EP0697122B1 - Noise attenuation device with active double wall - Google Patents

Noise attenuation device with active double wall Download PDF

Info

Publication number
EP0697122B1
EP0697122B1 EP94915585A EP94915585A EP0697122B1 EP 0697122 B1 EP0697122 B1 EP 0697122B1 EP 94915585 A EP94915585 A EP 94915585A EP 94915585 A EP94915585 A EP 94915585A EP 0697122 B1 EP0697122 B1 EP 0697122B1
Authority
EP
European Patent Office
Prior art keywords
plates
sides
actuators
internal space
mrm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94915585A
Other languages
German (de)
French (fr)
Other versions
EP0697122A1 (en
Inventor
Pascal Bouvet
Jacques Roland
Laurent Gagliardini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Scientifique et Technique du Batiment CSTB
Original Assignee
Centre Scientifique et Technique du Batiment CSTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Scientifique et Technique du Batiment CSTB filed Critical Centre Scientifique et Technique du Batiment CSTB
Publication of EP0697122A1 publication Critical patent/EP0697122A1/en
Application granted granted Critical
Publication of EP0697122B1 publication Critical patent/EP0697122B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/102Two dimensional
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/106Boxes, i.e. active box covering a noise source; Enclosures
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/129Vibration, e.g. instead of, or in addition to, acoustic noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/129Vibration, e.g. instead of, or in addition to, acoustic noise
    • G10K2210/1291Anti-Vibration-Control, e.g. reducing vibrations in panels or beams
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3036Modes, e.g. vibrational or spatial modes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3046Multiple acoustic inputs, multiple acoustic outputs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3219Geometry of the configuration
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3223Materials, e.g. special compositions or gases

Definitions

  • the present invention relates to an attenuation device type acoustic comprising two plates substantially parallels delimiting a rectangular space, noise detection means, counter-noise emission means arranged between the two plates, and regulating means for controlling the means for emitting noise abatements so as to to minimize a quantity supplied by the detection means noise.
  • a device is known from US-A-5,024,288.
  • the invention has applications for example in the field of soundproofing of premises, in particular with double glazing, in the production of covers for noisy equipment, or in the field of insulation of passenger compartments.
  • This resonant frequency is generally between 50 and 250 Hz.
  • the attenuation device aims to compensate for the low acoustic insulation provided by the double wall in the vicinity of f mrm .
  • the principle consists in preventing - via an electro-acoustic system - any variation in volume of the air space.
  • f L M n VS 0 2 ⁇ l ⁇ L x + m ⁇ L y + not ⁇ L z
  • the variation in volume of the air gap is directly proportional to the amplitude of the mode (0,0,0) without the amplitude of the other modes in the vicinity of the resonance frequency of the wall f mrm being affected.
  • the expression of the acoustic pressure given above (2) shows that the measurement carried out by a microphone will include the responses of other modes than the mode (0,0,0).
  • the invention provides a device acoustic attenuation of the type indicated at the beginning, characterized in that the means for emitting noise include four actuators whose positions respective parallel to the plates correspond approximately at the four points constituting the midpoints sides of the rectangular shape of said interior space, in that the noise detection means includes four sensors arranged between the plates and whose respective positions parallel the plates correspond approximately to the four points constituting the midpoints of the sides of a rhombus whose the vertices are the midpoints of the sides of the shape rectangular of said interior space, in that the four actuators are controlled in phase, and in that the quantity to be minimized is represented by the sum of output signals from the four sensors.
  • the sensors and actuators hardly interact with modes odd order of the space between the two plates (i.e. modes whose indices are of the type (l, m, n) with 1 or odd m), nor with the modes (0,2,0) and (2,0,0).
  • modes odd order of the space between the two plates i.e. modes whose indices are of the type (l, m, n) with 1 or odd m
  • modes (0,2,0) and (2,0,0) We can therefore obtain a satisfactory control of the mode (0,0,0) without significantly affecting the efficiency of attenuation by excitation of low frequency modes clean.
  • the actuators are advantageously located at the periphery of the double wall.
  • the respective positions of sensors and actuators are inverted, i.e. that the noise detection means include four sensors arranged between the plates and whose respective positions parallel to the plates correspond approximately to the four points constituting the midpoints of the sides of the rectangular shape said interior space, and that the means for transmitting noise barriers include four actuators whose respective positions parallel to the plates correspond approximately to the four points constituting the midpoints of the sides of a rhombus whose vertices are the midpoints of the sides of the rectangular shape of said interior space.
  • the device shown in Figure 1 constitutes a active double wall usable to provide insulation acoustics between the spaces on either side of the wall.
  • the wall includes two rectangular plates parallels 10, 11 delimiting between them an interior space 12 of rectangular shape.
  • Sensors 13 and actuators 14 are arranged between the two plates 10, 11 to respectively detect the noises reigning in space 12 and emit counter noise in space 12.
  • the actuators 14 are placed on the edges of the interior space 12, while the sensors are mounted on a wire mesh 16 installed between the plates 10, 11.
  • the arrangement of sensors 13 and actuators 14 parallel to the plates is illustrated in Figure 2.
  • the actuators 14 are four in number and arranged at four points constituting the midpoints of the sides of the space rectangular 12.
  • the sensors 13 can be microphones with electrons chosen to have characteristics of sensitivity and phase not varying more than 1% of a sensor to another.
  • the actuators 14 can be speakers.
  • An example of a usable speaker is AUDAX BMX 400 model which represents a good compromise between volume flow and size (nominal power 15 W, resonance frequency of the order of 150 Hz, diameter outside 77.8 mm, total mass 290 g).
  • a regulation unit 18 and provided for controlling the actuators 14 so as to minimize an error signal e provided by the sensors 13.
  • the error signal to minimize consists of the amplified sum of the output signals of the four sensors 13, delivered by a summator 22.
  • the control unit 18 includes a processor signal processing 23 programmed in a known manner for apply the gradient algorithm (LMS) with reference filtered.
  • LMS gradient algorithm
  • This adaptive response response filtering mode impulse finite is well known in the field of noise cancellation (see for example works "Digital signal processing” by M. Bellanger, Editions Masson, Paris 1981; and "Adaptive signal processing” by B. Widrow and S.D. Stearns, Prentice Hall, 1985).
  • the filter coefficients are set to day at each sampling cycle to minimize the error signal e.
  • the processor 23 then addresses the same control signal to the actuators 14, so that the actuators 14 are phase-controlled.
  • the resonance frequencies of the first modes air gap pairs (formula (2)) are given in Table I. (L M n) (2,0,0) (0.2.0) (2,2,0) (4,0,0) (4,2,0) f lmn (Hz) 216 290 362 434 522
  • the sum of the output signals from the four sensors which represents the signal e to be minimized, reflects the response of the mode (0,0,0) of the space 12 located between the plates 10, 11.
  • the error signal e there is practically no contribution of the odd order modes (l, m, n) with 1 or m odd taking into account the symmetrical arrangement of the sensors, nor of the even order modes of relatively low natural frequency ( 2.0.0), (0.2.0) and (2.2.0).
  • the mode contributing to the signal e and having the lowest natural frequency is the mode (4,0,0).
  • the natural frequency of this mode is relatively far from the resonance frequency f mrm , so that the influence of this mode and of higher index modes on the acoustic transmission is not decisive.
  • the actuators ordered in phase hardly excite the modes odd order, nor the modes (2,0,0) and (0,2,0). So, the excitation of the actuators 14 acts mainly for compensate for transmission by mode (0,0,0) without increasing the amplitudes of the other bass modes natural frequency.
  • FIG. 3 shows the results of simulations of the acoustic attenuation provided by the device in FIG. 1 (without the filter 21) in the example of the parameters indicated above.
  • the dashed line curve corresponds to the values of the attenuation index R as a function of the frequency f of the noise to be attenuated in the case where there is active mode control (0,0,0), and the curve in solid line corresponds to the same values in the absence of active control. It can be seen that the active control according to the invention appreciably increases the weakening index in the range of low frequencies close to the resonance frequency f mrm .
  • the band-pass filter 21 is provided in the regulation unit 18. This filter 21, to which the reference signal is applied before the filtering with finite impulse response, allows the frequencies for which the mode control ( 0,0,0) has a favorable effect on the attenuation index, i.e.
  • f 200 c 0 / max (L x , L y ), where c 0 denotes the speed of the sound in the medium located between the two plates 10, 11.
  • the space 12 located between the plates 10, 11 is occupied by a gas lighter than air.
  • This increases the speed of the sound in the medium located between the plates, which decreases the density of the modes proper to the low frequencies (formula (4)), while the resonance frequency f mrm is only slightly modified.
  • the relative contribution of the mode (0,0,0) to the acoustic transmission is then increased so that the efficiency of the active control of this mode is improved.
  • This effect is all the more marked when the gas is light.
  • Helium is therefore a preferred example for this gas. This effect also occurs for configurations of sensors and actuators other than that shown in FIG. 2.
  • FIGS. 5A to 5F Examples of attenuation curves (index attenuation R as a function of frequency) obtained in simulating various constitutions of the plates are represented in FIGS. 5A to 5F which correspond respectively to the points A to F on the diagram in Figure 4.
  • the curves at solid line illustrate the weakening index in the absence of active control, and the line curves interrupted illustrate the simulated loss index in subtracting the contribution from the mode (0,0,0).
  • the plate configurations are shown in Table III below.

Abstract

PCT No. PCT/FR94/00520 Sec. 371 Date Feb. 15, 1996 Sec. 102(e) Date Feb. 15, 1996 PCT Filed May 4, 1994 PCT Pub. No. WO94/27283 PCT Pub. Date Nov. 24, 1994An active double wall comprises two parallel plates defining a rectangular space. Four sensors are positioned between the plates so as to detect noises in said space, and four actuators are placed between the plates to emit counter-noises in the space. The actuators are phase-controlled by a control unit in order to minimize the sum of the outputs of the sensors. The actuators are respectively positioned at the centers of the sides of the rectangular space, and the sensors are respectively positioned at the centers of the sides of a rhombus whose vertices are the respective centers of the sides of the rectangular space, or vice-versa.

Description

La présente invention concerne un dispositif d'atténuation acoustique du type comprenant deux plaques sensiblement parallèles délimitant un espace de forme rectangulaire, des moyens de détection de bruit, des moyens d'émission de contre-bruits disposés entre les deux plaques, et des moyens de régulation pour commander les moyens d'émission de contre-bruits de manière à minimiser une grandeur fournie par les moyens de détection de bruit. Un tel dispositif est connu de US-A-5 024 288.The present invention relates to an attenuation device type acoustic comprising two plates substantially parallels delimiting a rectangular space, noise detection means, counter-noise emission means arranged between the two plates, and regulating means for controlling the means for emitting noise abatements so as to to minimize a quantity supplied by the detection means noise. Such a device is known from US-A-5,024,288.

L'invention a des applications par exemple dans le domaine de l'isolation phonique de locaux, notamment avec des doubles vitrages, dans la réalisation de capotages pour équipements bruyants, ou dans le domaine de l'isolation des habitacles de moyens de transport.The invention has applications for example in the field of soundproofing of premises, in particular with double glazing, in the production of covers for noisy equipment, or in the field of insulation of passenger compartments.

Un dispositif du type indiqué ci-dessus, dit double paroi active, repose sur le principe de fonctionnement rappelé ci-après.A device of the type indicated above, said to be double active wall, based on the operating principle recalled below.

La fréquence de résonance masse-ressort-masse d'une paroi double constituée par deux plaques rectangulaires parallèles séparées par une lame d'air d'épaisseur d est donnée par la relation :

Figure 00010001
avec :

ρ0 :
masse volumique du milieu situé entre les plaques (1,18 Kg/m3 dans le cas de l'air).
c0 :
célérité du son dans le milieu situé entre les plaques (340 m/s dans le cas de l'air).
ρ0 c 0 2 / d :
rigidité de la lame d'air
m1, m2 :
masse surfacique des plaques (en kg/m2)
The mass-spring-mass resonance frequency of a double wall constituted by two parallel rectangular plates separated by an air gap of thickness d is given by the relation:
Figure 00010001
with:
ρ 0 :
density of the medium located between the plates (1.18 Kg / m 3 in the case of air).
c 0 :
speed of sound in the medium between the plates (340 m / s in the case of air).
ρ 0 c 0 2 / d :
air knife stiffness
m 1 , m 2 :
surface mass of the plates (in kg / m 2 )

Cette fréquence de résonance est généralement comprise entre 50 et 250 Hz.This resonant frequency is generally between 50 and 250 Hz.

Globalement, pour une fréquence f donnée, on considère le comportement acoustique d'une paroi double de la manière suivante :

  • f < fmrm : les deux plaques vibrent en phase. La variation de volume entre les plaques reste faible. La double paroi se comporte comme une paroi simple de masse équivalente.
  • f ≈ fmrm : les deux plaques, fortement couplées par la lame d'air, vibrent en opposition de phase. Ceci se traduit par de fortes variations de volume de la lame d'air (phénomène de "respiration" des plaques) et par une faible isolation acoustique par la double paroi.
  • f > fmrm : les mouvements des deux plaques sont découplés par la lame d'air. L'isolation acoustique de la paroi augmente alors rapidement avec la fréquence.
Overall, for a given frequency f, the acoustic behavior of a double wall is considered as follows:
  • f <f mrm : the two plates vibrate in phase. The variation in volume between the plates remains small. The double wall behaves like a single wall of equivalent mass.
  • f ≈ f mrm : the two plates, strongly coupled by the air gap, vibrate in phase opposition. This results in large variations in the volume of the air space (phenomenon of "breathing" of the plates) and in poor acoustic insulation by the double wall.
  • f> f mrm : the movements of the two plates are decoupled by the air gap . The acoustic insulation of the wall then increases rapidly with frequency.

Le dispositif d'atténuation vise à compenser la faible isolation acoustique procurée par la double paroi au voisinage de fmrm. Le principe consiste à empêcher -via un système électro-acoustique- toute variation de volume de la lame d'air.The attenuation device aims to compensate for the low acoustic insulation provided by the double wall in the vicinity of f mrm . The principle consists in preventing - via an electro-acoustic system - any variation in volume of the air space.

Le champ de pression acoustique dans la lame d'air peut s'écrire sous la forme d'une série modale :

Figure 00030001
avec :

αlmn :
amplitude du mode l,m,n
lmn :
base modale associée à la cavité considérées. Dans le cas d'une lame d'air de forme parallélépipédique :
Φ lmn (x, y, z) = cos (lπx/Lx ) cos (mπy/Ly ) cos (nπz/Lz )
Lx, Ly, Lz (=d) :
dimensions de la lame d'air
ω :
pulsation (= 2πf)
x, y :
coordonnées spatiales parallèlement aux plaques
z :
coordonnée spatiale perpendiculairement aux plaques
t :
temps.
The sound pressure field in the air space can be written in the form of a modal series:
Figure 00030001
with:
α lmn :
mode amplitude l, m, n
lmn :
modal base associated with the considered cavity. In the case of an air knife of parallelepiped shape:
Φ L M n (( X Y Z ) = cos ( l πx / L x ) cos ( m πy / L y ) cos ( not πz / L z )
L x , L y , L z (= d):
air gap dimensions
ω:
pulsation (= 2πf)
x, y:
spatial coordinates parallel to the plates
z:
spatial coordinate perpendicular to the plates
t:
time.

La fréquence propre f lmn d'un mode d'indices (l,m,n) de la lame d'air est donnée par la relation : flmn = C 0 lπ L x + mπ L y + nπ L z The natural frequency f lmn of a mode of indices (l, m, n) of the air gap is given by the relation: f L M n = VS 0 l π L x + m π L y + not π L z

La variation de volume de la lame d'air est directement proportionnelle à l'amplitude du mode (0,0,0) sans que l'amplitude des autres modes au voisinage de la fréquence de résonance de la paroi fmrm ne soit affectée. Or il est difficile de mesurer et d'exciter uniquement ce mode par des actions qui, a priori, font intervenir l'ensemble des modes. En effet, l'expression de la pression acoustique donnée ci-dessus (2) montre que la mesure effectuée par un microphone inclura les réponses d'autres modes que le mode (0,0,0).The variation in volume of the air gap is directly proportional to the amplitude of the mode (0,0,0) without the amplitude of the other modes in the vicinity of the resonance frequency of the wall f mrm being affected. However, it is difficult to measure and excite only this mode by actions which, a priori, involve all of the modes. Indeed, the expression of the acoustic pressure given above (2) shows that the measurement carried out by a microphone will include the responses of other modes than the mode (0,0,0).

Il est souhaitable, pour obtenir une atténuation efficace, de réduire la contribution dans la grandeur à minimiser des modes de fréquence basse autres que le mode (0,0,0), et de faire en sorte que les moyens d'émission de contre-bruits excitent le mode (0,0,0) de façon prépondérante en excitant le moins possible les autres modes de la lame d'air.It is desirable to obtain attenuation effective, reduce the contribution in size to minimize low frequency modes other than mode (0,0,0), and to ensure that the means of emission of counter-noise excites the mode (0,0,0) so predominant while minimally exciting other modes of the air gap.

C'est un but de l'invention que d'améliorer ainsi l'efficacité de l'atténuation fournie par un dispositif à double paroi active.It is an object of the invention to thus improve the effectiveness of the attenuation provided by a device to active double wall.

Dans ce but, l'invention propose un dispositif d'atténuation acoustique du type indiqué au début, caractérisé en ce que les moyens d'émission de contre-bruits comprennent quatre actionneurs dont les positions respectives parallèlement aux plaques correspondent approximativement aux quatre points constituant les milieux des côtés de la forme rectangulaire dudit espace intérieur, en ce que les moyens de détection de bruit comprennent quatre capteurs disposés entre les plaques et dont les positions respectives parallèlement aux plaques correspondent approximativement aux quatre points constituant les milieux des côtés d'un losange dont les sommets sont les milieux des côtés de la forme rectangulaire dudit espace intérieur, en ce que les quatre actionneurs sont commandés en phase, et en ce que la grandeur à minimiser est représentée par la somme des signaux de sortie des quatre capteurs.To this end, the invention provides a device acoustic attenuation of the type indicated at the beginning, characterized in that the means for emitting noise include four actuators whose positions respective parallel to the plates correspond approximately at the four points constituting the midpoints sides of the rectangular shape of said interior space, in that the noise detection means includes four sensors arranged between the plates and whose respective positions parallel the plates correspond approximately to the four points constituting the midpoints of the sides of a rhombus whose the vertices are the midpoints of the sides of the shape rectangular of said interior space, in that the four actuators are controlled in phase, and in that the quantity to be minimized is represented by the sum of output signals from the four sensors.

Avec cette disposition, les capteurs et les actionneurs n'interagissent pratiquement pas avec les modes d'ordre impair de l'espace situé entre les deux plaques (c'est-à-dire les modes dont les indices sont du type (l,m,n) avec 1 ou m impair), ni avec les modes (0,2,0) et (2,0,0). On peut donc obtenir un contrôle satisfaisant du mode (0,0,0) sans affecter sensiblement l'efficacité de l'atténuation par l'excitation de modes à basse fréquence propre.With this arrangement, the sensors and actuators hardly interact with modes odd order of the space between the two plates (i.e. modes whose indices are of the type (l, m, n) with 1 or odd m), nor with the modes (0,2,0) and (2,0,0). We can therefore obtain a satisfactory control of the mode (0,0,0) without significantly affecting the efficiency of attenuation by excitation of low frequency modes clean.

En outre, avec cette forme de réalisation de l'invention, les actionneurs sont avantageusement situés à la périphérie de la double paroi.Furthermore, with this embodiment of the invention, the actuators are advantageously located at the periphery of the double wall.

Dans une autre forme de réalisation de l'invention reposant sur le même principe, les positions respectives des capteurs et des actionneurs sont interverties, c'est-à-dire que les moyens de détection de bruit comprennent quatre capteurs disposés entre les plaques et dont les positions respectives parallèlement aux plaques correspondent approximativement aux quatre points constituant les milieux des côtés de la forme rectangulaire dudit espace intérieur, et que les moyens d'émission de contre-bruits comprennent quatre actionneurs dont les positions respectives parallèlement aux plaques correspondent approximativement aux quatre points constituant les milieux des côtés d'un losange dont les sommets sont les milieux des côtés de la forme rectangulaire dudit espace intérieur.In another embodiment of the invention based on the same principle, the respective positions of sensors and actuators are inverted, i.e. that the noise detection means include four sensors arranged between the plates and whose respective positions parallel to the plates correspond approximately to the four points constituting the midpoints of the sides of the rectangular shape said interior space, and that the means for transmitting noise barriers include four actuators whose respective positions parallel to the plates correspond approximately to the four points constituting the midpoints of the sides of a rhombus whose vertices are the midpoints of the sides of the rectangular shape of said interior space.

On a également constaté qu'il était avantageux qu'un gaz plus léger que l'air, par exemple de l'hélium, occupe l'espace intérieur situé entre les deux plaques. Cette diminution de la densité du milieu situé entre les plaques entraíne une augmentation de la célérité du son dans ce milieu et donc une augmentation des fréquences propres associées aux différents modes (cf.formule (4)). Il en résulte une moindre contribution à la transmission acoustique des modes autres que le mode (0,0,0), et donc une meilleure atténuation par le contrôle sélectif du mode (0,0,0).It has also been found to be advantageous for a gas lighter than air, for example helium, occupies the interior space between the two plates. This decrease in the density of the medium located between the plates causes an increase in the speed of sound in this middle and therefore an increase in natural frequencies associated with the different modes (see formula (4)). It results in a lower contribution to transmission acoustic modes other than the mode (0,0,0), and therefore a better attenuation by selective mode control (0,0,0).

D'autres particularités et avantages de l'invention apparaítront dans la description ci-après d'un exemple de réalisation préféré mais non limitatif. Aux dessins annexés :

  • la figure 1 représente schématiquement un dispositif d'atténuation acoustique selon l'invention ;
  • la figure 2 est une vue schématique illustrant la position des capteurs et des actionneurs du dispositif de la figure 1 ;
  • la figure 3 est un graphique montrant l'atténuation acoustique que peut procurer un dispositif tel que celui des figures 1 et 2 ;
  • la figure 4 est un graphique illustrant une gamme de paramètres préférés dans un dispositif selon l'invention ; et
  • les figures 5A à 5F sont des graphiques montrant l'atténuation acoustique qu'on peut obtenir avec différents exemples de constitution des plaques.
Other features and advantages of the invention will appear in the description below of a preferred but non-limiting example of embodiment. In the accompanying drawings:
  • FIG. 1 schematically represents an acoustic attenuation device according to the invention;
  • Figure 2 is a schematic view illustrating the position of the sensors and actuators of the device of Figure 1;
  • Figure 3 is a graph showing the acoustic attenuation that a device such as that of Figures 1 and 2 can provide;
  • Figure 4 is a graph illustrating a range of preferred parameters in a device according to the invention; and
  • FIGS. 5A to 5F are graphs showing the acoustic attenuation that can be obtained with different examples of construction of the plates.

Le dispositif représenté à la figure 1 constitue une double paroi active utilisable pour procurer une isolation acoustique entre les espaces situés de part et d'autre de la paroi. La paroi comprend deux plaques rectangulaires parallèles 10, 11 délimitant entre elles un espace intérieur 12 de forme rectangulaire. Des capteurs 13 et des actionneurs 14 sont disposés entre les deux plaques 10, 11 pour respectivement détecter les bruits régnant dans l'espace 12 et émettre des contre-bruits dans l'espace 12.The device shown in Figure 1 constitutes a active double wall usable to provide insulation acoustics between the spaces on either side of the wall. The wall includes two rectangular plates parallels 10, 11 delimiting between them an interior space 12 of rectangular shape. Sensors 13 and actuators 14 are arranged between the two plates 10, 11 to respectively detect the noises reigning in space 12 and emit counter noise in space 12.

Les actionneurs 14 sont placés sur les bords de l'espace intérieur 12, tandis que les capteurs sont montés sur un treillis métallique 16 installé entre les plaques 10, 11. La disposition des capteurs 13 et des actionneurs 14 parallèlement aux plaques est illustrée à la figure 2. Les actionneurs 14 sont au nombre de quatre et disposés aux quatre points constituant les milieux des côtés de l'espace rectangulaire 12. Les capteurs 13 sont au nombre de quatre et disposés aux quatre points constituant les milieux des côtés d'un losange 17 dont les sommets sont les milieux des côtés de l'espace rectangulaire 12.The actuators 14 are placed on the edges of the interior space 12, while the sensors are mounted on a wire mesh 16 installed between the plates 10, 11. The arrangement of sensors 13 and actuators 14 parallel to the plates is illustrated in Figure 2. The actuators 14 are four in number and arranged at four points constituting the midpoints of the sides of the space rectangular 12. There are four sensors 13 and arranged at the four points constituting the midpoints of sides of a rhombus 17 whose vertices are the midpoints of sides of the rectangular space 12.

Les capteurs 13 peuvent être des microphones à électrets choisis pour avoir des caractéristiques de sensibilité et de phase ne variant pas plus de 1 % d'un capteur à l'autre. Les actionneurs 14 peuvent être des haut-parleurs. Un exemple de haut-parleur utilisable est le modèle AUDAX BMX 400 qui représente un bon compromis entre le débit volumique et l'encombrement (puissance nominale 15 W, fréquence de résonance de l'ordre de 150 Hz, diamètre extérieur 77,8 mm, masse totale 290 g).The sensors 13 can be microphones with electrons chosen to have characteristics of sensitivity and phase not varying more than 1% of a sensor to another. The actuators 14 can be speakers. An example of a usable speaker is AUDAX BMX 400 model which represents a good compromise between volume flow and size (nominal power 15 W, resonance frequency of the order of 150 Hz, diameter outside 77.8 mm, total mass 290 g).

Une unité de régulation 18 et prévue pour commander les actionneurs 14 de manière à minimiser un signal d'erreur e fourni par les capteurs 13. Le signal d'erreur à minimiser est constitué par la somme amplifiée des signaux de sortie des quatre capteurs 13, délivrée par un sommateur 22. L'unité de régulation 18 comprend un processeur de traitement de signal 23 programmé de façon connue pour appliquer l'algorithme du gradient (LMS) avec référence filtrée. Ce mode de filtrage adaptatif à réponse impulsionnelle finie est bien connu dans le domaine de l'annulation de bruit (voir par exemple les ouvrages "Traitement numérique du signal" par M. Bellanger, Editions Masson, Paris 1981 ; et "Adaptive signal processing" par B. Widrow et S.D. Stearns, Prentice Hall, 1985). Un microphone de référence 24, situé du côté de la source des bruits à atténuer, fournit un signal de référence qui est appliqué à un filtre passe-bande 21 dont la sortie, adressée au processeur 23, est soumise au filtrage à réponse impulsionnelle finie. Les coefficients du filtre sont mis à jour à chaque cycle d'échantillonnage pour minimiser le signal d'erreur e. Le processeur 23 adresse alors le même signal de commande aux actionneurs 14, de sorte que les actionneurs 14 sont commandés en phase.A regulation unit 18 and provided for controlling the actuators 14 so as to minimize an error signal e provided by the sensors 13. The error signal to minimize consists of the amplified sum of the output signals of the four sensors 13, delivered by a summator 22. The control unit 18 includes a processor signal processing 23 programmed in a known manner for apply the gradient algorithm (LMS) with reference filtered. This adaptive response response filtering mode impulse finite is well known in the field of noise cancellation (see for example works "Digital signal processing" by M. Bellanger, Editions Masson, Paris 1981; and "Adaptive signal processing" by B. Widrow and S.D. Stearns, Prentice Hall, 1985). A microphone 24, located on the source side of the noise at attenuate, provides a reference signal which is applied to a bandpass filter 21 whose output, addressed to the processor 23, is subject to response filtering impulse finished. The filter coefficients are set to day at each sampling cycle to minimize the error signal e. The processor 23 then addresses the same control signal to the actuators 14, so that the actuators 14 are phase-controlled.

Dans un exemple de réalisation typique, les deux plaques 10, 11 sont réalisées en plexiglass et ont pour masse surfacique m1 = m2 = 6 kg/m2. Elles délimitent un espace intérieur 12 d'épaisseur d = 5 cm dont la forme rectangulaire a des côtés de longueur Lx = 1,6 m et Ly = 1,2 m. L'espace 12 étant rempli d'air, la fréquence de résonance masse-ressort-masse (formule (1)) vaut fmrm = 150 Hz. La fréquence critique des plaques est de 6 400 Hz. Les fréquences de résonance des premiers modes pairs de la lame d'air (formule (2)) sont données au tableau I. (l,m,n) (2,0,0) (0,2,0) (2,2,0) (4,0,0) (4,2,0) flmn(Hz) 216 290 362 434 522 In a typical embodiment, the two plates 10, 11 are made of plexiglass and have the surface mass m 1 = m 2 = 6 kg / m 2 . They delimit an interior space 12 of thickness d = 5 cm whose rectangular shape has sides of length L x = 1.6 m and L y = 1.2 m. Since space 12 is filled with air, the mass-spring-mass resonance frequency (formula (1)) is equal to f mrm = 150 Hz. The critical frequency of the plates is 6,400 Hz. The resonance frequencies of the first modes air gap pairs (formula (2)) are given in Table I. (L M n) (2,0,0) (0.2.0) (2,2,0) (4,0,0) (4,2,0) f lmn (Hz) 216 290 362 434 522

La somme des signaux de sortie des quatre capteurs, qui représente le signal e à minimiser, reflète la réponse du mode (0,0,0) de l'espace 12 situé entre les plaques 10, 11. Dans le signal d'erreur e, il n'y a pratiquement pas de contribution des modes d'ordre impair (l,m,n) avec 1 ou m impair compte tenu de la disposition symétrique des capteurs, ni des modes d'ordre pair de fréquence propre relativement basse (2,0,0), (0,2,0) et (2,2,0). Hormis le mode (0,0,0), le mode contribuant au signal e et ayant la fréquence propre la plus basse est le mode (4,0,0). Mais la fréquence propre de ce mode est relativement éloignée de la fréquence de résonance fmrm, de sorte que l'influence de ce mode et des modes d'indices supérieurs sur la transmission acoustique n'est pas déterminante.The sum of the output signals from the four sensors, which represents the signal e to be minimized, reflects the response of the mode (0,0,0) of the space 12 located between the plates 10, 11. In the error signal e , there is practically no contribution of the odd order modes (l, m, n) with 1 or m odd taking into account the symmetrical arrangement of the sensors, nor of the even order modes of relatively low natural frequency ( 2.0.0), (0.2.0) and (2.2.0). Apart from the mode (0,0,0), the mode contributing to the signal e and having the lowest natural frequency is the mode (4,0,0). However, the natural frequency of this mode is relatively far from the resonance frequency f mrm , so that the influence of this mode and of higher index modes on the acoustic transmission is not decisive.

Du fait de leurs positions, les actionneurs commandés en phase n'excitent pratiquement pas les modes d'ordre impair, ni les modes (2,0,0) et (0,2,0). Ainsi, l'excitation des actionneurs 14 agit principalement pour compenser la transmission par le mode (0,0,0) sans augmenter sensiblement les amplitudes des autres modes de basse fréquence propre.Due to their positions, the actuators ordered in phase hardly excite the modes odd order, nor the modes (2,0,0) and (0,2,0). So, the excitation of the actuators 14 acts mainly for compensate for transmission by mode (0,0,0) without increasing the amplitudes of the other bass modes natural frequency.

La figure 3 montre des résultats de simulations de l'atténuation acoustique procurée par le dispositif de la figure 1 (sans le filtre 21) dans l'exemple des paramètres indiqués ci-dessus. La courbe en trait interrompu correspond aux valeurs de l'indice d'affaiblissement R en fonction de la fréquence f du bruit à atténuer dans le cas où il y a un contrôle actif du mode (0,0,0), et la courbe en trait plein correspond aux mêmes valeurs en l'absence de contrôle actif. On voit que le contrôle actif selon l'invention augmente sensiblement l'indice d'affaiblissement dans la gamme des basses fréquences voisines de la fréquence de résonance fmrm.FIG. 3 shows the results of simulations of the acoustic attenuation provided by the device in FIG. 1 (without the filter 21) in the example of the parameters indicated above. The dashed line curve corresponds to the values of the attenuation index R as a function of the frequency f of the noise to be attenuated in the case where there is active mode control (0,0,0), and the curve in solid line corresponds to the same values in the absence of active control. It can be seen that the active control according to the invention appreciably increases the weakening index in the range of low frequencies close to the resonance frequency f mrm .

Pour les fréquences éloignées de fmrm, il n'y a pas toujours une amélioration de l'indice d'affaiblissement et, dans certains cas, il peut même se produire une légère détérioration. C'est pourquoi on prévoit le filtre passe-bande 21 dans l'unité de régulation 18. Ce filtre 21, auquel est appliqué le signal de référence avant le filtrage à réponse impulsionnelle finie, laisse passer les fréquences pour lesquelles le contrôle du mode (0,0,0) a un effet favorable sur l'indice d'affaiblissement, c'est-à-dire les fréquences comprises entre fmrm/2 et min(2 fmrm, f200), f200 désignant la plus petite fréquence propre des modes d'ordre pair : f200 = c0/max(Lx,Ly), où c0 désigne la célérité du son dans le milieu situé entre les deux plaques 10, 11.For frequencies far from f mrm , there is not always an improvement in the attenuation index and, in some cases, there may even be a slight deterioration. This is why the band-pass filter 21 is provided in the regulation unit 18. This filter 21, to which the reference signal is applied before the filtering with finite impulse response, allows the frequencies for which the mode control ( 0,0,0) has a favorable effect on the attenuation index, i.e. the frequencies between f mrm / 2 and min (2 f mrm , f 200 ), f 200 denoting the smallest natural frequency of the even order modes: f 200 = c 0 / max (L x , L y ), where c 0 denotes the speed of the sound in the medium located between the two plates 10, 11.

On comprendra que diverses modifications de l'exemple décrit ci-dessus en référence aux figures 1 et 2 sont envisageables sans sortir du cadre de l'invention.It will be understood that various modifications of the example described above with reference to Figures 1 and 2 are possible without departing from the scope of the invention.

Ainsi, il est possible d'intervertir les positions respectives des capteurs et des actionneurs (figure 2) en obtenant un aussi bon contrôle sélectif du mode (0,0,0). Il est également possible de garnir l'intérieur des plaques avec un isolant phonique tel que de la laine de verre. On peut encore utiliser un mode de régulation autre qu'un filtrage adaptatif.Thus, it is possible to swap positions respective sensors and actuators (Figure 2) in obtaining such good selective mode control (0,0,0). he is also possible to fill the inside of the plates with a sound insulator such as glass wool. We can still use a regulation mode other than a adaptive filtering.

Dans un mode de réalisation particulièrement avantageux, l'espace 12 situé entre les plaques 10, 11 est occupé par un gaz plus léger que l'air. Ceci augmente la célérité du son dans le milieu situé entre les plaques, ce qui diminue la densité des modes propres aux basses fréquences (formule (4)), tandis que la fréquence de résonance fmrm n'est que peu modifiée. La contribution relative du mode (0,0,0) à la transmission acoustique est alors augmentée de sorte que l'efficacité du contrôle actif de ce mode est améliorée. Cet effet est d'autant plus marqué que le gaz est léger. L'hélium est donc un exemple préféré pour ce gaz. Cet effet se produit également pour des configurations des capteurs et des actionneurs autres que celle représentée à la figure 2. Ainsi, dans le cas de la double paroi indiqué ci-dessus à titre d'exemple et avec une configuration à quatre capteurs et un actionneur central, le demandeur a mesuré expérimentalement les indices d'affaiblissement moyens Rm, en dB(A), donnés au tableau II lorsque l'espace 12 est rempli d'air ou d'hélium. Ces mesures ont été effectuées avec deux types de bruit à atténuer : un bruit rose et un bruit routier. On constate que l'amélioration de l'atténuation fournie par l'hélium est nettement plus importante lorsqu'on met en oeuvre le contrôle actif du mode (0,0,0). bruit rose Rm (dB(A)) bruit routier Rm (dB(A)) air sans contrôle actif 33 27 avec contrôle actif 40 35 hélium sans contrôle actif 35 28 avec contrôle actif 49 43 In a particularly advantageous embodiment, the space 12 located between the plates 10, 11 is occupied by a gas lighter than air. This increases the speed of the sound in the medium located between the plates, which decreases the density of the modes proper to the low frequencies (formula (4)), while the resonance frequency f mrm is only slightly modified. The relative contribution of the mode (0,0,0) to the acoustic transmission is then increased so that the efficiency of the active control of this mode is improved. This effect is all the more marked when the gas is light. Helium is therefore a preferred example for this gas. This effect also occurs for configurations of sensors and actuators other than that shown in FIG. 2. Thus, in the case of the double wall indicated above by way of example and with a configuration with four sensors and an actuator central, the applicant has experimentally measured the average attenuation indices R m , in dB (A), given in Table II when space 12 is filled with air or helium. These measurements were carried out with two types of noise to be attenuated: pink noise and road noise. It can be seen that the improvement in the attenuation provided by helium is much greater when the active mode control (0.0,0) is implemented. pink noise R m (dB (A)) road noise R m (dB (A)) air without active control 33 27 with active control 40 35 helium without active control 35 28 with active control 49 43

Le demandeur a réalisé de nombreuses simulations pour déterminer les paramètres des plaques donnant lieu à une bonne atténuation acoustique par le contrôle du mode (0,0,0). Sur la figure 4, on a représenté en hachuré le domaine de paramètres fournissant les meilleures caractéristiques d'atténuation. Le domaine correspond aux constitutions des plaques pour lesquelles la transmission acoustique autour de la fréquence de résonance fmrm est essentiellement régie par le mode (0,0,0). Il correspond aux relations : fc / (LxLy)2 > 800 et fmrm < f200 ou fc / (LxLy)2 > 300 et fmrm < f200/2, dans lesquelles
   fc, en hertz, désigne la fréquence critique d'une plaque ou, si les plaques 10, 11 sont de constitutions différentes, la plus grande des fréquences critiques des deux plaques (dans le cas d'une plaque plane homogène,la fréquence critique vaut fc = C 2 m/D avec

  • C = célérité du son dans l'air, m = masse surfacique de la plaque, D = Eh3/12(1-υ2) = rigidité en flexion de la plaque , E = module d'Young, υ = coefficient de Poisson, h = épaisseur de la plaque) ;
  • Lx et Ly sont les longueurs des côtés de l'espace rectangulaire, exprimées en mètres ;
  • fmrm est la fréquence de résonance masse-ressort-masse donnée par la formule (1) ; et
  • f200 = c0/max(Lx,Ly) est la fréquence propre du mode pair de la cavité ayant la plus faible fréquence propre.
  • The applicant has carried out numerous simulations to determine the parameters of the plates giving rise to good acoustic attenuation by controlling the mode (0,0,0). In FIG. 4, the hatched area of the parameters providing the best attenuation characteristics is shown. The domain corresponds to the constitutions of the plates for which the acoustic transmission around the resonance frequency f mrm is essentially governed by the mode (0,0,0). It corresponds to the relationships: f vs / (L x L y ) 2 > 800 and f mrm <f 200 or f vs / (L x L y ) 2 > 300 and f mrm <f 200 / 2, in which
    f c , in hertz, denotes the critical frequency of a plate or, if the plates 10, 11 are of different constitutions, the greater of the critical frequencies of the two plates (in the case of a homogeneous plane plate, the critical frequency worth f vs = VS 2 m / D with
  • C = speed of sound in air, m = mass per unit area of the plate, D = Eh 3/12 (1-υ 2) = bending stiffness of the plate, E = Young's modulus, υ = Poisson's ratio , h = thickness of the plate);
  • L x and L y are the lengths of the sides of the rectangular space, expressed in meters;
  • f mrm is the mass-spring-mass resonance frequency given by formula (1); and
  • f 200 = c 0 / max (L x , L y ) is the natural frequency of the even mode of the cavity having the lowest natural frequency.
  • Des exemples de courbes d'atténuation (indice d'affaiblissement R en fonction de la fréquence) obtenues en simulant diverses constitutions des plaques sont représentés aux figures 5A à 5F qui correspondent respectivement aux points A à F sur le diagramme de la figure 4. Les courbes en trait plein illustrent l'indice d'affaiblissement en l'absence de contrôle actif, et les courbes en trait interrompu illustrent l'indice d'affaiblissement simulé en soustrayant la contribution du mode (0,0,0). Les configurations des plaques sont présentées au tableau III ci-dessous.Examples of attenuation curves (index attenuation R as a function of frequency) obtained in simulating various constitutions of the plates are represented in FIGS. 5A to 5F which correspond respectively to the points A to F on the diagram in Figure 4. The curves at solid line illustrate the weakening index in the absence of active control, and the line curves interrupted illustrate the simulated loss index in subtracting the contribution from the mode (0,0,0). The plate configurations are shown in Table III below.

    On peut constater aux figures 5A à 5F que les cas (C,E et F) pour lesquels sont vérifiées les relations (5) ou (6) sont ceux conduisant à l'amélioration la plus importante de l'atténuation autour de la fréquence de résonance fmrm. Un contrôle actif utilisant une configuration de capteurs et d'actionneurs qui fournisse une approximation satisfaisante de la réponse du mode (0,0,0) conduira à une amélioration sensible de l'atténuation lorsque les matériaux et les dimensions des plaques obéissent aux relations (5) ou (6).

    Figure 00130001
    It can be seen in FIGS. 5A to 5F that the cases (C, E and F) for which the relationships (5) or (6) are verified are those leading to the most significant improvement in the attenuation around the frequency of resonance f mrm . Active control using a configuration of sensors and actuators that provides a satisfactory approximation of the mode response (0,0,0) will lead to a significant improvement in the attenuation when the materials and dimensions of the plates obey the relationships ( 5) or (6).
    Figure 00130001

    Claims (6)

    1. Acoustic attenuation device, comprising two substantially parallel plates (10, 11) defining a rectangularly shaped internal space (12), noise detection means (13), inverse noise emission means (14) arranged between the two plates, and control means (18) for controlling the inverse noise emission means in such a way as to minimize a quantity (e) supplied by the noise detection means, characterized in that the inverse noise emission means comprise four actuators (14) whose respective positions parallel to the plates (10, 11) correspond approximately to the four points constituting the centers of the sides of the rectangular shape of said internal space (12), in that the noise detection means comprise four sensors (13) arranged between the plates, whose respective positions parallel to the plates (10, 11) correspond approximately to the four points constituting the centers of the sides of a rhombus (17) whose vertices are the centers of the sides of the rectangular shape of said internal space (12), in that the four actuators (14) are controlled in phase, and in that the quantity to be minimized is represented by the sum of the output signals of the four sensors (13).
    2. Acoustic attenuation de vice, comprising two substantially parallel plates (10, 11) defining a rectangularly shaped internal space (12), noise detection means(13) arranged between the two plates, inverse noise emission means (14) arranged between the two plates, and control means (18) for controlling the inverse noise emission means in such a way as to minimize a quantity (e) supplied by the noise detection means, characterized in that the noise detection means comprise four sensors arranged between the plates, whose respective positions parallel to the plates (10, 11) correspond approximately to the four points constituting the centers of the sides of the rectangular shape of said internal space (12), in that the inverse noise emission means comprise four actuators whose respective positions parallel to the plates (10, 11) correspond approximately to the four points constituting the centers of the sides of a rhombus (17) whose vertices are the centers of the sides of the rectangular shape of said internal space (12), in that the four actuators (14) are controlled in phase, and in that the quantity to be minimized is represented by the sum of the output signals of the four sensors (13).
    3. Device according to Claim 1 or 2, characterized in that the materials and the dimensions of the plates (10, 11) are chosen in such a way as to satisfy the relationships: fc / (LxLy)2 > 800 and fmrm < f200 or the relationships fc / (LxLy)2 > 300 and fmrm < f200/2, in which
      fc, expressed in hertz, denotes the critical frequency of a plate or the larger of the two critical frequencies if the plates (10, 11) are of different compositions
      Lx and Ly, expressed in meters, are the lengths of the sides of the rectangular shape of the internal space (12) located between the two plates,
      fmrm is the resonant frequency of the mass-springmass system, constituted by the two plates (10, 11) and the medium located between them, and
      f200 is an eigenfrequency given by the formula f200 = c0 / max (Lx, Ly), where c0 denotes the speed of sound in the medium located between the two plates (10, 11).
    4. Device according to any one of the preceding claims, characterized in that it comprises a sensor (24) supplying a reference signal, and a band-pass filter (21) to which the reference signal is applied, the output of the band-pass filter (21) being subjected to an adaptive filtering with finite impulse response in order to control the actuators (14), the band-pass filter (21) allowing frequencies between fmrm / 2 and min(2 fmrm, f200) to pass, where
      fmrm is the resonant frequency of the mass-spring-mass system constituted by the two plates (10, 11) and the medium located between them, and
      f200 is an eigenfrequency given by the formula f200 = c0 / max (Lx, Ly), where c0 denotes the speed of sound in the medium located between the two plates, and Lx and Ly denote the lengths of the sides of the rectangular shape of the internal space (12) located between the two plates (10, 11).
    5. Device according to any one of Claims 1 to 4, characterized in that a gas lighter than air occupies the internal space (12) located between the two plates (10, 11).
    6. Device according to Claim 5, characterized in that said gas lighter than air is helium.
    EP94915585A 1993-05-06 1994-05-04 Noise attenuation device with active double wall Expired - Lifetime EP0697122B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9305451A FR2704969B1 (en) 1993-05-06 1993-05-06 Acoustic attenuation device with active double wall.
    FR9305451 1993-05-06
    PCT/FR1994/000520 WO1994027283A1 (en) 1993-05-06 1994-05-04 Noise attenuation device with active double wall

    Publications (2)

    Publication Number Publication Date
    EP0697122A1 EP0697122A1 (en) 1996-02-21
    EP0697122B1 true EP0697122B1 (en) 1999-12-08

    Family

    ID=9446850

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94915585A Expired - Lifetime EP0697122B1 (en) 1993-05-06 1994-05-04 Noise attenuation device with active double wall

    Country Status (6)

    Country Link
    US (1) US5724432A (en)
    EP (1) EP0697122B1 (en)
    AT (1) ATE187570T1 (en)
    DE (1) DE69422036D1 (en)
    FR (1) FR2704969B1 (en)
    WO (1) WO1994027283A1 (en)

    Families Citing this family (49)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH0944168A (en) * 1995-08-03 1997-02-14 Taisei Denki Kogyo:Kk Floor shock sound eliminating device for multistoried building
    WO1997016817A1 (en) * 1995-11-02 1997-05-09 Trustees Of Boston University Sound and vibration control windows
    US6078673A (en) * 1997-10-03 2000-06-20 Hood Technology Corporation Apparatus and method for active control of sound transmission through aircraft fuselage walls
    JP3736790B2 (en) * 2000-04-21 2006-01-18 三菱重工業株式会社 Active sound insulation wall
    KR100521823B1 (en) * 2002-03-29 2005-10-17 가부시끼가이샤 도시바 Active sound muffler and active sound muffling method
    US20040125922A1 (en) * 2002-09-12 2004-07-01 Specht Jeffrey L. Communications device with sound masking system
    GB2396512B (en) * 2002-12-19 2006-08-02 Ultra Electronics Ltd Noise attenuation system for vehicles
    US7327849B2 (en) * 2004-08-09 2008-02-05 Brigham Young University Energy density control system using a two-dimensional energy density sensor
    US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
    US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
    US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
    CN103259027A (en) 2005-04-28 2013-08-21 普罗透斯数字保健公司 Pharma-informatics system
    WO2008034789A1 (en) * 2006-09-18 2008-03-27 Anocsys Ag Arrangement having an active noise reduction system
    FR2906389B1 (en) * 2006-09-21 2008-12-26 Neopost Technologies Sa REDUCED NOISE LEVEL MAIL PROCESSING MACHINE
    US8068616B2 (en) * 2006-12-28 2011-11-29 Caterpillar Inc. Methods and systems for controlling noise cancellation
    US7933420B2 (en) * 2006-12-28 2011-04-26 Caterpillar Inc. Methods and systems for determining the effectiveness of active noise cancellation
    US8340318B2 (en) * 2006-12-28 2012-12-25 Caterpillar Inc. Methods and systems for measuring performance of a noise cancellation system
    EP2063771A1 (en) 2007-03-09 2009-06-03 Proteus Biomedical, Inc. In-body device having a deployable antenna
    US7854295B2 (en) * 2008-06-03 2010-12-21 Panasonic Corporation Active noise control system
    US8540633B2 (en) 2008-08-13 2013-09-24 Proteus Digital Health, Inc. Identifier circuits for generating unique identifiable indicators and techniques for producing same
    US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
    US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
    EP3906845A1 (en) 2009-04-28 2021-11-10 Otsuka Pharmaceutical Co., Ltd. Highly reliable ingestible event markers
    JP5841951B2 (en) 2010-02-01 2016-01-13 プロテウス デジタル ヘルス, インコーポレイテッド Data collection system
    SG184494A1 (en) 2010-04-07 2012-11-29 Proteus Biomedical Inc Miniature ingestible device
    JP2014504902A (en) 2010-11-22 2014-02-27 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible device with medicinal product
    JP2012118135A (en) * 2010-11-29 2012-06-21 Kurashiki Kako Co Ltd Active soundproof apparatus and active soundproof method
    JP2014514032A (en) 2011-03-11 2014-06-19 プロテウス デジタル ヘルス, インコーポレイテッド Wearable personal body-related devices with various physical configurations
    US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
    WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
    AU2013293234B2 (en) 2012-07-23 2017-08-31 Otsuka Pharmaceutical Co., Ltd. Techniques for manufacturing ingestible event markers comprising an ingestible component
    AU2013318130A1 (en) * 2012-09-21 2015-04-16 Proteus Digital Health, Inc. Wireless wearable apparatus, system, and method
    WO2014062674A1 (en) 2012-10-18 2014-04-24 Proteus Digital Health, Inc. Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
    US11149123B2 (en) 2013-01-29 2021-10-19 Otsuka Pharmaceutical Co., Ltd. Highly-swellable polymeric films and compositions comprising the same
    JP6498177B2 (en) 2013-03-15 2019-04-10 プロテウス デジタル ヘルス, インコーポレイテッド Identity authentication system and method
    US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
    US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
    CA2924815C (en) 2013-09-20 2017-06-20 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
    WO2015044722A1 (en) 2013-09-24 2015-04-02 Proteus Digital Health, Inc. Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance
    US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
    US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
    US20170256251A1 (en) * 2016-03-01 2017-09-07 Guardian Industries Corp. Acoustic wall assembly having double-wall configuration and active noise-disruptive properties, and/or method of making and/or using the same
    US10134379B2 (en) 2016-03-01 2018-11-20 Guardian Glass, LLC Acoustic wall assembly having double-wall configuration and passive noise-disruptive properties, and/or method of making and/or using the same
    US10354638B2 (en) * 2016-03-01 2019-07-16 Guardian Glass, LLC Acoustic wall assembly having active noise-disruptive properties, and/or method of making and/or using the same
    KR102215238B1 (en) 2016-07-22 2021-02-22 프로테우스 디지털 헬스, 인코포레이티드 Electromagnetic sensing and detection of ingestible event markers
    WO2018081337A1 (en) 2016-10-26 2018-05-03 Proteus Digital Health, Inc. Methods for manufacturing capsules with ingestible event markers
    US10304473B2 (en) 2017-03-15 2019-05-28 Guardian Glass, LLC Speech privacy system and/or associated method
    US10373626B2 (en) 2017-03-15 2019-08-06 Guardian Glass, LLC Speech privacy system and/or associated method
    US10726855B2 (en) 2017-03-15 2020-07-28 Guardian Glass, Llc. Speech privacy system and/or associated method

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3020830A1 (en) * 1980-06-02 1981-12-10 Messerschmitt-Bölkow-Blohm GmbH, 8000 München COINCIDENCE SILENCER
    GB8615315D0 (en) * 1986-06-23 1986-07-30 Secr Defence Aircraft cabin noise control apparatus
    US5024288A (en) * 1989-08-10 1991-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Sound attenuation apparatus
    JPH0395349A (en) * 1989-09-07 1991-04-19 Hitachi Plant Eng & Constr Co Ltd Electronic noise silencer
    US5245552A (en) * 1990-10-31 1993-09-14 The Boeing Company Method and apparatus for actively reducing multiple-source repetitive vibrations
    JPH06242786A (en) * 1991-03-26 1994-09-02 Matsushita Electric Works Ltd Method and device for sound insulation
    JPH05173580A (en) * 1991-12-24 1993-07-13 Matsushita Electric Works Ltd Sound insulating panel
    US5315661A (en) * 1992-08-12 1994-05-24 Noise Cancellation Technologies, Inc. Active high transmission loss panel
    FR2726681B1 (en) * 1994-11-03 1997-01-17 Centre Scient Tech Batiment ACTIVE DOUBLE WALL ACOUSTIC MITIGATION DEVICE

    Also Published As

    Publication number Publication date
    DE69422036D1 (en) 2000-01-13
    EP0697122A1 (en) 1996-02-21
    ATE187570T1 (en) 1999-12-15
    FR2704969A1 (en) 1994-11-10
    US5724432A (en) 1998-03-03
    WO1994027283A1 (en) 1994-11-24
    FR2704969B1 (en) 1995-07-28

    Similar Documents

    Publication Publication Date Title
    EP0697122B1 (en) Noise attenuation device with active double wall
    EP0710946A1 (en) Double-walled active noise suppression device
    EP0237454B1 (en) Processes and devices for attenuating noise from an external origin arriving at the ear drum, and for improving the intelligibility of electro-acoustic communications
    EP0852793B1 (en) Hybrid active vibration control method and device, particularly for mechanical and acoustic vibration and the like
    EP0601934B1 (en) Improvements to methods and devices used to protect from external noises a given volume, preferably located inside a room
    CA2233253C (en) Active acoustic attenuation device for use in a duct, particularly for soundproofing a ventilation and/or air-conditioning network
    FR2636189A1 (en) ELECTRONIC NOISE MITIGATION SYSTEM
    FR2472326A1 (en) MICROPHONE NETWORK WITH DIRECTIONAL DIAGRAM
    Zhu et al. Active control of acoustic reflection, absorption, and transmission using thin panel speakers
    EP3371806B1 (en) Multi-glazed window incorporating an active noise reduction device
    CA2218399C (en) Personal active acoustic attenuation process and device, featuring invariant impulse response
    FR2536891A2 (en) APPARATUS FOR MITIGATING SOUND VIBRATIONS AND REMOVING VIBRATIONS
    WO2014053994A1 (en) Electroacoustic speaker
    EP1094444B1 (en) Active device for the attenuation of sonic intensity
    WO2002077968A1 (en) Walls or partitions having adjustable acoustic absorption and/or insulation properties
    EP3167170A2 (en) Sound attenuation device and method
    EP1014669A1 (en) Acoustic system for echo cancellation
    EP2432600B1 (en) Acoustic wave generation device and equipment including a plurality of such devices
    EP3878189A1 (en) Acoustic device generating improved sound
    EP0454601B1 (en) Process for damping acoustic waves in a circuit of circulating fluid
    FR2724467A1 (en) Active damping of mechanical vibrations with separate detectors for noise deadening in motor vehicle passenger compartment
    Duthoit Active acoustic absorption of noise generated by fans in ducts
    FR2785481A1 (en) Hands free telephone sound echo reduction system having separate position microphones with outputs amplitude and phase measured and echo reduction application unit/loudspeaker applied.
    FR2958329A1 (en) Method for structural design of cooling circuit utilized for cooling internal combustion engine attenuating sound frequencies in vehicle, involves minimizing amplitude of sound wave at exit of cooling circuit by adjusting cooling circuit

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19951201

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19980731

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 19991208

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991208

    Ref country code: FR

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19991208

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19991208

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991208

    REF Corresponds to:

    Ref document number: 187570

    Country of ref document: AT

    Date of ref document: 19991215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69422036

    Country of ref document: DE

    Date of ref document: 20000113

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000309

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000531

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000531

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000531

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 19991208

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    BERE Be: lapsed

    Owner name: CENTRE SCIENTIFIQUE ET TECHNIQUE DU BATIMENT

    Effective date: 20000531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001201

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20001201