EP0705465B1 - Konfigurierbares, analoges und digitales array - Google Patents

Konfigurierbares, analoges und digitales array Download PDF

Info

Publication number
EP0705465B1
EP0705465B1 EP93915717A EP93915717A EP0705465B1 EP 0705465 B1 EP0705465 B1 EP 0705465B1 EP 93915717 A EP93915717 A EP 93915717A EP 93915717 A EP93915717 A EP 93915717A EP 0705465 B1 EP0705465 B1 EP 0705465B1
Authority
EP
European Patent Office
Prior art keywords
array
matrix
analog
bbb
inputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93915717A
Other languages
English (en)
French (fr)
Other versions
EP0705465A1 (de
Inventor
Bedrich Hosticka
Werner Schardein
Berthold Weghaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0705465A1 publication Critical patent/EP0705465A1/de
Application granted granted Critical
Publication of EP0705465B1 publication Critical patent/EP0705465B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06JHYBRID COMPUTING ARRANGEMENTS
    • G06J1/00Hybrid computing arrangements

Definitions

  • the present invention relates to a configurable, analog and digital array.
  • the subject matter of the invention relates to a configurable analog / digital module array.
  • User programmable circuits in the form of configurable arrays have been known for a number of years.
  • the customary programmable circuits on the market are designed as configurable digital arrays.
  • Such user-programmable circuits therefore mainly cover the area of digital applications. It is common to such digital, user-programmable circuits that a plurality of cells are provided at gate level or register level, which can be programmed by the user and variably connected via pre-configured connection paths.
  • European patent application EP-0499383A2 shows a user-programmable integrated circuit with an analog section with user-configurable analog circuit modules, a digital section with user-configurable digital circuit modules and an interface section with user-configurable interface circuits for analog / digital signal conversion and for digital / analog signal conversion, and a user configurable Connection and input / output architecture.
  • the networking of the elements made possible by such a circuit is extremely limited. For example, no feedback between circuit elements is possible.
  • the known circuit can be programmed and controlled by wiring solid basic components with other components, as is shown, for example, in FIGS. 3a, 3b of this document. For example, resistors and capacitors can be connected to existing circuit blocks.
  • a hierarchical structuring and organization that enables the construction of completed analog subsystems for subsequent configuration within an overall system, is not possible with this known technique.
  • DE-3417670A1 shows a programmable analog circuit in the form of a programmable filter, in which a number of filter modules, an attenuator and an isolation amplifier can be interconnected in a user-programmable manner.
  • a number of filter modules, an attenuator and an isolation amplifier can be interconnected in a user-programmable manner.
  • US-A-4,847,612 shows a configurable array, with at least two first-order matrix arrangements, with a plurality of basic components arranged in rows and / or columns and a first switch matrix, and at least one second-order matrix arrangement with a second switch matrix, which comprises the at least two matrix arrangements connects first order, in which all the basic components are digital and the outputs are coupled via the first-order matrix arrangements.
  • the present invention is therefore based on the object of creating a configurable, analog and digital array with which a complete system with analog and possibly digital basic components can be configured largely freely by the user.
  • the configurable analog and digital array according to the invention comprises a hierarchical structure with at least two first-order matrix arrangements and at least one second-order matrix arrangement.
  • Each of the first-order matrix arrangements has a plurality of basic modules arranged in rows or columns, which are at least partially analog basic modules, and has a first switch matrix for controllable mutual connection of the signal inputs and / or the signal outputs of the basic building blocks and for the controllable connection thereof to matrix inputs and / or matrix outputs of this first-order matrix arrangement.
  • the second-order matrix arrangement comprises a second switch matrix for the controllable mutual connection of the matrix inputs and / or matrix outputs of the first-order matrix arrangement and for the controllable connection thereof to array inputs and / or array outputs.
  • the system defined in this way can include controllable analog and digital function blocks of different architectures and levels of complexity in the form of an integrated circuit on a common substrate in such a way that the existing sub-modules or basic modules can be flexibly and reversibly interconnected and form a largely arbitrarily predefinable overall system for the mixed analog / digital signal processing can be configured.
  • This system therefore forms a "building block" with a certain basic quantity of basic building blocks in the form of analog and digital blocks, which can be parameterized and thus modified and which can be interconnected or configured to form an overall system within certain limits.
  • the basic modules preferably have an analog and / or digital control input. Certain properties of the basic building blocks can thus be varied, ie parameterized, within specified limits.
  • the signals for the analog and digital control input of a basic module are programmed into writable, readable and erasable memory elements, which serve as parameterization registers and which are located directly on the basic modules, and can be reset or deleted there at any time.
  • properties such as its amplification factor, its bandwidth, its power loss, its offset etc. can be set as required will.
  • a first-order matrix arrangement can optionally contain a multiplying digital / analog converter, to which a binary data word can be fed from such a parameterization register, so that the digital / analog converter generates an analog control signal on the output side, with which the analog control input of the basic module is controlled can.
  • the configuration of basic modules to form an overall system is carried out by controlling the analog and digital control inputs of the basic module and by controlling switches of the first and second matrix arrangement via the matrix inputs and the array inputs.
  • a shift register is preferably provided, into which the data for the configuration can be read in serially and which forms the parameterization registers.
  • a parallel interface can be provided which enables the configuration data to be introduced in parallel into the array.
  • a host computer can be used to generate the configuration data to generate the control data.
  • a microcontroller can also be provided on a chip, which takes over the routing (setting of the configuration registers), whereby it receives information supplied from outside in the form of e.g. evaluates a network list. This can also be buffered in a separate area (RAM, EPROM or similar).
  • the first-order circuit arrangement formed by the basic components within the first-order matrix arrangement can be assembled into a practically freely selectable overall system by means of the second-order or higher-order matrix arrangement.
  • the hierarchical structure according to the invention of the configurable array consisting of first-order matrix arrangements and at least one second-order matrix arrangement allows both the testability of the individual basic components and the testability of the configured system by means of measures which are inherently common in the field of digitally configurable arrays.
  • all combinatorial logic functions in digital structures are designed as minimalized functions and are therefore fully testable.
  • the observability of special internal nodes of the overall system is provided. This can be done, for example, by means of switchable decoupling elements (e.g. amplifiers), which in turn can optionally be switched to an output pin or an analog basic module. This should lead to a measurement which is essentially load-free for the network node.
  • the array structure according to the invention enables certain internal module connections to be separated and internal nodes to be set via external chips Inputs or module outputs.
  • the variable design of the array according to the invention enables the configuration of test systems which carry out an on-chip test and, with a suitable constellation, extensively check the functionality of the overall system. Mixed analog / digital parts can also be included in such self-test systems.
  • At least some of the basic modules are assigned a qualification register which is designed as a read / write memory or as a read-only memory and contains at least information about the total failure of the basic module and possibly information about the operating properties of the basic module.
  • a qualification register which is designed as a read / write memory or as a read-only memory and contains at least information about the total failure of the basic module and possibly information about the operating properties of the basic module.
  • a characterization plan for specific circuit properties can then be drawn up for each chip, which can be used by the configuration software as the basis for qualifying each circuit part for specific tasks.
  • a unique identification code can be stored on each chip. This can be done, for example, in the form of a PROM area that is burned by the user, i.e. can be described as a read-only memory.
  • a qualification register By assigning a qualification register to each of the basic modules, information about the functionality of the basic modules can be stored. As mentioned, Such a qualification within the qualification register includes, for example, information about the total failure of the basic building block or features about other properties. On the one hand, this information can be determined by the manufacturer during testing and provided in the qualification registers, so that the chip yield can be increased. Since each module type occurs several times on the chip, there is sufficient redundancy. On the other hand, the qualification can also be carried out by the user at any time. This enables flexible qualification depending on the application. However, this procedure also makes it possible to localize failures that have occurred during operation, to mark them and to avoid them by reconfiguring the system, taking into account all qualification registers. This aspect increases the reliability of the system, since it is possible to "repair" the system on site without having to intervene in the hardware.
  • those modules that are not statically lossless can be separated from the operating voltage via a power cut-off input.
  • This configuration makes it possible to deselect unused or defective basic components and thus to reduce the power loss of the overall system.
  • this aspect can be of great importance.
  • such an input can also be controlled in certain time slots during operation to limit the power loss.
  • a separate memory element within the basic module which can be programmed separately, is preferably used to deselect a basic module.
  • the array according to the invention supplies adaptive systems.
  • the configured system can deliver output signals that modify the system itself in a certain way, ie reconfigure it automatically. This can be done, for example, by changing the programmable wiring or by changing the module properties. With a suitable design, the arrangements can be modified in real time.
  • the array according to the invention is preferably implemented in BICMOS technology.
  • This technology is particularly suitable because, on the one hand, it has the ability to perform high-quality analog functions through bipolar components and, on the other hand, it allows maximum integration through low-loss CMOS technology.
  • the concept of flexible interconnection requires good driver properties, the driver having to react flexibly to the load capacities. In principle, however, a solution in CMOS technology or in another technology suitable for large-scale integration is also conceivable.
  • the transfer of a prototype, which is configured on the array according to the invention, to an optimized circuit for larger quantities can be accomplished in a simple manner in that the data determined during the configuration together with the analog and digital library elements form the desired overall system in one suitable CAD environment, whereby unused elements are omitted and the additions for wiring and programmability, such as multiplexers and registers, are replaced by fixed wiring. Since the entire system was already completely replicated within the configurable module array according to the invention, the problem of a transition to other modules does not arise with the technology according to the invention.
  • the analog basic components of the array according to the invention include, for example, integrators, comparators, amplifiers, phase detectors and adjustable references.
  • the adjustable references can be realized by multiplying digital-to-analog converters.
  • first level 1 shows a first possible structuring within a first level of the array according to the invention, which, as will be further clarified below, is formed by a first-order matrix arrangement.
  • This is referred to as the first level, since only basic modules I1, I2, V1 are configured within this level.
  • the configuration shown here comprises two integrators I1, I2 or low-pass filters of the first order, which can be controlled both digitally for a coarse adjustment and analogously for a fine adjustment, and an amplifier V1 which can also be controlled.
  • Vdc With the reference symbol Vdc; Vac are digital or analog control inputs.
  • FIG. 2 shows a further first level of the array according to the invention, that is to say also a partial configuration of basic components, which is formed by a first-order matrix arrangement.
  • two voltage comparators K1, K2 are provided, which are followed by a phase detector PD.
  • Fig. 3 shows the block diagram of an FLL (Frequency Locked Loop), i.e. a frequency locked loop.
  • FLL Frequency Locked Loop
  • This circuit is formed from three blocks, each of which is formed on the first level of the digital array according to the invention, as is illustrated by FIGS. 1 and 2.
  • the circuit shown in Fig. 3 can be referred to as a second level circuit.
  • the hierarchical structure of the analog / digital design of the entire array according to the invention is clear.
  • Macros of the first level are formed on the basis of basic building blocks, which in turn can configure a system of the second level, whereby this can also be done in conjunction with basic building blocks from the lower levels.
  • the exemplary embodiment shown here is structured over two levels. It is obvious to a person skilled in the art that the concept of a hierarchical array according to the invention can be carried out over several levels.
  • FIG. 4 shows the circuit architecture of a programmable, controllable transconductance amplifier OTA using differential path technology.
  • This structure is intended to clarify the control options of a basic building block on behalf of the other basic building blocks.
  • the digital setting is a rough setting. This is done by data word W2.
  • the fine adjustment takes place starting from the data word W1 via a programmable, multiplying digital / analog converter MDAC, whereby such analog control voltages can also be provided externally.
  • a 10-bit latch L is used for digital programming both for the coarse adjustment and for the fine adjustment. These latches L are contained in the BBB rows of the basic building blocks, which are shown in FIG. 5 and are explained in more detail below with reference to FIG. 5.
  • the digital control brings about a rough digital setting by switching on or off pre-configured current and voltage references within the first-order matrix arrangements via data word W2.
  • the transconductance can also be kept programmable.
  • references for dynamic adjustment can be scaled.
  • the embodiment shown there comprises an inventive configurable analog and digital array arrangement, four matrix arrangements M 11 , M 12 , M 13 , M 14 first order and a matrix arrangement M 2 second order.
  • Each first-order matrix arrangement M 11 , M 12 , M 13 , M 14 comprises a plurality of basic building blocks BBB, which are shown there as BBB rows / lines 1 to 12.
  • the connections between the basic components within the matrix arrangements M 11 , M 12 , M 13 , M 14 are made by means of first switch matrices S 1 to S 4 , which in the example shown can be designed as (8 x 8) switch matrices.
  • decodable line selectors can be used on the periphery, which can separate and / or connect incoming and outgoing signal / supply paths. All external connections of the matrix can be programmed as inputs or outputs or bidirectional connections. Multiplexers in the selectors allow variable signal / supply routing.
  • intersection point MSU a conductive, bidirectional connection of a horizontal and a vertical line segment is created. Further intersection points MSU can be connected to these segments, so that line segments which run in parallel can also be realized. If the selectors at the matrix edges are deactivated, these line segments end at the matrix periphery.
  • the switching matrices are only shown without separation units. Unless otherwise shown, the signal paths in the structures shown each end at the matrix periphery.
  • the second-order matrix arrangement M 2 likewise comprises a switch matrix which, in the exemplary embodiment shown here, is designed as a (16 ⁇ 16) switch matrix.
  • the vertical signal lines of this matrix are the input and output lines of the switching matrices S 1 to S 4 of the first-order matrix arrangements.
  • Horizontal lines of the switch matrix of the second-order matrix arrangement are formed by outputs of a 256-bit shift register 17 and array input and array output lines. The latter form an interface 18 for the array.
  • the switch matrices S 1 to S 5 consist of 1-bit switches and memories, which are arranged in a field. By setting a “1” or “0”, signal and / or supply paths can be connected or separated.
  • FIG. 6 shows the implementation of the loop filter according to FIG. 1 by means of a first order matrix arrangement M 11 in the first level of the array.
  • Circuit elements denoted by the same reference numerals denote the same components in all the figures, so that their function and structure need not be explained again.
  • the configuration which is predetermined by the content of the shift register 13, selects certain basic modules from the BBB rows / lines 1, 2, 3 and interconnects them in the desired manner.
  • the function of the 64-bit shift register 13 for the analog configuration and that of the 16-bit shift register 19 for the rough digital control also become particularly clear here.
  • FIG. 7 shows a representation corresponding to FIG. 2 of a phase detector with two voltage comparators, as it is formed by the third matrix arrangement M 13 of the first order becomes.
  • the 64-bit shift register 15 is used for the analog configuration, while the 16-bit shift register 20 is used for the rough digital control.
  • FIG. 8 shows the entire wiring network which is formed by the array according to FIG. 5 in order to implement the frequency-locked control loop according to FIG. 3 in the second level of the array. Since the components have been explained with reference to the previous figures, no further explanation of the individual matrix arrangements is required.

Abstract

Ein konfigurierbares, analoges und digitales Array ist in hierarchischer Struktur in wenigstens zwei Ebenen realisiert. Es umfaßt wenigstens zwei Matrixanordnungen erster Ordnung, von denen eine jede eine Mehrzahl von reihenförmig und/oder spaltenförmig angeordneten Grundbausteinen, die wenigstens teilweise analoge Grundbausteine sind, und eine erste Schaltermatrix zur steuerbaren gegenseitigen Verbindung der Signaleingänge und Signalausgänge der Grundbausteine und zur Verbindung derselben mit Matrixeingängen und Matrixausgängen aufweist, sowie zumindest eine Matrixanordnung zweiter Ordnung, die eine zweite Schaltermatrix zur steuerbaren gegenseitigen Verbindung der Matrixeingänge und Matrixausgänge der Matrixanordnungen erster Ordnung und zur steuerbaren Verbindung derselben mit Arrayeingängen und Arrayausgängen hat.

Description

  • Die vorliegende Erfindung betrifft ein konfigurierbares, analoges und digitales Array. Mit anderen Worten betrifft der Erfindungsgegenstand ein konfigurierbares analog/digitales Modul-Array.
  • Anwenderprogrammierbare Schaltungen in Form von konfigurierbaren Arrays sind seit einer Reihe von Jahren bekannt. Die marktüblichen anwenderprogrammierbaren Schaltungen sind als konfigurierbare digitale Arrays ausgebildet. Derartige anwenderprogrammierbare Schaltungen decken also hauptsächlich den Bereich digitaler Anwendungen ab. Solchen digitalen, anwenderprogrammierbaren Schaltungen ist es gemeinsam, daß eine Mehrzahl von Zellen auf Gatterebene oder Registerebene vorgesehen sind, die vom Anwender programmiert und über vorgefertigte Verbindungswege variabel verschaltet werden können.
  • Bei derartigen anwenderprogrammierbaren Schaltungen stellt ein besonderes Problem die Entscheidung für den jeweiligen Anwendungsfall "richtigen" Baustein dar, da die Systeme sehr unterschiedlich sind und ein Umsteigen von einem System auf ein nächstes nur unter Schwierigkeiten möglich ist.
  • Häufig werden derartige anwenderprogrammierbare Schaltungen lediglich zur Überprüfung eines Schaltungsentwurfes verwendet, wobei nach Festlegung der endgültigen Schaltungsversion eine Umsetzung in eine sog. "Vollkundenschaltung" durchgeführt werden muß. Eine solche Umsetzung ist bei einem aus mehreren verschiedenen Bausteinen bestehenden Prototypen in der Regel nicht ohne weiteres möglich und erfordert in der Regel ein sog. Redesign.
  • Für den analogen Bereich gibt es bislang kein entsprechendes Gegenstück, das ähnlich universell einsetzbar wäre wie anwenderprogrammierbare digitale Schaltungen in Form von konfigurierbaren digitalen Arrays. Es gibt lediglich einige Spezialbausteine, wie beispielsweise Filter, die vom Anwender durch entsprechende Beschaltung programmiert oder getrimmt werden können. Ferner gibt es integrierte Arrays mit analogen Komponenten oder Zellen zur benutzerspezifischen Verdrahtung. Diese Verdrahtung muß beim Hersteller über eine Aluminiummaske erfolgen und kann daher nicht vom Kunden selbst vorgenommen werden. Die europäische Patentanmeldung EP-0499383A2 zeigt eine anwenderprogrammierbare integrierte Schaltung mit einem analogen Abschnitt mit anwenderkonfigurierbaren analogen Schaltungsmodulen, einem digitalen Abschnitt mit anwenderkonfigurierbaren digitalen Schaltungsmodulen und einem Schnittstellenabschnitt mit anwenderkonfigurierbaren Schnittstellenschaltungen zur Analog/Digital-Signalumwandlung und zur Digital/Analog-Signalumwandlung, und einer anwenderkonfigurierbaren Verbindungs- und Eingabe/Ausgabe-Architektur. Die durch eine derartige Schaltung ermöglichte Vernetzung der Elemente ist äußerst begrenzt. So ist beispielsweise keine Rückkopplung zwischen Schaltungselementen möglich. Bei dieser bekannten Schaltung erfolgt lediglich ein Multiplexing bestehender Basisblöcke und Signalpfade, die sich nur nach eng begrenzten Möglichkeiten abändern lassen. Die Programmier- und Steuerbarkeit der bekannten Schaltung erfolgt durch Beschaltung fester Grundbausteine mit anderen Bauteilen, wie dies beispielsweise in den Fig. 3a, 3b dieser Schrift gezeigt ist. So können beispielsweise wahlweise Widerstände und Kondensatoren an bestehende Schaltungsblöcke angeschaltet werden. Eine hierarchische Strukturierung und Organisation, die den Aufbau abgeschlossener analoger Untersysteme zur anschliessenden Konfiguration innerhalb eines Gesamtsystemes ermöglicht, ist bei dieser bekannten Technik nicht möglich.
  • Die DE-3417670A1 zeigt eine programmierbare analoge Schaltung in Form eines programmierbaren Filters, bei dem eine Anzahl von Filtermodulen, ein Dämpfungsglied und ein Trennverstärker in anwenderprogrammierbarer Weise miteinander verschaltet werden können. Auch hier ergibt sich jedoch nur eine sehr begrenzte Variation einer fest vorgegebenen Schaltungsgrundstruktur.
  • Aus der DE-3615981A1 ist ein System zur Parameter-programmierbaren Bearbeitung von Audio-Signalen in Kombination mit einer programmierbaren Schaltmatrix bekannt, welches zur Anwendung im Bereich der analogen und digitalen Aufbereitung von Audio-Signalen dient. Dieses System ist jedoch nicht auf Chip-Ebene, sondern lediglich auf Leiterplatten-Ebene implementierbar.
  • Die US-A-4,847,612 zeigt ein konfigurierbares Array, mit zumindest zwei Matrixanordnungen erster Ordnung, mit einer Mehrzahl von reihenförmig und/oder spaltenförmig angeordneten Grundbausteinen und einer ersten Schaltermatrix, und zumindest einer Matrixanordnung zweiter Ordnung mit einer zweiten Schaltermatrix, die die zumindest zwei Matrixanordnungen erster Ordnung verbindet, bei dem sämtliche Grundbausteine digital sind und die Ausgänge über die Matrixanordnungen erster Ordnung gekoppelt.
  • Die Druckschrift E.Preiss, "Digitales und Analoges auf einem Chip", Elektronik, Bd. 36, Nr. 10, 15. Mai 1987, München, beschreibt eine gemischt analog/digitale CMOS-Standardzelle. Bei dieser bekannten Standardzelle sind analoge/digitale Funktionselemente durch zwei feste Verdrahtungsebenen verbunden.
  • Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung daher die Aufgabe zugrunde, ein konfigurierbares, analoges und digitales Array zu schaffen, mit dem ein Gesamtsystem mit analogen und gegebenenfalls digitalen Grundbausteinen weitgehend frei vom Anwender konfiguriert werden kann.
  • Diese Aufgabe wird durch ein konfigurierbares analoges und digitales Array gemäß Patentanspruch 1 gelöst.
  • Das erfindungsgemäße konfigurierbare analoge und digitale Array umfaßt eine hierarchische Struktur mit wenigstens zwei Matrixanordnungen erster Ordnung und wenigstens einer Matrixanordnung zweiter Ordnung.
  • Jede der Matrixanordnungen erster Ordnung weist eine Mehrzahl von reihenförmig oder spaltenförmig angeordneten Grundbausteinen auf, die wenigstens teilweise analoge Grundbausteine sind, und hat eine erste Schaltermatrix zur steuerbaren gegenseitigen Verbindung der Signaleingänge und/oder der Signalausgänge der Grundbausteine und zur steuerbaren Verbindung derselben mit Matrixeingängen und/oder Matrixausgängen dieser Matrixanordnung erster Ordnung. Die Matrixanordnung zweiter Ordnung umfaßt eine zweite Schaltermatrix zur steuerbaren gegenseitigen Verbindung der Matrixeingänge und/oder Matrixausgänge der Matrixanordnung erster Ordnung und zur steuerbaren Verbindung derselben mit Arrayeingängen und/oder Arrayausgängen.
  • Das auf diese Weise definierte System kann steuerbare analoge und digitale Funktionsblöcke unterschiedlicher Architekturen und Komplexitätsgrade in Form einer integrierten Schaltung auf einem gemeinsamen Substrat derart umfassen, daß die vorhandenen Teilmodule bzw. Grundbausteine flexibel und reversibel miteinander verschaltbar sind und zu einem weitgehend beliebig vordefinierbaren Gesamtsystem für die gemischt analog/digitale Signalverarbeitung konfiguriert werden können. Dieses System bildet daher einen "Baukasten" mit einer gewissen Grundmenge an Grundbausteinen in Form von analogen und digitalen Blöcken, die parametrisierbar und damit abänderbar sind und in bestimmten Grenzen miteinander zu einem Gesamtsystem verschaltet bzw. konfiguriert werden können.
  • Vorzugsweise haben die Grundbausteine zusätzlich zu ihrem Signaleingang und ihrem Signalausgang einen analogen und/oder digitalen Steuereingang. Somit können bestimmte Eigenschaften der Grundbausteine innerhalb vorgegebener Grenzen variiert, d.h. parametrisiert, werden. Die Signale für den analogen und den digitalen Steuereingang eines Grundbausteines werden in beschreibbare, lesbare und löschbare Speicherelemente, die als Parametrisierungsregister dienen, und die sich unmittelbar an den Grundbausteinen befinden, einprogrammiert und können dort jederzeit neu gesetzt oder gelöscht werden. Im Falle eines Grundbausteines in Form eines Verstärkers können beispielsweise Eigenschaften wie dessen Verstärkungsfaktor, dessen Bandbreite, dessen Verlustleistung, dessen Offset usw. nach Bedarf eingestellt werden.
  • Eine Matrixanordnung erster Ordnung kann gegebenenfalls einen multiplizierenden Digital/Analog-Wandler enthalten, dem ein binäres Datenwort von einem solchen Parametrisierungsregister zugeführt werden kann, so daß der Digital/Analog-Wandler ausgangsseitig ein analoges Steuersignal erzeugt, mit dem der analoge Steuereingang des Grundbausteines angesteuert werden kann.
  • Die Konfiguration von Grundbausteinen zu einem Gesamtsystem erfolgt bei dieser Ausgestaltung durch Ansteuerung der analogen und digitalen Steuereingänge des Grundbausteines und durch Ansteuerung von Schaltern der ersten und zweiten Matrixanordnung über die Matrixeingänge und die Arrayeingänge.
  • Bevorzugt ist ein Schieberegister vorgesehen, in das die Daten für die Konfiguration seriell eingelesen werden können und das die Parametrisierungsregister bildet.
  • Bei einer abweichenden Ausgestaltung kann eine parallele Schnittstelle vorgesehen sein, die ein paralleles Einbringen der Konfigurationsdaten in das Array ermöglicht. In jedem Fall kann zur Erzeugung der Steuerdaten ein Host-Rechner zur Generierung der Konfigurationsdaten verwendet werden.
  • In einer weiter fortgeschrittenen Realisierung kann auch ein Mikrocontroller auf einem Chip vorgesehen sein, der das Routing (Setzen der Konfigurierungsregister) übernimmt, wobei er von außen zugeführte Informationen in Form z.B. einer Netzliste auswertet. Dies kann auch in einem gesonderten Bereich (RAM, EPROM o. ä.) zwischengespeichert werden.
  • Zwischen den Grundbausteinen sowie zwischen den durch die Grundbausteine gebildeten Matrixanordnungen der ersten Ordnung befinden sich jeweils eine große Anzahl von schaltbaren Verbindungen, die eine weitgehend beliebige Verdrahtung der Grundbausteine untereinander zulassen. Da innerhalb der matrixförmigen Anordnungen sowohl die Eingangsleitungen als auch die Ausgangsleitungen der Grundbausteine geführt sind, kann innerhalb der Matrixanordnung erster Ordnung auch eine rückkoppelnde Struktur aus Grundbausteinen gebildet werden.
  • Die von den Grundbausteinen innerhalb der Matrixanordnung erster Ordnung gebildete Schaltungsanordnung erster Ordnung kann mittels der Matrixanordnung zweiter oder höherer Ordnung zu einem praktisch frei wählbaren Gesamtsystem zusammengesetzt werden.
  • Die erfindungsgemäße hierarchische Struktur des konfigurierbaren Arrays bestehend aus Matrixanordnungen erster Ordnung und wenigstens einer Matrixanordnung zweiter Ordnung erlaubt mittels an sich im Bereich der digitalen konfigurierbaren Arrays üblicher Maßnahmen sowohl eine Testbarkeit der einzelnen Grundbausteine wie auch eine Testbarkeit des konfigurierten Systemes. Bei digitalen Strukturen sind zu diesem Zweck alle kombinatorischen Logikfunktionen als minimalisierte Funktionen ausgeführt und somit vollständig testbar. Zwischen den kombinatorischen Logikgrundbausteinen liegen Register, die über einen Scan-Path verschalter sind. Ferner können programmierbare Signaturregister und ein Boundary-Scan-Path vorgesehen sein.
  • Bei analogen Strukturen wird die Beobachtbarkeit spezieller innerer Knoten des Gesamtsystemes vorgesehen. Dies kann beispielsweise durch zuschaltbare Entkoppelungselemente (z. B. Verstärker) erfolgen, die wiederum wahlweise auf einen Ausgangspin oder einen analogen Grundbaustein geschaltet werden können. Dies soll zu einer für den Netzknoten im wesentlichen belastungsfreien Messung führen. Ebenso ermöglicht die erfindungsgemäße Arraystruktur die Auftrennbarkeit bestimmter Modul-interner Verbindungen sowie die Setzbarkeit innerer Knoten über Chip-externe Eingänge oder Modulausgänge. Die variable Gestaltbarkeit des erfindungsgemäßen Arrays ermöglicht die Konfiguration von Testsystemen, die einen On-Chip-Test ausführen und bei geeigneter Konstellation die Funktionsfähigkeit des Gesamtsystemes weitgehend erschöpfend prüfen. In derartige Selbsttestsysteme können auch gemischt analog/digitale Teile mit einbezogen werden.
  • Gemäß einem besonderen Merkmal der Erfindung ist wenigstens einem Teil der Grundbausteine ein Qualifizierungsregister zugeordnet, das als Schreib/Lese-Speicher oder als Festwertspeicher ausgebildet ist und zumindest eine Information über den Totalausfall des Grundbausteines und gegebenenfalls Informationen über Betriebseigenschaften des Grundbausteines beinhaltet. Bei dieser Ausgestaltung des erfindungsgemäßen Arrays können im Anschluß an den Funktionstest durch besondere Konfigurationsmaßnahmen eine Extraktion von Bauelemente- und Schaltungsparametern für jeden individuellen Chip, auf dem das Array implementiert ist, vorgenommen werden. Die Ergebnisse dieser Parameter-Extraktion werden dann in parametrisierbare funktionale Makromodelle eingebaut und in allen weiteren Simulationen verwendet. Damit ist es möglich, durch Prozeßschwankungen bedingte Parameterstreuungen der Bauelemente- und Schaltungsparameter individuell durch Adaption der Simulationsumgebung weitgehend aufzufangen. Für jedes Chip kann dann ein Charakterisierungsplan für bestimmte Schaltungseigenschaften aufgestellt werden, der als Grundlage einer Qualifizierung jedes Schaltungsteils für bestimmte Aufgaben von der Konfigurationssoftware benutzt werden kann. Dazu kann auf jedem Chip ein eindeutiger Erkennungscode abgelegt werden. Dies kann beispielsweise in Form eines PROM-Bereiches geschehen, der vom Anwender gebrannt, d.h. als Festwertspeicher beschrieben werden kann.
  • Durch Zuordnung je eines Qualifikationsregisters zu sämtlichen Grundbausteinen können Informationen über die Funktionsfähigkeit der Grundbausteine abgelegt werden. Wie erwähnt, umfaßt eine derartige Qualifizierung innerhalb des Qualifizierungsregisters beispielsweise die Information über den Totalausfall des Grundbausteines oder Merkmale über sonstige Eigenschaften. Diese Information kann zum einen beim Hersteller während des Testens ermittelt und in den Qualifizierungsregistern bereitgestellt werden, so daß die Chip-Ausbeute erhöht werden kann. Da jeder Modultyp mehrmals auf dem Chip vorkommt, ist genügend Redundanz vorhanden. Zum anderen kann die Qualifizierung auch jederzeit von dem Anwender vorgenommen werden. Damit ist eine in Abhängigkeit von der Anwendung flexible Qualifizierung möglich. Dieses Verfahren gestattet aber auch, während des Betriebes aufgetretene Ausfälle zu lokalisieren, zu markieren und durch Neukonfigurieren des Systems zu umgehen, wobei alle Qualifizierungsregister berücksichtigt werden sollten. Dieser Aspekt erhöht die Zuverlässigkeit des Systemes, da eine "Reparatur" des Systemes am Einsatzort ohne Eingriff in die Hardware möglich ist.
  • Gemäß einem besonderen Aspekt der Erfindung können diejenigen Bausteine, die statisch nicht verlustlos sind, wie beispielsweise Verstärker, Schnittstellenschaltungen usw., über einen Leistungsabschaltungseingang von der Betriebsspannung abgetrennt werden. Diese Ausgestaltung ermöglicht es, unbenutzte oder defekte Grundbausteine zu deselektieren und damit die Verlustleistung des Gesamtsystems zu vermindern. In Anbetracht der Tatsache, daß oft nur ein kleiner Teil der Grundbausteine eines derartigen Arrays für die Konfiguration einer bestimmten anwenderspezifischen Schaltung genutzt wird, kann diesem Aspekt hohe Bedeutung zukommen. Natürlich kann ein derartiger Eingang auch in bestimmten Zeitschlitzen während des Betriebes zur Verlustleistungsbegrenzung angesteuert werden. Zur Deselektion eines Grundbausteines dient vorzugsweise wieder ein eigenes Speicherelement innerhalb des Grundbausteines, das getrennt programmiert werden kann.
  • Das erfindungsgemäße Array liefert adaptive Systeme. Das konfigurierte System kann Ausgangssignale liefern, die das System selbst in bestimmter Weise modifizieren, d.h. es selbsttätig umkonfigurieren. Dies kann beispielsweise durch Änderung der programmierbaren Verdrahtung oder durch Änderung der Moduleigenschaften geschehen. Bei geeigneter Auslegung können die Anordnungen im Echtzeitbetrieb modifiziert werden.
  • Vorzugsweise wird das erfindungsgemäße Array in BICMOS-Technologie implementiert. Diese Technologie ist besonders geeignet, da sie einerseits durch bipolare Bauelemente die Fähigkeit zu hochwertigen Analogfunktionen besitzt und andererseits durch verlustarme CMOS-Technik die Höchst-integration zuläßt. Außerdem werden durch das Konzept der flexiblen Verschaltung gute Treibereigenschaften gefordert, wobei der Treiber auf die Lastkapazitäten flexibel reagieren muß. Prinzipiell ist jedoch auch eine Lösung in CMOS-Technologie oder in einer anderen, für die Großintegration geeigneten Technologie denkbar.
  • Die Übertragung eines Prototyps, der auf dem erfindungs-gemäßen Array konfiguriert ist, auf eine optimierte Schaltung für größere Stückzahlen läßt sich dadurch in einfacher Weise bewerkstelligen, daß die bei der Konfiguration ermittelten Daten zusammen mit den analogen und digitalen Bibliothekselementen zu dem gewünschten Gesamtsystem in einer geeigneten CAD-Umgebung zusammengebunden werden, wobei nicht benutzte Elemente fortgelassen werden und wobei die der Verdrahtung und Programmierbarkeit dienenden Zusätze wie Multiplexer und Register durch feste Verdrahtungen ersetzt werden. Da das Gesamtsystem bereits innerhalb des erfindungsgemäßen konfigurierbaren Modul-Arrays- vollständig nachgebildet war, tritt das Problem eines Übergangs auf andere Bausteine bei der erfindungsgemäßen Technologie nicht auf.
  • Die analogen Grundbausteine des erfindungsgemäßen Arrays umfassen beispielsweise Integratoren, Komparatoren, Verstärker, Phasen-Detektoren und einstellbare Referenzen. Die einstellbaren Referenzen können durch multiplizierende Digital-Analog-Wandler realisiert werden.
  • Bevorzugte Ausführungsbeispiele des erfindungsgemäßen konfigurierbaren, analogen und digitalen Arrays werden nachfolgend unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    ein durch Grundbausteine innerhalb der Matrixanordnung erster Ordnung gebildetes Schleifenfilter zweiter Ordnung;
    Fig. 2
    einen durch Grundbausteine innerhalb der Matrixanordnung erster Ordnung gebildeten Phasendetektor;
    Fig. 3
    eine aus den Schaltungen nach den Fig. 1 und 2 durch die Matrixanordnung zweiter Ordnung gebildete Frequenz-gerastete Regelschleife (FLL);
    Fig. 4
    einen steuerbaren Transkonduktanzverstärker;
    Fig. 5
    eine minimale Ausführungsform eines erfindungsgemäßen Arrays;
    Fig. 6
    eine Darstellung eines von der Matrixanordnung erster Ordnung des erfindungsgemäßen Arrays gebildeten Schleifenfilters zweiter Ordnung;
    Fig. 7
    einen von der Matrixanordnung erster Ordnung des erfindungsgemäßen Arrays gebildeten Phasendetektor; und
    Fig. 8
    eine der Fig. 5 entsprechende Darstellung des erfindungsgemäßen Arrays bei Programmierung als Frequenz-gerastete Regelschleife.
  • Fig. 1 zeigt eine erste mögliche Strukturierung innerhalb einer ersten Ebene des erfindungsgemäßen Arrays, die, wie nachfolgend weiter verdeutlicht wird, durch eine Matrixanordnung erster Ordnung gebildet wird. Hier wird von der ersten Ebene gesprochen, da innerhalb dieser Ebene nur eine Konfiguration von Grundbausteinen I1, I2, V1 vorgenommen wird. Die hier gezeigte Konfiguration umfaßt zwei sowohl digital für eine Grobeinstellung als auch analog für eine Feineinstellung steuerbare Integratoren I1, I2 bzw. Tiefpässe erster Ordnung und einen ebenfalls steuerbaren Verstärker V1. Mit den Bezugszeichen Vdc; Vac sind digitale bzw. analoge Steuereingänge bezeichnet.
  • Fig. 2 zeigt eine weitere erste Ebene des erfindungsgemäßen Arrays, also gleichfalls eine Teilkonfiguration von Grundbausteinen, die durch eine Matrixanordnung erster Ordnung gebildet wird. Bei dieser beispielshaften Schaltung sind zwei Spannungskomparatoren K1, K2 vorgesehen, denen ein Phasendetektor PD nachgeschaltet ist.
  • Fig. 3 zeigt das Blockschaltbild einer FLL (Frequency-Locked-Loop), d.h. einer Frequenz-gerasteten Regelschleife. Diese Schaltung ist aus drei Blöcken gebildet, die jeweils auf der ersten Ebene des digitalen Arrays gemäß der Erfindung ausgebildet sind, wie durch die Fig. 1 und 2 verdeutlicht ist. Somit kann die in Fig. 3 gezeigte Schaltung als Schaltung der zweiten Ebene bezeichnet werden. Bei dieser Darstellung gemäß Fig. 3 wird die hierarchische Struktur des Analog/Digital-Design des gesamten erfindungsgemäßen Arrays deutlich. Auf der Grundlage von Grundbausteinen werden Makros der ersten Ebene gebildet, die wiederum ein System der zweiten Ebene konfigurieren können, wobei dies auch im Zusammenspiel mit Grundbausteinen aus den unteren Ebenen erfolgen kann.
  • Das hier gezeigte Ausführungsbeispiel hat eine Strukturierung über zwei Ebenen. Für den Fachmann ist es offenkundig, daß das erfindungsgemäße Konzept eines hierarchischen Arrays sich über mehrere Ebenen durchführen läßt.
  • Fig. 4 zeigt die Schaltungsarchitektur eines programmierbaren, steuerbaren Transkonduktanzverstärkers OTA in Differenzpfadtechnik. Diese Struktur soll stellvertretend für die anderen Grundbausteine prinzipiell die Steuerungsmöglichkeiten eines Grundbausteines verdeutlichen. Bei der digitalen Einstellung handelt es sich um eine Grobeinstellung. Diese erfolgt durch das Datenwort W2. Die Feineinstellung erfolgt ausgehend von dem Datenwort W1 über einen programmierbaren, multiplizierenden Digital/Analog-Wandler MDAC, wobei derartige analoge Steuerspannungen auch extern bereit gestellt werden können. Ein 10-Bit-Latch L dient zur digitalen Programmierung sowohl für die Grobeinstellung als auch für die Feineinstellung. Diese Latches L sind in den BBB-Reihen/Zeilen der Grundbausteine enthalten, welche in Fig. 5 gezeigt sind und nachfolgend näher unter Bezugnahme auf Fig. 5 erläutert werden.
  • Wie dargestellt ist, kann die analoge Feineinstellung der Grundbausteine (BBB = basic building block) entweder durch Multiplizieren der Analog/Digital-Wandler mit Hilfe des binären Datenwortes W1 oder durch eine exteren analoge Steuerspannung (externe oder adaptive Ansteuerung) durchgeführt werden. Beide Verfahren beeinflussen in erster Linie die Transkonduktanz.
  • Die digitale Steuerung bewirkt eine digitale Grobeinstellung durch Zu- bzw. Abschalten von vorgefertigten Strom- und Spannungsreferenzen innerhalb der Matrixanordnungen erster Ordnung über das Datenwort W2. Hierdurch kann beispielsweise ebenfalls die Transkonduktanz programmierbar gehalten werden. Weiterhin lassen sich Referenzen zur Dynamik-Anpassung skalieren.
  • Wie in Fig. 5 gezeigt ist, umfaßt die dort gezeigte Ausführungsform eine erfindungsgemäße konfigurierbare analoge und digitale Arrayanordnung, vier Matrixanordnungen M11, M12, M13, M14 erster Ordnung und eine Matrixanordnung M2 zweiter Ordnung. Jede Matrixanordnung erster Ordnung M11, M12, M13, M14 umfaßt eine Mehrzahl von Grundbausteinen BBB, die dort als BBB-Reihen/Zeilen 1 bis 12 gezeigt sind. Die Verbindungen zwischen den Grundbausteinen innerhalb der Matrixanordnungen M11, M12, M13, M14 erfolgen mittels erster Schalter-Matrizen S1 bis S4, die im gezeigten Beispielsfall als (8 x 8)-Schalter-Matrizen ausgebildet sein können. Die Vernetzungslogik in Verbindung mit den Schalter-Matrix-Einheiten MSU erlaubt kreuzungsfreie Verbindungen, welche über m2-Bit-lange Schieberegister 13 bis 16 für die Matrixanordnungen erster Ordnung individuell programmierbar sind (m = Anzahl der kreuzungsfreien Verbindungen). Um die Anzahl der um die Matrix gruppierten Grundbausteine zu erhöhen, ohne dabei zusätzliche Verbindungswege bereitzustellen, können an der Peripherie dekodierbare Leitungs-Selektoren eingesetzt werden, die ankommende bzw. abgehende Signal/Versorgungs-Pfade auftrennen und/oder verbinden können. Alle Außenanschlüsse der Matrix können als Eingänge oder Ausgänge oder bidirektionale Anschlüsse programmiert werden. Multiplexer in den Selektoren erlauben eine variable Signal-/Versorgungsführung.
  • Um eine möglichst große Vielfalt bei der Programmierung der Signal-/Versorgungswege zu erreichen, sind primär zwei verschiedene elementare Vernetzungszustände, nämlich die Überkreuzung und Verknüpfung realisierbar. Bei der Programmierung eines Kreuzungspunktes MSU entsteht eine leitende, bidirektionale Verbindung eines horizontalen und eines vertikalen Leitungssegmentes. Auf diese Segmente lassen sich weitere Kreuzungspunkte MSU zuschalten, so daß auch parallel geführte Leitungssegmente realisiert werden können. Sind die Selektoren an den Matrixrändern deaktiviert, so enden diese Leitungssegmente an der Matrixperipherie. Die Schaltmatrizen werden ausschließlich ohne Separierungseinheiten dargestellt. Soweit dies nicht anders gezeigt ist, enden die Signalpfade bei den gezeigten Strukturen jeweils an der Matrixperipherie.
  • Wie gleichfalls in Fig. 5 gezeigt ist, bildet dort die Matrixanordnung M2 zweiter Ordnung zusammen mit den Matrixanordnungen M11, M12, M13, M14 erster Ordnung ein konfigurierbares digitales Array mit zwei Ebenen. Die Matrix-Anordnung zweiter Ordnung M2 umfaßt gleichfalls eine Schaltermatrix, die bei dem hier gezeigten Ausführungsbeispiel als (16 x 16)-Schalt-Matrix ausgeführt ist. Die vertikalen Signalleitungen dieser Matrix sind die Eingangs- und Ausgangs-Leitungen der Schalt-Matrizen S1 bis S4 der Matrixanordnungen erster Ordnung. Horizontale Leitungen der Schaltermatrix der Matrixanordnung zweiter Ordnung werden durch Ausgänge eines 256-Bit-Schieberegisters 17 sowie Array-Eingangs- und Array-Ausgangs-Leitungen gebildet. Letztere bilden eine Schnittstelle 18 für das Array.
  • Die Schaltermatrizen S1 bis S5 bestehen aus 1-Bit-Schaltern und -Speichern, die feldförmig angeordnet sind. Durch Setzen einer "1" oder "0" lassen sich Signal- und/oder Versorgungspfade verbinden bzw. auftrennen.
  • Fig. 6 zeigt die Umsetzung des Schleifenfilters gemäß Fig. 1 durch eine Matrixanordnung M11 erster Ordnung in der ersten Ebene des Arrays. Mit gleichen Bezugszeichen bezeichnete Schaltungselemente bezeichnen gleiche Bestandteile in sämtlichen Figuren, so daß deren Funktion und Struktur nicht nochmals erläutert werden muß. Wie hier leicht zu sehen ist, werden durch die Konfigurierung, die durch den Inhalt des Schieberegisters 13 vorgegeben ist, bestimmte Grundbausteine aus den BBB-Reihen/Zeilen 1, 2, 3 selektiert und in gewünschter Weise miteinander verschaltet. Besonders deutlich wird hier auch die Funktion des 64-Bit-Schieberegisters 13 für die analoge Konfiguration sowie diejenige des 16-Bit-Schieberegisters 19 für die digitale Grobsteuerung.
  • Fig. 7 zeigt eine der Fig. 2 entsprechende Darstellung eines Phasen-Detektors mit zwei Spannungskomparatoren, wie er durch die dritte Matrixanordnung M13 erster Ordnung gebildet wird. Auch hier dient das 64-Bit-Schieberegister 15 für die analoge Konfiguration, während das 16-Bit-Schieberegister 20 für die digitale Grobsteuerung verwendet wird.
  • Fig. 8 zeigt das gesamte Verdrahtungsnetzwerk, welches durch das Array gemäß Fig. 5 gebildet wird, um die Frequenz-gerastete Regelschleife gemäß Fig. 3 in der zweiten Ebene des Arrays zu implementieren. Da die Bestandteile unter Bezugnahme auf vorhergehende Figuren erläutert wurden, bedarf es keiner nochmaligen Erläuterung der einzelnen Matrixanordnungen.

Claims (14)

  1. Konfigurierbares Array, mit
    zumindest zwei Matrixanordnungen (M11, M12, M13, M14) erster Ordnung, mit einer Mehrzahl von reihenförmig und/oder spaltenförmig angeordneten Grundbausteinen (BBB) und je einer ersten Schaltermatrix (S1, S2, S3, S4); und
    zumindest einer Matrixanordnung (M2) zweiter Ordnung mit einer zweiten Schaltermatrix (S5), die die zumindest zwei Matrixanordnungen (M11, M12, M13, M14) erster Ordnung verbindet;
    dadurch gekennzeichnet, daß
    die Grundbausteine (BBB) digitale und zumindest teilweise analoge Grundbausteine sind;
    die Matrixanordnungen (M11, M12, M13, M14) erster Ordnung und die Matrixanordnung (M2) zweiter Ordnung auf einem gemeinsamen Substrat angeordnet sind;
    das konfigurierbare Array eine Vorrichtung (13, 14, 15, 16) zum Einbringen von Konfigurationsdaten und zum Konfigurieren des Arrays aufweist;
    die jeweilige erste Schaltermatrix (S1, S2, S3, S4) durch die Vorrichtung (13, 14, 15, 16) zum Einbringen von Konfigurationsdaten ansteuerbar ist, um die Signaleingänge und/oder die Signalausgänge der Grundbausteine gegenseitig zu verbinden, und um die Grundbausteine mit Matrixeingängen und/oder Matrixausgängen der Matrixanordnung der ersten Ordnung zu verbinden;
    die zweite Schaltermatrix (S5) direkt mit den Arrayeingängen und Arrayausgängen (17, 18) verbunden ist und durch die Vorrichtung (13, 14, 15, 16) zum Einbringen von Konfigurationsdaten ansteuerbar ist, um die Matrixeingänge und/oder die Matrixausgänge der Matrixanordnungen (M11, M12, M13, M14) erster Ordnung gegenseitig zu verbinden, und um die Matrixeingänge und die Matrixausgänge der Matrixanordnungen (M11, M12, M13, M14) erster Ordnung mit Arrayeingängen und Arrayausgängen (17, 18) zu verbinden.
  2. Array nach Anspruch 1, dadurch gekennzeichnet,
    daß die Grundbausteine (BBB) ferner einen analogen und/oder digitalen Steuereingang haben.
  3. Array nach Anspruch 2, dadurch gekennzeichnet,
    daß jede Matrixanordnung (M11, M12, M13, M14) erster Ordnung ein Parametrisierungsregister (13, 14, 15, 16, 19, 20) aufweist, das sowohl digitale Steuersignale für die digitalen Steuereingänge der Grundbausteine (BBB, 19, 20) als auch die Ansteuerungsbits für die Schalter (13, 14, 15, 16) beinhaltet.
  4. Array nach Anspruch 2 oder 3, dadurch gekennzeichnet,
    daß jede Matrixanordnung (M11, M12, M13, M14) erster Ordnung einen multiplizierenden Digital/Analog-Wandler (MDC) aufweist, der mit einem binären Datenwort (W1) von einem Parametrisierungsregister (19, 20) zur Erzeugung eines analogen Steuersignales (Vac) für den analogen Steuereingang des Grundbausteines (BBB) beaufschlagt wird.
  5. Array nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet,
    daß die Konfiguration von Grundbausteinen (BBB) zu einem Gesamtsystem durch Ansteuerung der analogen und digitalen Steuereingänge der Grundbausteine (BBB) und durch Ansteuerung der Schalter (MSU) der ersten und zweiten Matrixanordnungen (M11, M12, M13, M14; M2) über die Matrixeingänge und die Arrayeingänge vorgenommen wird.
  6. Anordnung nach Anspruch 5, dadurch gekennzeichnet,
    daß ein Schieberegister (13, 14, 15, 16, 17) vorgesehen ist, in das Daten für die Konfiguration seriell eingelesen werden können und das das Parametrisierungsregister bildet.
  7. Array nach Anspruch 5, dadurch gekennzeichnet,
    daß eine parallele Schnittstelle vorgesehen ist, die ein paralleles Einbringen der Konfigurationsdaten in das Array ermöglicht.
  8. Array nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,
    daß wenigstens einem Teil der Grundbausteine (BBB) je ein Qualifizierungsregister zugeordnet ist, das als Schreib/Lese-Speicher oder als Festwertspeicher ausgebildet ist, welches zumindest eine Information über den Totalausfall des Grundbausteines (BBB) beinhaltet.
  9. Array nach Anspruch 8, dadurch gekennzeichnet,
    daß das Qualifizierungsregister ferner Informationen über Betriebseigenschaften des Grundbausteines (BBB) beinhaltet.
  10. Array nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet,
    daß zumindest diejenigen Grundbausteine (BBB) , die statisch nicht verlustlos sind, über einen Leistungsabschaltungseingang von der Betriebsspannung trennbar sind.
  11. Array nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet,
    daß das Array in BICMOS-Technologie implementiert ist.
  12. Array nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,
    daß die analogen Grundbausteine (BBB) wenigstens eine der folgenden Komponenten umfassen:
    Integratoren, Komparatoren, Verstärker, Phasendetektoren und einstellbare Referenzen.
  13. Array nach Anspruch 12, dadurch gekennzeichnet,
    daß die einstellbaren Referenzen durch multiplizierende Digital/Analog-Wandler (MDAC) gebildet sind.
  14. Array nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet,
    daß die erste Schaltermatrix (S1, S2, S3, S4) und die zweite Schaltermatrix (S5) aus einer Mehrzahl von matrixförmig angeordneten 1-Bit-Schaltern und -Speichern (MSU) bestehen.
EP93915717A 1993-06-25 1993-06-25 Konfigurierbares, analoges und digitales array Expired - Lifetime EP0705465B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1993/001637 WO1995000921A1 (de) 1993-06-25 1993-06-25 Konfigurierbares, analoges und digitales array

Publications (2)

Publication Number Publication Date
EP0705465A1 EP0705465A1 (de) 1996-04-10
EP0705465B1 true EP0705465B1 (de) 1996-10-30

Family

ID=8165740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93915717A Expired - Lifetime EP0705465B1 (de) 1993-06-25 1993-06-25 Konfigurierbares, analoges und digitales array

Country Status (4)

Country Link
US (1) US5677691A (de)
EP (1) EP0705465B1 (de)
DE (1) DE59304375D1 (de)
WO (1) WO1995000921A1 (de)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821776A (en) * 1997-01-31 1998-10-13 Actel Corporation Field programmable gate array with mask programmed analog function circuits
US6246258B1 (en) 1999-06-21 2001-06-12 Xilinx, Inc. Realizing analog-to-digital converter on a digital programmable integrated circuit
US6728666B1 (en) * 1999-09-13 2004-04-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Evolvable circuit with transistor-level reconfigurability
US7072814B1 (en) 1999-09-13 2006-07-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Evolutionary technique for automated synthesis of electronic circuits
EP1202184A3 (de) * 2000-10-26 2004-12-29 Cypress Semiconductor Corporation Programmierungsmethodenlehre und Architektur für ein analoges programierbares System auf einem Chip
US6892310B1 (en) * 2000-10-26 2005-05-10 Cypress Semiconductor Corporation Method for efficient supply of power to a microcontroller
US8160864B1 (en) 2000-10-26 2012-04-17 Cypress Semiconductor Corporation In-circuit emulator and pod synchronized boot
US8149048B1 (en) 2000-10-26 2012-04-03 Cypress Semiconductor Corporation Apparatus and method for programmable power management in a programmable analog circuit block
US8103496B1 (en) 2000-10-26 2012-01-24 Cypress Semicondutor Corporation Breakpoint control in an in-circuit emulation system
US8176296B2 (en) 2000-10-26 2012-05-08 Cypress Semiconductor Corporation Programmable microcontroller architecture
US7765095B1 (en) 2000-10-26 2010-07-27 Cypress Semiconductor Corporation Conditional branching in an in-circuit emulation system
US6724220B1 (en) 2000-10-26 2004-04-20 Cyress Semiconductor Corporation Programmable microcontroller architecture (mixed analog/digital)
US6941336B1 (en) 2000-10-26 2005-09-06 Cypress Semiconductor Corporation Programmable analog system architecture
US6981090B1 (en) * 2000-10-26 2005-12-27 Cypress Semiconductor Corporation Multiple use of microcontroller pad
US6686860B2 (en) * 2000-12-12 2004-02-03 Massachusetts Institute Of Technology Reconfigurable analog-to-digital converter
US7406674B1 (en) 2001-10-24 2008-07-29 Cypress Semiconductor Corporation Method and apparatus for generating microcontroller configuration information
US8078970B1 (en) 2001-11-09 2011-12-13 Cypress Semiconductor Corporation Graphical user interface with user-selectable list-box
US8042093B1 (en) 2001-11-15 2011-10-18 Cypress Semiconductor Corporation System providing automatic source code generation for personalization and parameterization of user modules
US7844437B1 (en) 2001-11-19 2010-11-30 Cypress Semiconductor Corporation System and method for performing next placements and pruning of disallowed placements for programming an integrated circuit
US6971004B1 (en) 2001-11-19 2005-11-29 Cypress Semiconductor Corp. System and method of dynamically reconfiguring a programmable integrated circuit
US7770113B1 (en) 2001-11-19 2010-08-03 Cypress Semiconductor Corporation System and method for dynamically generating a configuration datasheet
US8069405B1 (en) 2001-11-19 2011-11-29 Cypress Semiconductor Corporation User interface for efficiently browsing an electronic document using data-driven tabs
US7774190B1 (en) 2001-11-19 2010-08-10 Cypress Semiconductor Corporation Sleep and stall in an in-circuit emulation system
US8103497B1 (en) 2002-03-28 2012-01-24 Cypress Semiconductor Corporation External interface for event architecture
US6717541B1 (en) * 2002-04-29 2004-04-06 Iowa State University Research Foundation, Inc. Fast low cost multiple sensor readout system
US7308608B1 (en) 2002-05-01 2007-12-11 Cypress Semiconductor Corporation Reconfigurable testing system and method
US7761845B1 (en) 2002-09-09 2010-07-20 Cypress Semiconductor Corporation Method for parameterizing a user module
US7295049B1 (en) 2004-03-25 2007-11-13 Cypress Semiconductor Corporation Method and circuit for rapid alignment of signals
US8069436B2 (en) 2004-08-13 2011-11-29 Cypress Semiconductor Corporation Providing hardware independence to automate code generation of processing device firmware
US8286125B2 (en) 2004-08-13 2012-10-09 Cypress Semiconductor Corporation Model for a hardware device-independent method of defining embedded firmware for programmable systems
US7332976B1 (en) 2005-02-04 2008-02-19 Cypress Semiconductor Corporation Poly-phase frequency synthesis oscillator
US7400183B1 (en) 2005-05-05 2008-07-15 Cypress Semiconductor Corporation Voltage controlled oscillator delay cell and method
US8089461B2 (en) 2005-06-23 2012-01-03 Cypress Semiconductor Corporation Touch wake for electronic devices
US8085067B1 (en) 2005-12-21 2011-12-27 Cypress Semiconductor Corporation Differential-to-single ended signal converter circuit and method
DE102006003566B4 (de) * 2006-01-25 2020-10-01 Infineon Technologies Ag Signal-Wandel-Vorrichtung, insbesondere Analog-Digital-Wandel-Vorrichtung, und Verfahren zum Betreiben einer Signal-Wandel-Vorrichtung
US8067948B2 (en) 2006-03-27 2011-11-29 Cypress Semiconductor Corporation Input/output multiplexer bus
US8130025B2 (en) 2007-04-17 2012-03-06 Cypress Semiconductor Corporation Numerical band gap
US8026739B2 (en) 2007-04-17 2011-09-27 Cypress Semiconductor Corporation System level interconnect with programmable switching
US8516025B2 (en) 2007-04-17 2013-08-20 Cypress Semiconductor Corporation Clock driven dynamic datapath chaining
US9564902B2 (en) 2007-04-17 2017-02-07 Cypress Semiconductor Corporation Dynamically configurable and re-configurable data path
US7737724B2 (en) 2007-04-17 2010-06-15 Cypress Semiconductor Corporation Universal digital block interconnection and channel routing
US8040266B2 (en) 2007-04-17 2011-10-18 Cypress Semiconductor Corporation Programmable sigma-delta analog-to-digital converter
US8092083B2 (en) 2007-04-17 2012-01-10 Cypress Semiconductor Corporation Temperature sensor with digital bandgap
US8266575B1 (en) 2007-04-25 2012-09-11 Cypress Semiconductor Corporation Systems and methods for dynamically reconfiguring a programmable system on a chip
US9720805B1 (en) 2007-04-25 2017-08-01 Cypress Semiconductor Corporation System and method for controlling a target device
US8065653B1 (en) 2007-04-25 2011-11-22 Cypress Semiconductor Corporation Configuration of programmable IC design elements
US8049569B1 (en) 2007-09-05 2011-11-01 Cypress Semiconductor Corporation Circuit and method for improving the accuracy of a crystal-less oscillator having dual-frequency modes
US9448964B2 (en) 2009-05-04 2016-09-20 Cypress Semiconductor Corporation Autonomous control in a programmable system
CN103534950B (zh) 2011-05-16 2017-07-04 株式会社半导体能源研究所 可编程逻辑装置
US8779799B2 (en) 2011-05-19 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
JP5892852B2 (ja) 2011-05-20 2016-03-23 株式会社半導体エネルギー研究所 プログラマブルロジックデバイス
US8669781B2 (en) 2011-05-31 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5927012B2 (ja) 2012-04-11 2016-05-25 太陽誘電株式会社 再構成可能な半導体装置
WO2019165283A1 (en) * 2018-02-23 2019-08-29 Octavo Systems Llc Mixed signal computer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1220190B (it) * 1987-12-22 1990-06-06 Sgs Thomson Microelectronics Circuito analogico integrato con topologia e caratteristiche intrinseche selezionabili via comando digitale
US4847612A (en) * 1988-01-13 1989-07-11 Plug Logic, Inc. Programmable logic device
US5099453A (en) * 1989-09-29 1992-03-24 Sgs-Thomson Microelectronics, Inc. Configuration memory for programmable logic device
US5338984A (en) * 1991-08-29 1994-08-16 National Semiconductor Corp. Local and express diagonal busses in a configurable logic array
US5426379A (en) * 1994-07-29 1995-06-20 Xilinx, Inc. Field programmable gate array with built-in bitstream data expansion

Also Published As

Publication number Publication date
DE59304375D1 (de) 1996-12-05
US5677691A (en) 1997-10-14
EP0705465A1 (de) 1996-04-10
WO1995000921A1 (de) 1995-01-05

Similar Documents

Publication Publication Date Title
EP0705465B1 (de) Konfigurierbares, analoges und digitales array
DE69534812T2 (de) Programmierbare logische Vorrichtung, die mehr als eine Konfiguration speichert, und Mittel zum Umschalten der Konfiguration
DE3130714C2 (de)
DE69924486T2 (de) Spezielle schnittstellenarchitektur für eine hybride schaltung
DE4425552C2 (de) Gatterarray
EP0010173B1 (de) Halbleiterplättchen mit verbesserter Prüfbarkeit der monolithisch hochintegrierten Schaltungen
DE3520003C2 (de)
EP0499383A2 (de) Programmierbarer Zwischenschaltungsaufbau mit gemischtem analog/digitalem Betrieb
DE102004045527B4 (de) Konfigurierbare Logikschaltungsanordnung
EP0093947B1 (de) Programmierbare Logikanordnung
DE4417575A1 (de) Verbesserte Array-Architektur für programmierbare logische Zellen
EP0308660A2 (de) Vorrichtung zur Herstellung einer testkompatiblen, weitgehend fehlertoleranten Konfiguration von redundant implementierten systolischen VLSI-Systemen
DE102005044385A1 (de) Signalverarbeitungssystem
DE10356851B4 (de) Schieberegister zum sicheren Bereitstellen eines Konfigurationsbits
DE3639577A1 (de) Logikbaustein zur erzeugung von ungleich verteilten zufallsmustern fuer integrierte schaltungen
EP0247502B1 (de) Programmierbare Schaltungsanordnung
DE102004027372B4 (de) DPA-resistente konfigurierbare Logikschaltung
EP1182779B1 (de) Verfahren und System zum Einstellen der elektrischen Eigenschaften mikroelektrischer Schaltungsanordnungen sowie Verwendung eines mikroelektronischen Schaltungselements
DE102004058915B4 (de) Thermometrischer Digital-Analog-Umsetzer
JP2798504B2 (ja) 構成自在なアナログデジタルアレイ
DE10123758A1 (de) Integrierte Halbleiterschaltung und Multi-Chip-Modul mit mehreren integrierten Halbleiterschaltungen
EP0303065B1 (de) Verfahren und Schaltungsanordnung für Halbleiterbausteine mit in hochintegrierter Schaltkreistechnik zusammengefassten logischen Verknüpfungsschaltungen
DE10238174A1 (de) Verfahren und Vorrichtung zur Datenverarbeitung
DE10001648C2 (de) Integrierte Schaltung mit mehreren Teilschaltungen
EP0095706B1 (de) Programmierbare Logikanordnung in ECL-Technik

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960418

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961111

REF Corresponds to:

Ref document number: 59304375

Country of ref document: DE

Date of ref document: 19961205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990614

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990622

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990628

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990816

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000625

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403