel pipe 22 having the fuel injection hole 21. A large number of protrusions are provided in the annular hollow portion 23 to form the fuel introduction mechanism 5. On the other hand, the downstream cross section of the main combustion chamber 8 of the inner cylinder is formed by a reduced cylinder, and the dilution air hole 25 is installed in the reduced cross section 24 near the rear of the inner cylinder.

次に、以上のように構成したガスタービン燃焼器の運転
操作方法、並びに作用について説明する。
Next, a method of operating the gas turbine combustor configured as above and its effects will be explained.

点火栓7を外筒1の外枠部から円筒コーン部10の先端
に取付けfc燃料ノズル3近傍まで挿入し、燃焼の初期
では燃料26を燃料導入管27を介して燃料ノズル3に
導き、周囲から導入される空気流28とともに燃焼室内
に導入して、前記の点火栓7で着火させる。また、燃焼
負荷上昇にともなって、燃料29を燃料導入管30全通
して燃料へツタ一部14に導き、燃料パイプ16の噴出
孔15から環状中空部13内に噴流して空気流31に混
入し、環状旋回器12によって予混合室11内に旋回噴
流させる。高負荷燃焼時は、更に燃料32を燃料導入管
33から燃料へツタ一部20を介して環状中空部23に
突起したパイプ22の噴出孔21よシ噴出し、空気流3
4に混入してから環状旋回器18しより旋回噴流となっ
て主燃焼室8内に導入して燃焼を継続させる。
The ignition plug 7 is attached to the tip of the cylindrical cone part 10 from the outer frame part of the outer cylinder 1 and inserted to the vicinity of the fc fuel nozzle 3. At the beginning of combustion, the fuel 26 is guided to the fuel nozzle 3 via the fuel introduction pipe 27, and the surrounding It is introduced into the combustion chamber along with the air flow 28 introduced from the ignition plug 7, and ignited by the spark plug 7 described above. In addition, as the combustion load increases, the fuel 29 is guided through the entire fuel introduction pipe 30 to the ivy part 14, and is jetted from the jet hole 15 of the fuel pipe 16 into the annular hollow part 13 and mixed into the air flow 31. Then, the annular swirler 12 swirls the jet into the premixing chamber 11 . During high-load combustion, the fuel 32 is further ejected from the fuel introduction pipe 33 through the ivy part 20 and through the jet hole 21 of the pipe 22 protruding into the annular hollow part 23, and the air flow 3
4, the annular swirler 18 transforms the fuel into a swirling jet and introduces it into the main combustion chamber 8 to continue combustion.

本実施例においては予混合室の内筒壁9、主燃焼室8の
壁面には、冷却生気35を、下流近傍には希釈空気37
を導入する機構をそれぞれ設けてあシ、外筒1と内筒6
の間隙を流動する空気36の一部を燃焼室内に導くよう
になっている。
In this embodiment, cooled fresh air 35 is supplied to the inner cylinder wall 9 of the premixing chamber and the wall surface of the main combustion chamber 8, and diluted air 37 is supplied near the downstream.
A mechanism for introducing the outer cylinder 1 and the inner cylinder 6 is provided respectively.
A portion of the air 36 flowing through the gap is guided into the combustion chamber.

第4図は、本実施例のガスタービン低NO,燃焼器にお
ける燃料制御の一例を示す。図中Flは内筒コーン部1
0の先端部に設置する燃料ノズル3への燃料流量で、着
火時から無負荷近傍までを作動させる。F2は第1段環
状旋回器12への燃料導入量でタービンの部分負荷の作
動を受は持ち、F3は第2段項状旋回器18への燃料流
量で、高負荷領域において作動させる。
FIG. 4 shows an example of fuel control in the gas turbine low NO combustor of this embodiment. In the figure, Fl is the inner cylinder cone part 1
The fuel flow rate to the fuel nozzle 3 installed at the tip of the engine operates from the time of ignition to near no-load. F2 is the amount of fuel introduced into the first stage annular swirler 12, which allows the turbine to operate at a partial load, and F3 is the fuel flow rate to the second stage annular swirler 18, which operates in a high load region.

即ち、本発明では、前記燃焼方式において、燃焼室中央
部に設ける燃料ノズル3は常時火炎を発生させ、負荷の
変化に応じて作動させる第1段及び第2段環状旋回器1
2,16からの予混合気を安定に燃焼せしめ得ることが
特徴の一つになっている。したがって、燃料ノズル3の
保炎安定性〃ニ一つの重要な要素となる。そこで、燃料
ノズル3は保炎性の面から燃料と空気の混合が良くない
状態全一部作り、可燃混合気中の濃淡艮よって生成され
る燃焼性が高い領域(理論混合比)を形成する拡散炎に
する燃焼を行う。しかし、燃焼過程で局所高温部が発生
するので、低NO,化の面力1ら燃焼量を極力小さくす
ることが望ましい。
That is, in the present invention, in the combustion method, the fuel nozzle 3 provided in the center of the combustion chamber constantly generates a flame, and the first and second stage annular swirlers 1 are operated in response to changes in load.
One of the features is that the premixture from No. 2 and 16 can be stably combusted. Therefore, flame holding stability of the fuel nozzle 3 is an important factor. Therefore, from the viewpoint of flame stability, the fuel nozzle 3 creates a state in which the mixture of fuel and air is not good in all parts, and forms a region (stoichiometric mixture ratio) with high combustibility generated by the concentration difference in the combustible mixture. Perform combustion to create a diffusion flame. However, since local high temperature areas are generated during the combustion process, it is desirable to reduce the amount of combustion as much as possible in order to reduce NO.

第5図に燃料ノズル3の一具体例を示す。燃料26を燃
料導入管27を介して導き、燃料ノズル3の旋回器部に
設けた燃料噴孔38で空気旋回流に対して噴流する。ま
た、旋回器の外周側から角θなる蝉斜で内筒コーン部1
0の先端部よりも太きく、前記予混合室11に突起する
如く形成する保炎筒39を設置し、保炎筒39の壁面に
沿う冷却生気40を心入する。この保炎筒39は燃料ノ
ズル3からの可燃混合気の安定燃焼音、周囲の流動状態
(特に予混合室からの流動)に直接影響されることなく
行えるようにしたこと。保炎安定性向上によってパイロ
ット火炎専用の燃焼量を少なくすること、更に保炎筒3
9の後流部に生成される可燃混合気の一部き込み流41
によって火移りの向上を期待し得る。
FIG. 5 shows a specific example of the fuel nozzle 3. The fuel 26 is introduced through the fuel introduction pipe 27 and is jetted against the swirling air flow through a fuel injection hole 38 provided in the swirler portion of the fuel nozzle 3 . In addition, the inner cylinder cone part 1 is tilted at an angle θ from the outer circumferential side of the swirler.
A flame stabilizing tube 39 is installed which is thicker than the tip of the flame stabilizing tube 39 and is formed to protrude into the premixing chamber 11, and cooled fresh air 40 is inserted along the wall surface of the flame stabilizing tube 39. The flame stabilizing cylinder 39 is designed to allow stable combustion of the combustible mixture from the fuel nozzle 3 without being directly influenced by the surrounding flow state (particularly the flow from the premixing chamber). By improving flame holding stability, the amount of combustion dedicated to the pilot flame can be reduced, and in addition, the flame holding tube 3
Flow 41 of a part of the combustible mixture generated in the downstream part of 9
This can be expected to improve the heat transfer.

以上説明したように、燃料ノズル3を保炎筒39によっ
て徨う構成とし、かつ、上記の保炎猪39の断面形状全
内筒コーン部10の先端部Jニジも太きく形成すると保
炎安定性が向上するといジ効果がある。
As explained above, if the fuel nozzle 3 is configured to be surrounded by the flame stabilizing tube 39 and the tip J of the cross-sectional shape of the flame stabilizing tube 39 is also made thick, flame stabilization is achieved. Improving gender has a positive effect.

次に第1段層回器から流動する可燃予混合気e逆火を防
ぐ手段として、予混合室11形状を下シ導入して、予混
合へ内を流動する状態の流速が二流方向に減速流と成ら
しめる。つまり予混合室11の出口近傍で逆火条件下に
流速全設定し゛ておけは、下流側に発生する火炎の輻射
等による予期しない急激な逆火現象の防止はa(能であ
る。
Next, as a means to prevent flashback of the combustible premixture e flowing from the first stage stage converter, the shape of the premixing chamber 11 is introduced downward, so that the flow velocity of the premixer flowing inside is reduced in the second flow direction. Make it flow. In other words, if the flow velocity is fully set under flashback conditions in the vicinity of the outlet of the premixing chamber 11, it is possible to prevent unexpected sudden flashbacks due to flame radiation, etc. occurring on the downstream side.

本実施例のように、燃焼室頭部内筒の上流端付近に第1
段の円環状旋回器を設け、前!己の燃料ノズルの先端部
に旋回器を設け、前記の筒状の1司隙は下流側に向けて
その断面積を拡大するごとく形成して頭部予混合室を構
成し、前記の燃焼室頭部内筒が中空円錐状部材に対向し
ている部分よりも下流側を最に階段状に拡開して円柱状
の主燃焼室金形成し、前記の予混合室と王燃焼藁との境
界性1   近に第2段の円環状旋回器を設けて、前言
己の燃焼ノズルを中心とする多重環状旋回器構造とツー
るこ、   と氏より、安定した均一、低温度燃焼力i
得られ、特に、逆火の防止に有効でおる。
As in this embodiment, there is a first
A step annular swivel is provided, and the front! A swirler is provided at the tip of the fuel nozzle, and the cylindrical gap is formed so that its cross-sectional area expands toward the downstream side to form a head premixing chamber, and the combustion chamber The part of the head inner cylinder facing the hollow conical member is widened in a step-like manner most downstream to form a cylindrical main combustion chamber, and the premixing chamber and the king combustion straw are connected to each other. Boundary property 1 By installing a second-stage annular swirler nearby and combining it with the multiple annular swirler structure centered around the combustion nozzle, Mr.
It is particularly effective in preventing flashback.

)    本実施例のガスタービン低NO,燃焼器の、
1氾   記以外の特徴として、空気と燃料との予混合
機構がある。前記で示した空気流が流入される環状中ド
   空部に燃料を導入する過程で、多数のノくイブ部
を突きだし、そのノ(イブに1個又は複数個の燃料噴孔
を設けて空気流に分散供給することで、空気が低速流で
あっても効果的な混合が可能である。特に予混合室上流
部に旋回器を設けると、予混合室内の燃料と空気の拡散
領域が増長され、よシ混合が促進される。
) of the gas turbine low NO, combustor of this example,
1. Another feature other than the above is a premixing mechanism for air and fuel. In the process of introducing fuel into the annular hollow space into which the air flow shown above flows, a large number of nozzle ribs are protruded, and one or more fuel injection holes are provided in the nozzles to inject the air. By dispersing and supplying air into the fuel flow, effective mixing is possible even when the air is flowing at a low speed.In particular, installing a swirler in the upstream part of the premixing chamber increases the diffusion area of fuel and air in the premixing chamber. and promotes good mixing.

本例のように、第1段の旋回器12および第2段の旋回
器18にそれぞれ燃料噴霧手段としての燃料導入機構4
及び同5を設けると、燃焼の均一化に有効でんる。
As in this example, a fuel introduction mechanism 4 as a fuel spraying means is provided in the first stage swirler 12 and the second stage swirler 18, respectively.
and 5 are effective for uniform combustion.

第6図は燃料導入機構4付近の拡大図、第7図は第6図
のB−B断面図である。燃料へツタ14から突出したパ
イプ16に燃料噴出孔15を設け、上記の噴出孔15に
対向せしめて乱流部材42゜43を千鳥状に配設して瓦
状発生手段を構成しである。本例によれば短い空間で燃
料の混合拡散が行われ、比較的圧力損失が小さくする構
造も容易であるので、−開口部から多量の空気量を必要
とする手段として非常に有利な方法である。
FIG. 6 is an enlarged view of the vicinity of the fuel introduction mechanism 4, and FIG. 7 is a sectional view taken along line BB in FIG. A fuel jet hole 15 is provided in a pipe 16 protruding from the fuel ivy 14, and turbulent flow members 42 and 43 are arranged in a staggered manner so as to face the jet hole 15, thereby forming a tile-like generating means. According to this example, the fuel can be mixed and diffused in a short space, and it is easy to construct a structure with relatively small pressure loss. Therefore, it is a very advantageous method as a means that requires a large amount of air from the opening. be.

第8図は第1図の実施例において発生する火炎の状態を
示す説明図で、Cは旋回器を備えたノズル3によって発
生するパイロット炎、Dは予混合気によって発生する火
炎、Eは燃料導入手段5がら供給された燃料と第2段環
状旋回器18がら供給された空気とによって発生する火
炎である。
FIG. 8 is an explanatory diagram showing the state of the flame generated in the embodiment of FIG. 1, where C is the pilot flame generated by the nozzle 3 equipped with a swirler, D is the flame generated by the premixture, and E is the fuel The flame is generated by the fuel supplied from the introduction means 5 and the air supplied from the second stage annular swirler 18.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の低NO,燃焼器は、燃焼
室頭部内筒の上流端付近の内部に、中空円錐状の部材を
設け、上記中空円錐状部材の下流側先端部に燃料ノズル
を設け、上記燃料ノズルの近傍に点火栓を設け、前記の
頭部内筒と中空円錐状部材との間に形成される筒状の間
隙′の上流端に空気と燃料との送入手段を設け、送入さ
れた空気と燃料とによって形成される可燃混合気に対し
て前記の燃料ノズルの火炎によって着火し得べく為すこ
とによシ、燃焼室の半径方向および軸方向の双方につい
て均一な燃焼を行わしめることができ、局部的な高温の
個所を生じないのでNo!の発生を軽減することができ
る。
As described in detail above, the low NO combustor of the present invention includes a hollow conical member provided inside near the upstream end of the inner cylinder at the head of the combustion chamber, and a downstream tip of the hollow conical member. A fuel nozzle is provided, an ignition plug is provided near the fuel nozzle, and air and fuel are introduced into the upstream end of the cylindrical gap formed between the head inner cylinder and the hollow conical member. means for igniting the combustible mixture formed by the injected air and fuel by the flame of said fuel nozzle, both in the radial and axial directions of the combustion chamber. No! Because it allows for uniform combustion and does not create localized high temperature areas. can reduce the occurrence of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、第2図は第1図
のA−A断面図、第3図は上記実施例における燃焼器頭
部付近を部分的に切断して描いた斜視図、第4図は上記
実施例における燃料制御の1例を示す図表、第5図は同
じくノズル先端部の拡大断面図、第6図は同じく燃料導
入機構の付近金示す部分的拡大断面図、第7図は第6図
のB −B断面図、第8図は第1図の実施例における火
炎の発生状態を示す説明図である。 1・・・燃焼器外筒、2・・・エンドカバー、3・・・
燃料ノズル、4,5・・・燃料導入機構、6・・・内筒
、7・・・点火栓、8・・・円柱状の主燃焼室、9・・
・内筒壁、1゜・・・中空円錐状部材としての円筒コー
ン部、11・・・予混合室、12・・・第1段環状旋回
器、13・・・環状中空部、20・・・燃料へツタ部、
21・・・燃料噴出孔、22・・・パイプ、23・・・
環状中空部、24・・・断面縮小部、25・・・希釈空
気孔、26・・・燃料、27・・・燃料導入管、28・
・・空気流、29・・・燃料、30・・・燃料導入管、
34・・・空気流、35・・・冷却空気、36・・・空
気、3/7・・・希釈空気、38・・・燃料噴孔139
・・・保炎筒、40・・・冷却突気流、41・・・巻込
流、宅3図 弔tJ−図 1ノスフーヒン」勺(2) 「− 夏 會B 第1頁の続き 0発 明 者 内山好弘 土浦市神立町502番地株式会社 日立製作所機械研究所内 0発 明 者 黒田倫夫 土浦市神立町502番地株式会社 日立製作所機械研究所内 0発 明 者 和田克夫 日立市幸町3丁目1番1番株式 %式% (
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. FIG. 4 is a diagram showing an example of fuel control in the above embodiment, FIG. 5 is an enlarged sectional view of the nozzle tip, and FIG. 6 is a partially enlarged sectional view showing the vicinity of the fuel introduction mechanism. 7 is a sectional view taken along the line B-B in FIG. 6, and FIG. 8 is an explanatory diagram showing the state of flame generation in the embodiment of FIG. 1. 1... Combustor outer cylinder, 2... End cover, 3...
Fuel nozzle, 4, 5...Fuel introduction mechanism, 6...Inner cylinder, 7...Ignition plug, 8...Cylindrical main combustion chamber, 9...
- Inner cylinder wall, 1°...Cylindrical cone part as a hollow conical member, 11... Premixing chamber, 12... First stage annular swirler, 13... Annular hollow part, 20...・Fuel ivy part,
21...Fuel injection hole, 22...Pipe, 23...
Annular hollow part, 24... Reduced cross section part, 25... Dilution air hole, 26... Fuel, 27... Fuel introduction pipe, 28...
... air flow, 29 ... fuel, 30 ... fuel introduction pipe,
34... Air flow, 35... Cooling air, 36... Air, 3/7... Dilution air, 38... Fuel injection hole 139
...Flame-holding tube, 40...Cooling rush air flow, 41...Involving flow, House 3 Figure Condolence tJ-Figure 1 Nosfuhin'' (2) ``- Summer meeting B Continuation of page 1 0 Invention Yoshiyoshi Uchiyama, Hiroda -shi, Shintate -cho, Shinto -cho, Institute of Hitachi Machinery Institute, Institute, Machine Research Institute, Ritsuo Kuroda, Tsuchiura City, 502, Hitachi Machinery Institute, Katsuo Wada, Hitachi City, Hitachi City, 1st 1st. Number stock% formula% (

Claims (1)

【特許請求の範囲】 1、燃焼室頭部内筒の上流端付近の内部に、中空円錐状
の部材を設け、上記中空円錐状部材の下流側先端部に燃
料ノズルを設け、上記燃料ノズルの近傍に点火栓を設け
、前記の頭部内筒と中空円錐状部材との間に形成される
筒状の間隙の上流端に望気と燃料との送入手段金膜け、
送入された空気と燃料とによって形成される可燃混合気
に対して前記の燃料ノズルの火炎によって着火し得べく
為したることを特徴とするガスタービン低NO,燃焼器
。 2 前記の中空円錐状部材に設けた燃料ノズルは、保炎
筒によって覆われたものとし、かつ、上記の保炎筒は中
空円錐状部材の先端部よりも大きい断面形状全壱′する
ごとく形成したことを特徴とする特許請求の範囲第1項
に記載のガスタービン低NO,燃焼器。 3、前記の燃焼室頭部内筒の上流端付近に第1段の円環
状旋回器を設け、前記の燃料ノズル先端付近に旋回器を
設け、前記の筒状の間隙は下流側に向けてその断面積を
拡大するごとく形成して頭部予混合室を構成し、前記の
燃焼室頭部内筒が中空円錐状部材に対向している部分よ
りも下流側を更に階段状に拡開して円柱状の主燃焼室を
形成し、前記の予混合室と主燃焼室との境界付近に第2
段の円環状旋回器を設けて、前記の燃焼ノズルを中心と
する多重環状旋回器構造としたことを特徴とする特許請
求の範囲第1項に記載のガスタービン低NO,燃焼器。 4、前記の第1段の円環状旋回器、及び第2段の円環状
旋回器は、それぞれ燃料噴霧手段を備えたものであるこ
とを特徴とする特許請求の範囲第3項に記載のガスター
ビン低NO,燃焼器。 5、前記の燃料噴霧手段は、乱流発生手段を備えたもの
とし、かつ、上記の乱流発生手段は複数個の乱流部材と
千鳥形に配置したものであることを特徴とする特許請求
の範囲第4項に記載のガスタービン低NO□燃焼器。
[Claims] 1. A hollow conical member is provided inside the combustion chamber head inner cylinder near the upstream end, a fuel nozzle is provided at the downstream end of the hollow conical member, and a fuel nozzle is provided at the downstream end of the hollow conical member. A spark plug is provided nearby, and a means for supplying air and fuel is provided with a gold film at the upstream end of the cylindrical gap formed between the inner cylinder of the head and the hollow conical member,
A gas turbine low NO combustor, characterized in that a combustible mixture formed by introduced air and fuel can be ignited by the flame of the fuel nozzle. 2. The fuel nozzle provided in the hollow conical member shall be covered with a flame-holding tube, and the flame-holding tube shall be formed so as to have a cross-sectional shape that is larger than the tip of the hollow conical member. A gas turbine with low NO, combustor according to claim 1, characterized in that: 3. A first-stage annular swirler is provided near the upstream end of the inner cylinder at the head of the combustion chamber, the swirler is provided near the tip of the fuel nozzle, and the cylindrical gap is directed toward the downstream side. The head premixing chamber is formed by expanding the cross-sectional area of the head premixing chamber, and the combustion chamber head inner cylinder further expands in a stepwise manner on the downstream side of the part facing the hollow conical member. A cylindrical main combustion chamber is formed, and a second combustion chamber is formed near the boundary between the premixing chamber and the main combustion chamber.
2. The gas turbine low NO, combustor according to claim 1, characterized in that stages of annular swirlers are provided to form a multiple annular swirler structure centered around the combustion nozzle. 4. The gas according to claim 3, wherein the first stage annular swirler and the second stage annular swirler are each equipped with a fuel spraying means. Turbine low NO, combustor. 5. A patent claim characterized in that the fuel spraying means is provided with a turbulence generating means, and the turbulence generating means is arranged in a staggered manner with a plurality of turbulent flow members. The gas turbine low NO□ combustor according to item 4.
JP58077462A 1983-05-04 1983-05-04 Low nox combustor of gas turbine Granted JPS59202324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58077462A JPS59202324A (en) 1983-05-04 1983-05-04 Low nox combustor of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58077462A JPS59202324A (en) 1983-05-04 1983-05-04 Low nox combustor of gas turbine

Publications (2)

Publication Number Publication Date
JPS59202324A true JPS59202324A (en) 1984-11-16
JPH0440611B2 JPH0440611B2 (en) 1992-07-03

Family

ID=13634669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58077462A Granted JPS59202324A (en) 1983-05-04 1983-05-04 Low nox combustor of gas turbine

Country Status (1)

Country Link
JP (1) JPS59202324A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156926A (en) * 1986-12-09 1988-06-30 アセア・ブラウン・ボベリ・アクチエンゲゼルシヤフト Combustion chamber for gas turbine and operating method of said combustion chamber
JPS63161317A (en) * 1986-12-11 1988-07-05 アセア・ブラウン・ボベリ・アクチエンゲゼルシヤフト Combustion apparatus for gas turbine
JPS63217141A (en) * 1987-03-06 1988-09-09 Hitachi Ltd Combustor for use in gas turbine
JPH01137117A (en) * 1986-11-25 1989-05-30 General Electric Co <Ge> Premixing pilot nozzle for dry type low nox combustion apparatus
JPH02208417A (en) * 1989-02-03 1990-08-20 Hitachi Ltd Gas-turbine burner and operating method therefor
JPH04124520A (en) * 1990-09-14 1992-04-24 Hitachi Ltd Gas turbine combustor
JPH05149149A (en) * 1991-11-29 1993-06-15 Toshiba Corp Gas turbine combustor
JP2007147125A (en) * 2005-11-25 2007-06-14 Mitsubishi Heavy Ind Ltd Gas turbine combustor
JP2010107183A (en) * 2008-10-31 2010-05-13 Korea Electric Power Corp Triple swirl gas turbine combustor
CN104185762A (en) * 2012-03-26 2014-12-03 阿尔斯通技术有限公司 Mixing arrangement for mixing a fuel with a stream of oxygen containing gas
JP2016114329A (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Operational method for gas burning burner and gas burning burner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455214A (en) * 1977-10-12 1979-05-02 Hitachi Ltd Gas turbine combustor
JPS5649820A (en) * 1980-09-29 1981-05-06 Hitachi Ltd Gas turbine combustion unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455214A (en) * 1977-10-12 1979-05-02 Hitachi Ltd Gas turbine combustor
JPS5649820A (en) * 1980-09-29 1981-05-06 Hitachi Ltd Gas turbine combustion unit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137117A (en) * 1986-11-25 1989-05-30 General Electric Co <Ge> Premixing pilot nozzle for dry type low nox combustion apparatus
JPS63156926A (en) * 1986-12-09 1988-06-30 アセア・ブラウン・ボベリ・アクチエンゲゼルシヤフト Combustion chamber for gas turbine and operating method of said combustion chamber
JPS63161317A (en) * 1986-12-11 1988-07-05 アセア・ブラウン・ボベリ・アクチエンゲゼルシヤフト Combustion apparatus for gas turbine
JPS63217141A (en) * 1987-03-06 1988-09-09 Hitachi Ltd Combustor for use in gas turbine
JPH02208417A (en) * 1989-02-03 1990-08-20 Hitachi Ltd Gas-turbine burner and operating method therefor
JPH04124520A (en) * 1990-09-14 1992-04-24 Hitachi Ltd Gas turbine combustor
JPH05149149A (en) * 1991-11-29 1993-06-15 Toshiba Corp Gas turbine combustor
JP2758301B2 (en) * 1991-11-29 1998-05-28 株式会社東芝 Gas turbine combustor
JP2007147125A (en) * 2005-11-25 2007-06-14 Mitsubishi Heavy Ind Ltd Gas turbine combustor
JP2010107183A (en) * 2008-10-31 2010-05-13 Korea Electric Power Corp Triple swirl gas turbine combustor
US8316645B2 (en) 2008-10-31 2012-11-27 Korea Electric Power Corporation Triple swirl gas turbine combustor
CN104185762A (en) * 2012-03-26 2014-12-03 阿尔斯通技术有限公司 Mixing arrangement for mixing a fuel with a stream of oxygen containing gas
US9822981B2 (en) 2012-03-26 2017-11-21 Ansaldo Energia Switzerland AG Mixing arrangement for mixing a fuel with a stream of oxygen containing gas
JP2016114329A (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Operational method for gas burning burner and gas burning burner

Also Published As

Publication number Publication date
JPH0440611B2 (en) 1992-07-03

Similar Documents

Publication Publication Date Title
US4898001A (en) Gas turbine combustor
EP2500641B1 (en) Recirculating product injection nozzle
JP3335713B2 (en) Gas turbine combustor
US5251447A (en) Air fuel mixer for gas turbine combustor
JPS637283B2 (en)
US5836164A (en) Gas turbine combustor
JP4846271B2 (en) Premix burner with impingement cooled centerbody and cooling method for centerbody
JPH0587340A (en) Air-fuel mixer for gas turbine combustor
JPS59202324A (en) Low nox combustor of gas turbine
JPH0814565A (en) Gas turbine combustor
JPH09166326A (en) Gas turbine combustion device
JPH09222228A (en) Gas turbine combustion device
JPH0343535B2 (en)
JPS5847610B2 (en) gas turbine combustor
JP3482718B2 (en) Gas turbine combustor
JPH08296851A (en) Gas turbine burner and burning method therefor
JP3841285B2 (en) Swivel type low NOx combustor
JPH1114055A (en) Gas turbine combustor and its combustion method
JP3456268B2 (en) Gas turbine combustor
JP3901673B2 (en) Low NOx injection valve for liquid fuel and fuel injection method thereof
JPS6213932A (en) Combustor for gas turbine
JPH0480292B2 (en)
JPH11223342A (en) Combustor for gas turbine
KR101041466B1 (en) The low NOx gas turbine combustor having the multi-fuel mixing device
JP2585273B2 (en) Gas turbine combustor