EP0710946A1 - Double-walled active noise suppression device - Google Patents

Double-walled active noise suppression device Download PDF

Info

Publication number
EP0710946A1
EP0710946A1 EP95402423A EP95402423A EP0710946A1 EP 0710946 A1 EP0710946 A1 EP 0710946A1 EP 95402423 A EP95402423 A EP 95402423A EP 95402423 A EP95402423 A EP 95402423A EP 0710946 A1 EP0710946 A1 EP 0710946A1
Authority
EP
European Patent Office
Prior art keywords
plates
rectangular shape
noise
interior space
mrm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95402423A
Other languages
German (de)
French (fr)
Inventor
Laurent Gagliardini
Jacques Roland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Scientifique et Technique du Batiment CSTB
Original Assignee
Centre Scientifique et Technique du Batiment CSTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Scientifique et Technique du Batiment CSTB filed Critical Centre Scientifique et Technique du Batiment CSTB
Publication of EP0710946A1 publication Critical patent/EP0710946A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/102Two dimensional
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/106Boxes, i.e. active box covering a noise source; Enclosures
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1282Automobiles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/129Vibration, e.g. instead of, or in addition to, acoustic noise
    • G10K2210/1291Anti-Vibration-Control, e.g. reducing vibrations in panels or beams
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3027Feedforward
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3036Modes, e.g. vibrational or spatial modes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3046Multiple acoustic inputs, multiple acoustic outputs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3219Geometry of the configuration
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3223Materials, e.g. special compositions or gases

Definitions

  • the present invention relates to an attenuation device type acoustic comprising two plates substantially parallels delimiting a rectangular space, noise detection means disposed between the two plates, counter-noise emission means arranged between the two plates, and regulating means for controlling the means for emitting noise abatements so as to to minimize a quantity supplied by the detection means noise.
  • the invention has applications for example in the field of soundproofing of premises, in the realization hoods for noisy equipment, or in the insulation of passenger compartments of means of transport. An important application is in the realization of double glazing.
  • This resonant frequency is generally between 50 and 250 Hz.
  • the attenuation device aims to compensate for the low acoustic insulation provided by the double wall in the vicinity of f mrm .
  • the principle consists in preventing - via an electro-acoustic system - any variation in volume of the air space.
  • f L M n vs 0 2 ⁇ l ⁇ L x + m ⁇ L y + not ⁇ L z
  • the variation in volume of the air gap is directly proportional to the amplitude of the mode (0,0,0) without the amplitude of the other modes in the vicinity of the resonance frequency of the wall f mrm being affected.
  • the expression of the acoustic pressure given above (2) shows that the measurement carried out by a microphone will include the responses of other modes than the mode (0,0,0).
  • the invention provides a device acoustic attenuation of the type indicated at the beginning, characterized in that the means for emitting noise abatements include four actuators with respective positions parallel to the plates correspond approximately in the middle of the sides of the rectangular shape of said interior space, in that the noise detection means include four sensors whose respective positions parallel to the plates correspond approximately at the four points on the longest sides of the rectangular shape of said interior space and distant each a quarter of the length of a long side relative at a corner of said rectangular shape, in that the four actuators are controlled in phase, and in that the quantity to be minimized is represented by the sum of output signals from the four sensors.
  • the sensors and actuators practically do not interact with modes odd order of the space between the two plates (i.e. modes whose indices are of the type (l, m, n) with odd l or m), nor with the mode (2,0,0) which is the one with the lowest natural frequency among even order modes other than mode (0,0,0). So we can obtain satisfactory mode control (0,0,0) without significantly affect the effectiveness of mitigation by the excitement of natural low frequency modes.
  • the respective positions of sensors and actuators are inverted, i.e. that the noise detection means comprise four sensors whose respective positions parallel to plates roughly correspond to the midpoints of sides of the rectangular shape of said interior space, and that the means of emission of noise abatement include four actuators with respective positions in parallel the plates correspond approximately to the four points located on the long sides of the rectangular shape of said interior space and each one quarter of the length of a large side with respect to a corner of said rectangular shape.
  • the two embodiments above have the advantage that the sensors and actuators are located on the edges of the plates. This advantage is important when the plates are transparent or when the interplate space is not easily accessible (double wall prefabricated by example). It is not necessary to provide a structure particular between the plates to support the actuators or the sensors.
  • the device shown in Figure 1 constitutes a active double wall usable to provide insulation acoustics between the spaces on either side of the wall.
  • the wall includes two parallel rectangular plates 10, 11 delimiting between them an interior space 12 rectangular in shape.
  • the plates are shown flat on the face. It will be understood, however, that they could have a certain curvature, while remaining substantially parallel.
  • Sensors 13 and actuators 14 are arranged between the two plates 10, 11 for respectively detect the noise prevailing in space 12 and emit counter-noises in space 12.
  • the sensors 13 and the actuators 14 are placed on the edges of the interior space 12.
  • the arrangement of sensors 13 and actuators 14 parallel to the plates is illustrated in Figure 2.
  • the actuators 14 are at number of four and arranged at the four points constituting the midpoints of the sides of the rectangular space 12.
  • the sensors 13 are four in number and arranged each on a long side of the rectangular space 12, at a distance of one quarter the length of a long side with respect to a corner.
  • the sensors 13 can be microphones with electrets chosen to have sensitivity characteristics and phase not varying more than 1% from one sensor to the other.
  • the actuators 14 can be speakers.
  • An example of a usable speaker is the AUDAX model BMX 400 which represents a good compromise between the flow volume and size (nominal power 15 W, resonance frequency of the order of 150 Hz, diameter outside 77.8 mm, total mass 290 g).
  • a regulation unit 18 and provided for controlling the actuators 14 so as to minimize an error signal e provided by the sensors 13.
  • the error signal to minimize consists of the amplified sum of the output signals of the four sensors 13, delivered by a summator 22.
  • the control unit 18 includes a processing processor signal 23 programmed in a known manner to apply the gradient algorithm (LMS) with filtered reference.
  • LMS gradient algorithm
  • the coefficients of the filter are updated at each sampling cycle to minimize the error signal e.
  • Processor 23 addresses then the same control signal to the actuators 14, so that the actuators 14 are controlled in phase.
  • the resonance frequencies of the first modes air gap pairs (formula (2)) are given in Table I. (L M n) (2,0,0) (0.2.0) (2,2,0) (4,0,0) (4,2,0) f lmn (Hz) 216 290 362 434 522
  • the sum of the output signals from the four sensors which represents the signal e to be minimized, reflects the response of the mode (0,0,0) of the space 12 located between the plates 10, 11.
  • the error signal e there is practically no contribution of the odd order modes (l, m, n) with odd l or m taking into account the symmetrical arrangement of the sensors, nor of the even order mode of lowest natural frequency (2,0,0).
  • the mode contributing to the signal e and having the lowest natural frequency is the mode (4,0,0) if L x ⁇ 2L y or the mode (0,2,0 ) if L x ⁇ 2L y .
  • the natural frequency of this mode is relatively far from the resonance frequency f mrm , so that the influence of this mode and of higher index modes on the acoustic transmission is not decisive.
  • the actuators controlled in phase hardly excite order modes odd, nor the modes (2,0,0) and (0,2,0). So the excitement actuators 14 mainly acts to compensate for the mode transmission (0,0,0) without significantly increasing the amplitudes of the other modes of low natural frequency.
  • FIG. 3 shows the results of simulations of the acoustic attenuation provided by the device in FIG. 1 (without the filter 21) in the example of the parameters indicated above.
  • the dashed line curve corresponds to the values of the attenuation index R as a function of the frequency f of the noise to be attenuated in the case where there is active mode control (0,0,0), and the curve in solid line corresponds to the same values in the absence of active control. It can be seen that the active control according to the invention appreciably increases the weakening index in the range of low frequencies close to the resonance frequency f mrm .
  • the band-pass filter 21 is provided in the regulation unit 18. This filter 21, to which the reference signal is applied before the filtering with finite impulse response, allows the frequencies for which the mode control ( 0,0,0) has a favorable effect on the attenuation index, i.e.
  • f200 c0 / max (L x , L y ), where c0 denotes the speed of the sound in the medium located between the two plates 10, 11.
  • the space 12 located between the plates 10, 11 is occupied by a gas lighter than air.
  • This increases the speed of the sound in the medium located between the plates, which decreases the density of the modes proper to the low frequencies (formula (4)), while the resonance frequency f mrm is only slightly modified.
  • the relative contribution of the mode (0,0,0) to the acoustic transmission is then increased so that the efficiency of the active control of this mode is improved.
  • This effect is all the more marked when the gas is light.
  • Helium is therefore a preferred example for this gas. This effect also occurs for configurations of sensors and actuators other than that shown in FIG. 2.
  • FIGS. 5A to 5F Examples of attenuation curves (index attenuation R as a function of frequency) obtained in simulating various constitutions of the plates are represented in FIGS. 5A to 5F which correspond respectively to the points A to F on the diagram in Figure 4.
  • the curves at solid line illustrate the weakening index in the absence of active control, and the line curves interrupted illustrate the simulated loss index in subtracting the contribution from the mode (0,0,0).
  • the plate configurations are shown in Table III below.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Exhaust Silencers (AREA)

Abstract

The device includes two plates (10,11) which forming a double wall and enclose an interior space (12) of rectangular cross-section. Noise is detected e.g. by electret microphones (13) and cancelled by anti-noise loudspeakers (14) within this space. Four loudspeakers are positioned centrally on the edges of the enclosed space which are typically 1.6 m long, 1.2 m wide and 5 cm thick (d). Two microphones are placed on each longer edge, flanking the central loudspeaker, and one quarter-wavelength away from each corner. In a regulator (18) the sum (22) of the microphone outputs undergoes FIR adaptive least mean squares filtering (23) using a reference microphone (24).

Description

La présente invention concerne un dispositif d'atténuation acoustique du type comprenant deux plaques sensiblement parallèles délimitant un espace de forme rectangulaire, des moyens de détection de bruit disposés entre les deux plaques, des moyens d'émission de contre-bruits disposés entre les deux plaques, et des moyens de régulation pour commander les moyens d'émission de contre-bruits de manière à minimiser une grandeur fournie par les moyens de détection de bruit. The present invention relates to an attenuation device type acoustic comprising two plates substantially parallels delimiting a rectangular space, noise detection means disposed between the two plates, counter-noise emission means arranged between the two plates, and regulating means for controlling the means for emitting noise abatements so as to to minimize a quantity supplied by the detection means noise.

L'invention a des applications par exemple dans le domaine de l'isolation phonique de locaux, dans la réalisation de capotages pour équipements bruyants, ou dans le domaine de l'isolation des habitacles de moyens de transport. Une application importante est dans la réalisation de doubles vitrages. The invention has applications for example in the field of soundproofing of premises, in the realization hoods for noisy equipment, or in the insulation of passenger compartments of means of transport. An important application is in the realization of double glazing.

Un dispositif du type indiqué ci-dessus, dit double paroi active, repose sur le principe de fonctionnement rappelé ci-après. A device of the type indicated above, said to be double active wall, based on the operating principle recalled below.

La fréquence de résonance masse-ressort-masse d'une paroi double constituée par deux plaques rectangulaires parallèles séparées par une lame d'air d'épaisseur d est donnée par la relation : avec :

ρ₀ :
masse volumique du milieu situé entre les plaques (1,18 Kg/m³ dans le cas de l'air).
c₀ :
célérité du son dans le milieu situé entre les plaques (340 m/s dans le cas de l'air). ρ0 c 2 0 d : rigidité de la lame d'air
m₁,m₂ :
masse surfacique des plaques (en kg/m²)
The mass-spring-mass resonance frequency of a double wall constituted by two parallel rectangular plates separated by an air gap of thickness d is given by the relation: with:
ρ₀:
density of the medium located between the plates (1.18 Kg / m³ in the case of air).
c₀:
speed of sound in the medium between the plates (340 m / s in the case of air). ρ 0 vs 2 0 d : stiffness of the air gap
m₁, m₂:
surface mass of sheets (in kg / m²)

Cette fréquence de résonance est généralement comprise entre 50 et 250 Hz. This resonant frequency is generally between 50 and 250 Hz.

Globalement, pour une fréquence f donnée, on considère le comportement acoustique d'une paroi double de la manière suivante :

  • f < fmrm : les deux plaques vibrent en phase. La variation de volume entre les plaques reste faible. La double paroi se comporte comme une paroi simple de masse équivalente.
  • f ≈ fmrm : les deux plaques, fortement couplées par la lame d'air, vibrent en opposition de phase. Ceci se traduit par de fortes variations de volume de la lame d'air (phénomène de "respiration" des plaques) et par une faible isolation acoustique par la double paroi.
  • f > fmrm : les mouvements des deux plaques sont découplés par la lame d'air. L'isolation acoustique de la paroi augmente alors rapidement avec la fréquence.
Overall, for a given frequency f, the acoustic behavior of a double wall is considered as follows:
  • f <f mrm : the two plates vibrate in phase. The variation in volume between the plates remains small. The double wall behaves like a single wall of equivalent mass.
  • f ≈ f mrm : the two plates, strongly coupled by the air gap, vibrate in phase opposition. This results in large variations in the volume of the air space (phenomenon of "breathing" of the plates) and in poor acoustic insulation by the double wall.
  • f> f mrm : the movements of the two plates are decoupled by the air gap . The acoustic insulation of the wall then increases rapidly with frequency.

Le dispositif d'atténuation vise à compenser la faible isolation acoustique procurée par la double paroi au voisinage de fmrm. Le principe consiste à empêcher -via un système électro-acoustique- toute variation de volume de la lame d'air. The attenuation device aims to compensate for the low acoustic insulation provided by the double wall in the vicinity of f mrm . The principle consists in preventing - via an electro-acoustic system - any variation in volume of the air space.

Le champ de pression acoustique dans la lame d'air peut s'écrire sous la forme d'une série modale : avec :

αlmn :
amplitude du mode l,m,n
lmn :
base modale associée à la cavité considérée. Dans le cas d'une lame d'air de forme parallélépipédique : Φ lmn (x,y,z)=cos(lπx/Lx )cos(mπy/Ly )cos(nπz/Lz )
Lx,Ly,Lz (=d) :
dimensions de la lame d'air
ω :
pulsation (= 2πf)
x,y :
coordonnées spatiales parallèlement aux plaques
z :
coordonnée spatiale perpendiculairement aux plaques
t :
temps.
The sound pressure field in the air space can be written in the form of a modal series: with:
α lmn :
mode amplitude l, m, n
lmn :
modal base associated with the considered cavity. In the case of an air knife of parallelepiped shape: Φ L M n (( X Y Z ) = cos ( lπx / L x ) cos ( mπy / L y ) cos ( nπz / L z )
L x , L y , L z (= d):
air gap dimensions
ω:
pulsation (= 2π f )
x, y:
spatial coordinates parallel to the plates
z:
spatial coordinate perpendicular to the plates
t:
time.

La fréquence propre f lmn d'un mode d'indices (l,m,n) de la lame d'air est donnée par la relation : flmn = c 0 lπ L x + mπ L y + nπ L z The natural frequency f lmn of a mode of indices (l, m, n) of the air gap is given by the relation: f L M n = vs 0 l π L x + m π L y + not π L z

La variation de volume de la lame d'air est directement proportionnelle à l'amplitude du mode (0,0,0) sans que l'amplitude des autres modes au voisinage de la fréquence de résonance de la paroi fmrm ne soit affectée. Or il est difficile de mesurer et d'exciter uniquement ce mode par des actions qui, a priori, font intervenir l'ensemble des modes. En effet, l'expression de la pression acoustique donnée ci-dessus (2) montre que la mesure effectuée par un microphone inclura les réponses d'autres modes que le mode (0,0,0). The variation in volume of the air gap is directly proportional to the amplitude of the mode (0,0,0) without the amplitude of the other modes in the vicinity of the resonance frequency of the wall f mrm being affected. However, it is difficult to measure and excite only this mode by actions which, a priori, involve all of the modes. Indeed, the expression of the acoustic pressure given above (2) shows that the measurement carried out by a microphone will include the responses of other modes than the mode (0,0,0).

Il est souhaitable, pour obtenir une atténuation efficace, de réduire la contribution dans la grandeur à minimiser des modes de fréquence basse autres que le mode (0,0,0), et de faire en sorte que les moyens d'émission de contre-bruits excitent le mode (0,0,0) de façon prépondérante en excitant le moins possible les autres modes de la lame d'air. It is desirable to obtain attenuation effective, reduce the contribution in size to minimize low frequency modes other than mode (0,0,0), and to ensure that the means of emission of counter-noise predominantly excites the mode (0,0,0) by exciting as little as possible the other modes of the air blade.

C'est un but de l'invention que d'améliorer ainsi l'efficacité de l'atténuation fournie par un dispositif à double paroi active. It is an object of the invention to thus improve the effectiveness of the attenuation provided by a device to active double wall.

Dans ce but, l'invention propose un dispositif d'atténuation acoustique du type indiqué au début, caractérisé en ce que les moyens d'émission de contre-bruits comprennent quatre actionneurs dont les positions respectives parallèlement aux plaques correspondent approximativement aux milieux des côtés de la forme rectangulaire dudit espace intérieur, en ce que les moyens de détection de bruit comprennent quatre capteurs dont les positions respectives parallèlement aux plaques correspondent approximativement aux quatre points situés sur les plus grands côtés de la forme rectangulaire dudit espace intérieur et distants chacun d'un quart de la longueur d'un grand côté par rapport à un coin de ladite forme rectangulaire, en ce que les quatre actionneurs sont commandés en phase, et en ce que la grandeur à minimiser est représentée par la somme des signaux de sortie des quatre capteurs. To this end, the invention provides a device acoustic attenuation of the type indicated at the beginning, characterized in that the means for emitting noise abatements include four actuators with respective positions parallel to the plates correspond approximately in the middle of the sides of the rectangular shape of said interior space, in that the noise detection means include four sensors whose respective positions parallel to the plates correspond approximately at the four points on the longest sides of the rectangular shape of said interior space and distant each a quarter of the length of a long side relative at a corner of said rectangular shape, in that the four actuators are controlled in phase, and in that the quantity to be minimized is represented by the sum of output signals from the four sensors.

Avec cette disposition, les capteurs et les actionneurs n'interagissent pratiquement pas avec les modes d'ordre impair de l'espace situé entre les deux plaques (c'est-à-dire les modes dont les indices sont du type (l,m,n) avec l ou m impair), ni avec le mode (2,0,0) qui est celui ayant la fréquence propre la plus basse parmi les modes d'ordre pair autre que le mode (0,0,0). On peut donc obtenir un contrôle satisfaisant du mode (0,0,0) sans affecter sensiblement l'efficacité de l'atténuation par l'excitation de modes à basse fréquence propre. With this arrangement, the sensors and actuators practically do not interact with modes odd order of the space between the two plates (i.e. modes whose indices are of the type (l, m, n) with odd l or m), nor with the mode (2,0,0) which is the one with the lowest natural frequency among even order modes other than mode (0,0,0). So we can   obtain satisfactory mode control (0,0,0) without significantly affect the effectiveness of mitigation by the excitement of natural low frequency modes.

Dans une autre forme de réalisation de l'invention reposant sur le même principe, les positions respectives des capteurs et des actionneurs sont interverties, c'est-à-dire que les moyens de détection de bruit comprennent quatre capteurs dont les positions respectives parallèlement aux plaques correspondent approximativement aux milieux des côtés de la forme rectangulaire dudit espace intérieur, et que les moyens d'émission de contre-bruits comprennent quatre actionneurs dont les positions respectives parallèlement aux plaques correspondent approximativement aux quatre points situés sur les grands côtés de la forme rectangulaire dudit espace intérieur et distants chacun d'un quart de la longueur d'un grand côté par rapport à un coin de ladite forme rectangulaire. In another embodiment of the invention based on the same principle, the respective positions of sensors and actuators are inverted, i.e. that the noise detection means comprise four sensors whose respective positions parallel to plates roughly correspond to the midpoints of sides of the rectangular shape of said interior space, and that the means of emission of noise abatement include four actuators with respective positions in parallel the plates correspond approximately to the four points located on the long sides of the rectangular shape of said interior space and each one quarter of the length of a large side with respect to a corner of said rectangular shape.

Les deux modes de réalisation ci-dessus ont l'avantage que les capteurs et les actionneurs sont situés sur les bords des plaques. Cet avantage est important lorsque les plaques sont transparentes ou lorsque l'espace interplaques n'est pas aisément accessible (double paroi préfabriquée par exemple). Il n'est pas nécessaire de prévoir une structure particulière entre les plaques pour soutenir les actionneurs ou les capteurs. The two embodiments above have the advantage that the sensors and actuators are located on the edges of the plates. This advantage is important when the plates are transparent or when the interplate space is not easily accessible (double wall prefabricated by example). It is not necessary to provide a structure particular between the plates to support the actuators or the sensors.

On a également constaté qu'il était avantageux qu'un gaz plus léger que l'air, par exemple de l'hélium, occupe l'espace intérieur situé entre les deux plaques. Cette diminution de la densité du milieu situé entre les plaques entraíne une augmentation de la célérité du son dans ce milieu et donc une augmentation des fréquences propres associées aux différents modes (cf.formule (4)). Il en résulte une moindre contribution à la transmission acoustique des modes autres que le mode (0,0,0), et donc une meilleure atténuation par le contrôle sélectif du mode (0,0,0). It has also been found to be advantageous for a gas lighter than air, for example helium, occupies the interior space between the two plates. This decrease the density of the medium between the plates causes an increase in the speed of sound in this middle and therefore an increase in natural frequencies associated with the different modes (see formula (4)). The result less contribution to acoustic transmission modes other than mode (0,0,0), and therefore better attenuation by selective mode control (0,0,0).

D'autres particularités et avantages de l'invention apparaítront dans la description ci-après d'un exemple de réalisation préféré mais non limitatif. Aux dessins annexés :

  • la figure 1 représente schématiquement un dispositif d'atténuation acoustique selon l'invention, vu en coupe suivant la ligne I indiquée sur la figure 2 ;
  • la figure 2 est une vue schématique illustrant la position des capteurs et des actionneurs du dispositif de la figure 1 ;
  • la figure 3 est un graphique montrant l'atténuation acoustique que peut procurer un dispositif tel que celui des figures 1 et 2 ;
  • la figure 4 est un graphique illustrant une gamme de paramètres préférés dans un dispositif selon l'invention ; et
  • les figures 5A à 5F sont des graphiques montrant l'atténuation acoustique qu'on peut obtenir avec différents exemples de constitution des plaques.
Other features and advantages of the invention will appear in the description below of a preferred but non-limiting example of embodiment. In the accompanying drawings:
  • Figure 1 schematically shows an acoustic attenuation device according to the invention, seen in section along line I indicated in Figure 2;
  • Figure 2 is a schematic view illustrating the position of the sensors and actuators of the device of Figure 1;
  • Figure 3 is a graph showing the acoustic attenuation that a device such as that of Figures 1 and 2 can provide;
  • Figure 4 is a graph illustrating a range of preferred parameters in a device according to the invention; and
  • FIGS. 5A to 5F are graphs showing the acoustic attenuation that can be obtained with different examples of construction of the plates.

Le dispositif représenté à la figure 1 constitue une double paroi active utilisable pour procurer une isolation acoustique entre les espaces situés de part et d'autre de la paroi. La paroi comprend deux plaques rectangulaires parallèles 10, 11 délimitant entre elles un espace intérieur 12 de forme rectangulaire. Les plaques sont représentées planes sur la figure. On comprendra toutefois qu'elles pourraient présenter une certaine courbure, tout en restant sensiblement parallèles. Des capteurs 13 et des actionneurs 14 sont disposés entre les deux plaques 10, 11 pour respectivement détecter les bruits régnant dans l'espace 12 et émettre des contre-bruits dans l'espace 12. The device shown in Figure 1 constitutes a active double wall usable to provide insulation acoustics between the spaces on either side of the wall. The wall includes two parallel rectangular plates 10, 11 delimiting between them an interior space 12 rectangular in shape. The plates are shown flat on the face. It will be understood, however, that they could have a certain curvature, while remaining substantially parallel. Sensors 13 and actuators 14 are arranged between the two plates 10, 11 for respectively detect the noise prevailing in space 12 and emit counter-noises in space 12.

Les capteurs 13 et les actionneurs 14 sont placés sur les bords de l'espace intérieur 12. La disposition des capteurs 13 et des actionneurs 14 parallèlement aux plaques est illustrée à la figure 2. Les actionneurs 14 sont au nombre de quatre et disposés aux quatre points constituant les milieux des côtés de l'espace rectangulaire 12. Les capteurs 13 sont au nombre de quatre et disposés chacun sur un grand côté de l'espace rectangulaire 12, à une distance d'un quart de la longueur d'un grand côté par rapport à un coin. The sensors 13 and the actuators 14 are placed on the edges of the interior space 12. The arrangement of sensors 13 and actuators 14 parallel to the plates is illustrated in Figure 2. The actuators 14 are at number of four and arranged at the four points constituting the midpoints of the sides of the rectangular space 12. The sensors   13 are four in number and arranged each on a long side of the rectangular space 12, at a distance of one quarter the length of a long side with respect to a corner.

Les capteurs 13 peuvent être des microphones à électrets choisis pour avoir des caractéristiques de sensibilité et de phase ne variant pas plus de 1 % d'un capteur à l'autre. Les actionneurs 14 peuvent être des haut-parleurs. Un exemple de haut-parleur utilisable est le modèle AUDAX BMX 400 qui représente un bon compromis entre le débit volumique et l'encombrement (puissance nominale 15 W, fréquence de résonance de l'ordre de 150 Hz, diamètre extérieur 77,8 mm, masse totale 290 g). The sensors 13 can be microphones with electrets chosen to have sensitivity characteristics and phase not varying more than 1% from one sensor to the other. The actuators 14 can be speakers. An example of a usable speaker is the AUDAX model BMX 400 which represents a good compromise between the flow volume and size (nominal power 15 W, resonance frequency of the order of 150 Hz, diameter outside 77.8 mm, total mass 290 g).

Une unité de régulation 18 et prévue pour commander les actionneurs 14 de manière à minimiser un signal d'erreur e fourni par les capteurs 13. Le signal d'erreur à minimiser est constitué par la somme amplifiée des signaux de sortie des quatre capteurs 13, délivrée par un sommateur 22. L'unité de régulation 18 comprend un processeur de traitement de signal 23 programmé de façon connue pour appliquer l'algorithme du gradient (LMS) avec référence filtrée. Ce mode de filtrage adaptatif à réponse impulsionnelle finie est bien connu dans le domaine de l'annulation de bruit (voir par exemple les ouvrages "Traitement numérique du signal" par M. Bellanger, Editions Masson, Paris 1981 ; et "Adaptive signal processing" par B. Widrow et S.D. Stearns, Prentice Hall, 1985). Un microphone de référence 24, situé du côté de la source des bruits à atténuer, fournit un signal de référence qui est appliqué à un filtre passe-bande 21 dont la sortie, adressée au processeur 23, est soumise au filtrage à réponse impulsionnelle finie. Les coefficients du filtre sont mis à jour à chaque cycle d'échantillonnage pour minimiser le signal d'erreur e. Le processeur 23 adresse alors le même signal de commande aux actionneurs 14, de sorte que les actionneurs 14 sont commandés en phase. A regulation unit 18 and provided for controlling the actuators 14 so as to minimize an error signal e provided by the sensors 13. The error signal to minimize consists of the amplified sum of the output signals of the four sensors 13, delivered by a summator 22. The control unit 18 includes a processing processor signal 23 programmed in a known manner to apply the gradient algorithm (LMS) with filtered reference. This adaptive filtering mode with finite impulse response is well known in the field of noise cancellation (see for example the works "Digital processing of signal "by M. Bellanger, Editions Masson, Paris 1981; and "Adaptive signal processing" by B. Widrow and S.D. Stearns, Prentice Hall, 1985). A reference microphone 24, located on the side of the source of the noises to be attenuated, provides a reference signal which is applied to a bandpass filter 21, the output of which, addressed to processor 23, is subject to finite impulse response filtering. The coefficients of the filter are updated at each sampling cycle to minimize the error signal e. Processor 23 addresses then the same control signal to the actuators 14, so that the actuators 14 are controlled in phase.

Dans un exemple de réalisation typique, les deux plaques 10, 11 sont réalisées en plexiglass et ont pour masse surfacique m₁=m₂=6 kg/m². Elles délimitent un espace intérieur 12 d'épaisseur d=5 cm dont la forme rectangulaire a des côtés de longueur Lx=1,6 m et Ly=1,2 m. L'espace 12 étant rempli d'air, la fréquence de résonance masse-ressort-masse (formule (1)) vaut fmrm=150 Hz. La fréquence critique des plaques est de 6 400 Hz. Les fréquences de résonance des premiers modes pairs de la lame d'air (formule (2)) sont données au tableau I. (l,m,n) (2,0,0) (0,2,0) (2,2,0) (4,0,0) (4,2,0) flmn (Hz) 216 290 362 434 522 In a typical embodiment, the two plates 10, 11 are made of plexiglass and have the surface mass m₁ = m₂ = 6 kg / m². They delimit an interior space 12 of thickness d = 5 cm whose rectangular shape has sides of length L x = 1.6 m and L y = 1.2 m. Since space 12 is filled with air, the mass-spring-mass resonance frequency (formula (1)) is equal to f mrm = 150 Hz. The critical frequency of the plates is 6,400 Hz. The resonance frequencies of the first modes air gap pairs (formula (2)) are given in Table I. (L M n) (2,0,0) (0.2.0) (2,2,0) (4,0,0) (4,2,0) f lmn (Hz) 216 290 362 434 522

La somme des signaux de sortie des quatre capteurs, qui représente le signal e à minimiser, reflète la réponse du mode (0,0,0) de l'espace 12 situé entre les plaques 10, 11. Dans le signal d'erreur e, il n'y a pratiquement pas de contribution des modes d'ordre impair (l,m,n) avec l ou m impair compte tenu de la disposition symétrique des capteurs, ni du mode d'ordre pair de fréquence propre la plus basse (2,0,0). Hormis le mode (0,0,0), le mode contribuant au signal e et ayant la fréquence propre la plus basse est le mode (4,0,0) si Lx ≥ 2Ly ou le mode (0,2,0) si Lx ≤ 2Ly. Mais la fréquence propre de ce mode est relativement éloignée de la fréquence de résonance fmrm, de sorte que l'influence de ce mode et des modes d'indices supérieurs sur la transmission acoustique n'est pas déterminante. The sum of the output signals from the four sensors, which represents the signal e to be minimized, reflects the response of the mode (0,0,0) of the space 12 located between the plates 10, 11. In the error signal e , there is practically no contribution of the odd order modes (l, m, n) with odd l or m taking into account the symmetrical arrangement of the sensors, nor of the even order mode of lowest natural frequency (2,0,0). Apart from the mode (0,0,0), the mode contributing to the signal e and having the lowest natural frequency is the mode (4,0,0) if L x ≥ 2L y or the mode (0,2,0 ) if L x ≤ 2L y . However, the natural frequency of this mode is relatively far from the resonance frequency f mrm , so that the influence of this mode and of higher index modes on the acoustic transmission is not decisive.

Du fait de leurs positions, les actionneurs commandés en phase n'excitent pratiquement pas les modes d'ordre impair, ni les modes (2,0,0) et (0,2,0). Ainsi, l'excitation des actionneurs 14 agit principalement pour compenser la transmission par le mode (0,0,0) sans augmenter sensiblement les amplitudes des autres modes de basse fréquence propre. Due to their positions, the actuators controlled in phase hardly excite order modes odd, nor the modes (2,0,0) and (0,2,0). So the excitement actuators 14 mainly acts to compensate for the mode transmission (0,0,0) without significantly increasing the amplitudes of the other modes of low natural frequency.

La figure 3 montre des résultats de simulations de l'atténuation acoustique procurée par le dispositif de la figure 1 (sans le filtre 21) dans l'exemple des paramètres indiqués ci-dessus. La courbe en trait interrompu correspond aux valeurs de l'indice d'affaiblissement R en fonction de la fréquence f du bruit à atténuer dans le cas où il y a un contrôle actif du mode (0,0,0), et la courbe en trait plein correspond aux mêmes valeurs en l'absence de contrôle actif. On voit que le contrôle actif selon l'invention augmente sensiblement l'indice d'affaiblissement dans la gamme des basses fréquences voisines de la fréquence de résonance fmrm. FIG. 3 shows the results of simulations of the acoustic attenuation provided by the device in FIG. 1 (without the filter 21) in the example of the parameters indicated above. The dashed line curve corresponds to the values of the attenuation index R as a function of the frequency f of the noise to be attenuated in the case where there is active mode control (0,0,0), and the curve in solid line corresponds to the same values in the absence of active control. It can be seen that the active control according to the invention appreciably increases the weakening index in the range of low frequencies close to the resonance frequency f mrm .

Pour les fréquences éloignées de fmrm, il n'y a pas toujours une amélioration de l'indice d'affaiblissement et, dans certains cas, il peut même se produire une légère détérioration. C'est pourquoi on prévoit le filtre passe-bande 21 dans l'unité de régulation 18. Ce filtre 21, auquel est appliqué le signal de référence avant le filtrage à réponse impulsionnelle finie, laisse passer les fréquences pour lesquelles le contrôle du mode (0,0,0) a un effet favorable sur l'indice d'affaiblissement, c'est-à-dire les fréquences comprises entre fmrm/2 et min(2 fmrm, f₂₀₀), f₂₀₀ désignant la plus petite fréquence propre des modes d'ordre pair : f₂₀₀ = c₀/max(Lx,Ly), où c₀ désigne la célérité du son dans le milieu situé entre les deux plaques 10, 11. For frequencies far from f mrm , there is not always an improvement in the attenuation index and, in some cases, there may even be a slight deterioration. This is why the band-pass filter 21 is provided in the regulation unit 18. This filter 21, to which the reference signal is applied before the filtering with finite impulse response, allows the frequencies for which the mode control ( 0,0,0) has a favorable effect on the attenuation index, i.e. the frequencies between f mrm / 2 and min (2 f mrm , f₂₀₀), f₂₀₀ denoting the smallest natural frequency even order modes: f₂₀₀ = c₀ / max (L x , L y ), where c₀ denotes the speed of the sound in the medium located between the two plates 10, 11.

On comprendra que diverses modifications de l'exemple décrit ci-dessus en référence aux figures 1 et 2 sont envisageables sans sortir du cadre de l'invention. It will be understood that various modifications of the example described above with reference to Figures 1 and 2 are possible without departing from the scope of the invention.

Ainsi, il est possible d'intervertir les positions respectives des capteurs et des actionneurs (figure 2) en obtenant un aussi bon contrôle sélectif du mode (0,0,0). Il est également possible de garnir l'intérieur des plaques avec un isolant phonique tel que de la laine de verre. On peut encore utiliser un mode de régulation autre que le filtrage adaptatif précédemment décrit. Thus, it is possible to swap positions respective sensors and actuators (Figure 2) in obtaining such good selective mode control (0,0,0). he is also possible to fill the inside of the plates with a sound insulator such as glass wool. We can still use a regulation mode other than the adaptive filtering previously described.

Dans un mode de réalisation particulièrement avantageux, l'espace 12 situé entre les plaques 10, 11 est occupé par un gaz plus léger que l'air. Ceci augmente la célérité du son dans le milieu situé entre les plaques, ce qui diminue la densité des modes propres aux basses fréquences (formule (4)), tandis que la fréquence de résonance fmrm n'est que peu modifiée. La contribution relative du mode (0,0,0) à la transmission acoustique est alors augmentée de sorte que l'efficacité du contrôle actif de ce mode est améliorée. Cet effet est d'autant plus marqué que le gaz est léger. L'hélium est donc un exemple préféré pour ce gaz. Cet effet se produit également pour des configurations des capteurs et des actionneurs autres que celle représentée à la figure 2. Ainsi, dans le cas de la double paroi indiqué ci-dessus à titre d'exemple et avec une configuration à quatre capteurs et un actionneur central, le demandeur a mesuré expérimentalement les indices d'affaiblissement moyens Rm, en dB(A), donnés au tableau II lorsque l'espace 12 est rempli d'air ou d'hélium. Ces mesures ont été effectuées avec deux types de bruit à atténuer : un bruit rose et un bruit routier. On constate que l'amélioration de l'atténuation fournie par l'hélium est nettement plus importante lorsqu'on met en oeuvre le contrôle actif du mode (0,0,0). bruit rose Rm (dB(A)) bruit routier Rm (dB(A)) air sans contrôle actif 33 27 avec contrôle actif 40 35 hélium sans contrôle actif 35 28 avec contrôle actif 49 43 In a particularly advantageous embodiment, the space 12 located between the plates 10, 11 is occupied by a gas lighter than air. This increases the speed of the sound in the medium located between the plates, which decreases the density of the modes proper to the low frequencies (formula (4)), while the resonance frequency f mrm is only slightly modified. The relative contribution of the mode (0,0,0) to the acoustic transmission is then increased so that the efficiency of the active control of this mode is improved. This effect is all the more marked when the gas is light. Helium is therefore a preferred example for this gas. This effect also occurs for configurations of sensors and actuators other than that shown in FIG. 2. Thus, in the case of the double wall indicated above by way of example and with a configuration with four sensors and an actuator central, the applicant has experimentally measured the average attenuation indices R m , in dB (A), given in Table II when space 12 is filled with air or helium. These measurements were carried out with two types of noise to be attenuated: pink noise and road noise. It can be seen that the improvement in the attenuation provided by helium is much greater when the active mode control (0.0,0) is implemented. pink noise R m (dB (A)) road noise R m (dB (A)) air without active control 33 27 with active control 40 35 helium without active control 35 28 with active control 49 43

Le demandeur a réalisé de nombreuses simulations pour déterminer les paramètres des plaques donnant lieu à une bonne atténuation acoustique par le contrôle du mode (0,0,0). Sur la figure 4, on a représenté en hachuré le domaine de paramètres fournissant les meilleures caractéristiques d'atténuation. Le domaine correspond aux constitutions des plaques pour lesquelles la transmission acoustique autour de la fréquence de résonance fmrm est essentiellement régie par le mode (0,0,0). Il correspond aux relations : fc / (LxLy)2 > 800 et fmrm < f200 ou fc / (LxLy)2 > 300 et fmrm < f200/2, dans lesquelles

  • fc, en hertz, désigne la fréquence critique d'une plaque ou, si les plaques 10, 11 sont de constitutions différentes, la plus grande des fréquences critiques des deux plaques (dans le cas d'une plaque plane homogène,la fréquence critique vaut fc = c 0 m/D avec m = masse surfacique de la plaque, D = Eh³/12(1-υ²) = rigidité en flexion de la plaque , E = module d'Young, υ = coefficient de Poisson, h= épaisseur de la plaque) ;
  • Lx et Ly sont les longueurs des côtés de l'espace rectangulaire, exprimées en mètres ;
  • fmrm est la fréquence de résonance masse-ressort-masse donnée par la formule (1) ; et
  • f₂₀₀ = c₀/max(Lx,Ly) est la fréquence propre du mode pair de la cavité ayant la plus faible fréquence propre.
  • The applicant has carried out numerous simulations to determine the parameters of the plates giving rise to good acoustic attenuation by controlling the mode (0,0,0). In FIG. 4, the hatched area of the parameters providing the best attenuation characteristics is shown. The domain corresponds to the constitutions of the plates for which the acoustic transmission around the resonance frequency f mrm is essentially governed by the mode (0,0,0). It corresponds to the relationships: f vs / (L x L y ) 2 > 800 and f mrm <f 200 or f vs / (L x L y ) 2 > 300 and f mrm <f 200 / 2, in which
  • f c , in hertz, denotes the critical frequency of a plate or, if the plates 10, 11 are of different constitutions, the greater of the critical frequencies of the two plates (in the case of a homogeneous plane plate, the critical frequency worth f vs = vs 0 m / D with m = surface mass of the plate, D = Eh³ / 12 (1-υ²) = bending stiffness of the plate, E = Young's modulus, υ = Poisson's ratio, h = thickness of the plate);
  • L x and L y are the lengths of the sides of the rectangular space, expressed in meters;
  • f mrm is the mass-spring-mass resonance frequency given by formula (1); and
  • f₂₀₀ = c₀ / max (L x , L y ) is the natural frequency of the even mode of the cavity having the lowest natural frequency.
  • Des exemples de courbes d'atténuation (indice d'affaiblissement R en fonction de la fréquence) obtenues en simulant diverses constitutions des plaques sont représentés aux figures 5A à 5F qui correspondent respectivement aux points A à F sur le diagramme de la figure 4. Les courbes en trait plein illustrent l'indice d'affaiblissement en l'absence de contrôle actif, et les courbes en trait interrompu illustrent l'indice d'affaiblissement simulé en soustrayant la contribution du mode (0,0,0). Les configurations des plaques sont présentées au tableau III ci-dessous. Examples of attenuation curves (index attenuation R as a function of frequency) obtained in simulating various constitutions of the plates are represented in FIGS. 5A to 5F which correspond respectively to the points A to F on the diagram in Figure 4. The curves at solid line illustrate the weakening index in the absence of active control, and the line curves interrupted illustrate the simulated loss index in subtracting the contribution from the mode (0,0,0). The plate configurations are shown in Table III below.

    On peut constater aux figures 5A à 5F que les cas (C,E et F) pour lesquels sont vérifiées les relations (5) ou (6) sont ceux conduisant à l'amélioration la plus importante de l'atténuation autour de la fréquence de résonance fmrm. Un contrôle actif utilisant une configuration de capteurs et d'actionneurs qui fournisse une approximation satisfaisante de la réponse du mode (0,0,0) conduira à une amélioration sensible de l'atténuation lorsque les matériaux et les dimensions des plaques obéissent aux relations (5) ou (6). It can be seen in FIGS. 5A to 5F that the cases (C, E and F) for which the relationships (5) or (6) are verified are those leading to the most significant improvement in the attenuation around the frequency of resonance f mrm . Active control using a configuration of sensors and actuators that provides a satisfactory approximation of the mode response (0,0,0) will lead to a significant improvement in the attenuation when the materials and dimensions of the plates obey the relationships ( 5) or (6).

    Claims (6)

    Dispositif d'atténuation acoustique, comprenant deux plaques (10,11) sensiblement parallèles délimitant un espace intérieur (12)de forme rectangulaire, des moyens de détection de bruit (13) disposés entre les deux plaques, des moyens d'émission de contre-bruits (14) disposés entre les deux plaques, et des moyens de régulation (18) pour commander les moyens d'émission de contre-bruits de manière à minimiser une grandeur (e) fournie par les moyens de détection de bruit, caractérisé en ce que les moyens d'émission de contre-bruits comprennent quatre actionneurs (14) dont les positions respectives parallèlement aux plaques (10,11) correspondent approximativement aux milieux des côtés de la forme rectangulaire dudit espace intérieur (12), en ce que les moyens de détection de bruit comprennent quatre capteurs (13) dont les positions respectives parallèlement aux plaques (10,11) correspondent approximativement aux quatre points situés sur les grands côtés de la forme rectangulaire dudit espace intérieur (12) et distants chacun d'un quart de la longueur d'un grand côté par rapport à un coin de ladite forme rectangulaire, en ce que les quatre actionneurs (14) sont commandés en phase, et en ce que la grandeur à minimiser est représentée par la somme des signaux de sortie des quatre capteurs (13). Acoustic attenuation device, comprising two substantially parallel plates (10,11) defining a interior space (12) of rectangular shape, means for noise detection (13) arranged between the two plates, noise emitting means (14) arranged between the two plates, and regulating means (18) for controlling the means for emitting noise abatements so as to to minimize a quantity (e) supplied by the means of noise detection, characterized in that the means noise canceling systems include four actuators (14) whose respective positions parallel to plates (10,11) correspond approximately to the midpoints sides of the rectangular shape of said interior space (12), in that the noise detection means comprise four sensors (13) whose respective positions parallel to the plates (10,11) correspond approximately at the four points located on the long sides of the rectangular shape of said interior space (12) and distant each a quarter of the length of a long side relative at a corner of said rectangular shape, in that the four actuators (14) are controlled in phase, and in this that the quantity to be minimized is represented by the sum of output signals from the four sensors (13). Dispositif d'atténuation acoustique, comprenant deux plaques (10,11) sensiblement parallèles délimitant un espace intérieur (12) de forme rectangulaire, des moyens de détection de bruit (13) disposés entre les deux plaques, des moyens d'émission de contre-bruits (14) disposés entre les deux plaques, et des moyens de régulation (18) pour commander les moyens d'émission de contre-bruits de manière à minimiser une grandeur (e) fournie par les moyens de détection de bruit, caractérisé en ce que les moyens de détection de bruit comprennent quatre capteurs dont les positions respectives parallèlement aux plaques (10,11) correspondent approximativement aux milieux des côtés de la forme rectangulaire dudit espace intérieur (12), en ce que les moyens d'émission de contre-bruits comprennent quatre actionneurs dont les positions respectives parallèlement aux plaques (10,11) correspondent approximativement aux quatre points situés sur les grands côtés de la forme rectangulaire dudit espace intérieur (12) et distants chacun d'un quart de la longueur d'un grand côté par rapport à un coin de ladite forme rectangulaire, en ce que les quatre actionneurs (14) sont commandés en phase, et en ce que la grandeur à minimiser est représentée par la somme des signaux de sortie des quatre capteurs (13). Acoustic attenuation device, comprising two substantially parallel plates (10,11) defining a interior space (12) of rectangular shape, means for noise detection (13) arranged between the two plates, noise emitting means (14) arranged between the two plates, and regulating means (18) for controlling the means for emitting noise abatements so as to to minimize a quantity (e) supplied by the means of noise detection, characterized in that the means of noise detection include four sensors whose respective positions parallel to the plates (10,11)   roughly correspond to the midpoints of the sides of the rectangular shape of said interior space (12), in that the means for emitting noise canceling comprise four actuators whose respective positions parallel to plates (10,11) correspond approximately to the four points located on the long sides of the rectangular shape from said interior space (12) and each a quarter apart the length of a large side with respect to a corner of said rectangular shape, in that the four actuators (14) are controlled in phase, and in that the magnitude at minimize is represented by the sum of the output signals of the four sensors (13). Dispositif selon la revendication 1 ou 2, caractérisé en ce que les matériaux et les dimensions des plaques (10,11) sont choisis de façon que soient vérifiées les relations : fc / (LxLy)2 > 800 et fmrm < f200 ou les relations fc / (LxLy)2 > 300 et fmrm < f200/2, dans lesquelles fc, exprimée en hertz, désigne la fréquence critique d'une plaque ou la plus grande des deux fréquences critiques si les plaques (10,11) sont de constitutions différentes, Lx et Ly, exprimées en mètres, sont les longueurs des côtés de la forme rectangulaire de l'espace intérieur (12) situé entre les deux plaques, fmrm est la fréquence de résonance du système masse-ressort-masse constitué par les deux plaques (10,11) et le milieu situé entre elles, et f₂₀₀ est une fréquence propre donnée par la formule f₂₀₀ = c₀ / max (Lx,Ly), où c₀ désigne la célérité du son dans le milieu situé entre les deux plaques (10,11). Device according to claim 1 or 2, characterized in that the materials and the dimensions of the plates (10,11) are chosen so that the relationships are checked: f vs / (L x L y ) 2 > 800 and f mrm <f 200 or relationships f vs / (L x L y ) 2 > 300 and f mrm <f 200 / 2, in which f c , expressed in hertz, denotes the critical frequency of a plate or the greater of the two critical frequencies if the plates (10,11) are of different constitutions, L x and L y , expressed in meters, are the lengths of the sides of the rectangular shape of the interior space (12) located between the two plates, f mrm is the resonance frequency of the mass-spring-mass system constituted by the two plates (10,11) and the medium located between them, and f₂₀₀ is a natural frequency given by the formula f₂₀₀ = c₀ / max (L x , L y ), where c₀ designates the speed of the sound in the medium located between the two plates (10,11). Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un capteur (24) fournissant un signal de référence, et un filtre passe-bande (21) auquel est appliqué le signal de référence, la sortie du filtre passe-bande (21) étant soumise à un filtrage adaptatif à réponse impulsionnelle finie pour commander les actionneurs (14), le filtre passe-bande (21) laissant passer les fréquences comprises entre fmrm/2 et min(2 fmrm, f₂₀₀), où fmrm est la fréquence de résonance du système masse-ressort-masse constitué par les deux plaques (10,11) et le milieu situé entre elles, et f₂₀₀ est une fréquence propre donnée par la formule f₂₀₀ = c₀ / max (Lx,Ly), où c₀ désigne la célérité du son dans le milieu situé entre les deux plaques, et Lx et Ly désignent les longueurs des côtés de la forme rectangulaire de l'espace intérieur (12) situé entre les deux plaques (10,11). Device according to any one of the preceding claims, characterized in that it comprises a sensor (24) providing a reference signal, and a bandpass filter (21) to which the reference signal is applied, the output of the pass filter -band (21) being subjected to an adaptive filtering with finite impulse response to control the actuators (14), the bandpass filter (21) allowing the frequencies between f mrm / 2 and min (2 f mrm , f₂₀₀) to pass through , or f mrm is the resonance frequency of the mass-spring-mass system constituted by the two plates (10,11) and the medium located between them, and f₂₀₀ is a natural frequency given by the formula f₂₀₀ = c₀ / max (L x , L y ), where c₀ denotes the speed of the sound in the medium located between the two plates, and L x and L y denote the lengths of the sides of the rectangular shape of the interior space (12) located between the two plates (10,11). Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'un gaz plus léger que l'air occupe l'espace intérieur (12) situé entre les deux plaques (10,11). Device according to any one of Claims 1 to 4, characterized in that a lighter gas that the air occupies the interior space (12) located between the two plates (10,11). Dispositif selon la revendication 5, caractérisé en ce que ledit gaz plus léger que l'air est de l'hélium. Device according to claim 5, characterized in that said gas lighter than air is helium.
    EP95402423A 1994-11-03 1995-10-31 Double-walled active noise suppression device Withdrawn EP0710946A1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9413125 1994-11-03
    FR9413125A FR2726681B1 (en) 1994-11-03 1994-11-03 ACTIVE DOUBLE WALL ACOUSTIC MITIGATION DEVICE

    Publications (1)

    Publication Number Publication Date
    EP0710946A1 true EP0710946A1 (en) 1996-05-08

    Family

    ID=9468459

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95402423A Withdrawn EP0710946A1 (en) 1994-11-03 1995-10-31 Double-walled active noise suppression device

    Country Status (6)

    Country Link
    US (1) US5627897A (en)
    EP (1) EP0710946A1 (en)
    JP (1) JPH0922292A (en)
    FI (1) FI955249A (en)
    FR (1) FR2726681B1 (en)
    NO (1) NO954391L (en)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2766650A1 (en) * 1997-07-23 1999-01-29 Technofirst LINEAR SPEAKER
    WO2009144197A1 (en) 2008-05-27 2009-12-03 Basf Se Method for producing aromatic and heteroaromatic carboxylic acids, carboxylic acid esters and carboxylic acid amides
    FR3043241A1 (en) * 2015-11-02 2017-05-05 Technofirst MULTI-WINDOW WINDOW INTEGRATING AN ACTIVE NOISE REDUCTION DEVICE
    WO2020216860A1 (en) 2019-04-25 2020-10-29 Saint-Gobain Glass France Active control of a double-walled installation

    Families Citing this family (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2704969B1 (en) * 1993-05-06 1995-07-28 Centre Scient Tech Batiment Acoustic attenuation device with active double wall.
    JP3510427B2 (en) * 1996-08-15 2004-03-29 三菱重工業株式会社 Active sound absorbing wall
    US7085387B1 (en) * 1996-11-20 2006-08-01 Metcalf Randall B Sound system and method for capturing and reproducing sounds originating from a plurality of sound sources
    FR2766953B1 (en) * 1997-07-29 1999-10-01 Renault SOUND VOLUME CONTROL DEVICE
    US6239348B1 (en) * 1999-09-10 2001-05-29 Randall B. Metcalf Sound system and method for creating a sound event based on a modeled sound field
    US20040125922A1 (en) * 2002-09-12 2004-07-01 Specht Jeffrey L. Communications device with sound masking system
    CA2499754A1 (en) 2002-09-30 2004-04-15 Electro Products, Inc. System and method for integral transference of acoustical events
    GB2422979B (en) * 2002-12-19 2007-03-28 Ultra Electronics Ltd Noise attenuation system for vehicles
    US7636448B2 (en) * 2004-10-28 2009-12-22 Verax Technologies, Inc. System and method for generating sound events
    CA2598575A1 (en) * 2005-02-22 2006-08-31 Verax Technologies Inc. System and method for formatting multimode sound content and metadata
    US20100223552A1 (en) * 2009-03-02 2010-09-02 Metcalf Randall B Playback Device For Generating Sound Events
    JP2012118135A (en) * 2010-11-29 2012-06-21 Kurashiki Kako Co Ltd Active soundproof apparatus and active soundproof method
    WO2017049337A1 (en) * 2015-09-26 2017-03-30 Darling Matthew Ross Improvements in ambient sound management within built structures
    US10134379B2 (en) 2016-03-01 2018-11-20 Guardian Glass, LLC Acoustic wall assembly having double-wall configuration and passive noise-disruptive properties, and/or method of making and/or using the same
    US20170256251A1 (en) * 2016-03-01 2017-09-07 Guardian Industries Corp. Acoustic wall assembly having double-wall configuration and active noise-disruptive properties, and/or method of making and/or using the same
    US10354638B2 (en) 2016-03-01 2019-07-16 Guardian Glass, LLC Acoustic wall assembly having active noise-disruptive properties, and/or method of making and/or using the same
    US10726855B2 (en) 2017-03-15 2020-07-28 Guardian Glass, Llc. Speech privacy system and/or associated method
    US10373626B2 (en) 2017-03-15 2019-08-06 Guardian Glass, LLC Speech privacy system and/or associated method
    US10304473B2 (en) 2017-03-15 2019-05-28 Guardian Glass, LLC Speech privacy system and/or associated method
    US10580396B1 (en) 2017-04-07 2020-03-03 The United States Of America As Represented By The Secretary Of The Navy Acoustically stiff wall
    KR102293075B1 (en) * 2021-03-10 2021-08-25 주식회사 시스템앤솔루션 Window having noise control function

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0041260A1 (en) * 1980-06-02 1981-12-09 Bschorr, Oskar, Dr. rer. nat. Sound absorbing element utilizing the effect of coincidence
    WO1985002640A1 (en) * 1983-12-12 1985-06-20 Lockheed Corporation Sound barrier
    US5024288A (en) * 1989-08-10 1991-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Sound attenuation apparatus
    WO1994005005A1 (en) * 1992-08-12 1994-03-03 Noise Cancellation Technologies, Inc. Active high transmission loss panel

    Family Cites Families (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH0395349A (en) * 1989-09-07 1991-04-19 Hitachi Plant Eng & Constr Co Ltd Electronic noise silencer

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0041260A1 (en) * 1980-06-02 1981-12-09 Bschorr, Oskar, Dr. rer. nat. Sound absorbing element utilizing the effect of coincidence
    WO1985002640A1 (en) * 1983-12-12 1985-06-20 Lockheed Corporation Sound barrier
    US5024288A (en) * 1989-08-10 1991-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Sound attenuation apparatus
    WO1994005005A1 (en) * 1992-08-12 1994-03-03 Noise Cancellation Technologies, Inc. Active high transmission loss panel

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    R.L. CLARK ET AL.: "Optimal placement of piezoelectric actuators and polyvinylidene fluoride error sensors in active structural acoustic control approaches", JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, vol. 92, no. 3, NEW YORK, USA, pages 1521 - 1533, XP000307196 *

    Cited By (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2766650A1 (en) * 1997-07-23 1999-01-29 Technofirst LINEAR SPEAKER
    WO1999005888A1 (en) * 1997-07-23 1999-02-04 Technofirst Linear loudspeaker
    US6285773B1 (en) 1997-07-23 2001-09-04 Technofirst Linear loudspeaker
    WO2009144197A1 (en) 2008-05-27 2009-12-03 Basf Se Method for producing aromatic and heteroaromatic carboxylic acids, carboxylic acid esters and carboxylic acid amides
    FR3043241A1 (en) * 2015-11-02 2017-05-05 Technofirst MULTI-WINDOW WINDOW INTEGRATING AN ACTIVE NOISE REDUCTION DEVICE
    WO2017077234A1 (en) 2015-11-02 2017-05-11 Technofirst Multi-glazed window incorporating an active noise reduction device
    US10161180B2 (en) 2015-11-02 2018-12-25 Technofirst Multi-glazed window incorporating an active noise reduction device
    WO2020216860A1 (en) 2019-04-25 2020-10-29 Saint-Gobain Glass France Active control of a double-walled installation
    FR3095513A1 (en) 2019-04-25 2020-10-30 Saint-Gobain Glass France Active control of a double wall installation

    Also Published As

    Publication number Publication date
    FR2726681B1 (en) 1997-01-17
    US5627897A (en) 1997-05-06
    FI955249A0 (en) 1995-11-02
    FI955249A (en) 1996-05-04
    NO954391L (en) 1996-05-06
    JPH0922292A (en) 1997-01-21
    FR2726681A1 (en) 1996-05-10
    NO954391D0 (en) 1995-11-02

    Similar Documents

    Publication Publication Date Title
    EP0697122B1 (en) Noise attenuation device with active double wall
    EP0710946A1 (en) Double-walled active noise suppression device
    CA1265063A (en) Methods and means for deafening externally generated noises reaching the eardrum and for improving the clarity of perceived electro-acoustic communications
    FR2538149A1 (en) ACOUSTICAL ATTENUATION APPARATUS FOR CLOSED STRUCTURE
    EP0852793B1 (en) Hybrid active vibration control method and device, particularly for mechanical and acoustic vibration and the like
    EP0601934B1 (en) Improvements to methods and devices used to protect from external noises a given volume, preferably located inside a room
    Zhu et al. Active control of acoustic reflection, absorption, and transmission using thin panel speakers
    US7317801B1 (en) Active acoustic noise reduction system
    CA2218399C (en) Personal active acoustic attenuation process and device, featuring invariant impulse response
    EP3371806B1 (en) Multi-glazed window incorporating an active noise reduction device
    WO1997016816A1 (en) Active acoustic attenuation device for use in a duct, particularly for soundproofing a ventilation and/or air-conditioning network
    EP1414021B1 (en) Active acoustic noise reduction system
    WO2014053994A1 (en) Electroacoustic speaker
    EP1094444B1 (en) Active device for the attenuation of sonic intensity
    EP3371521A1 (en) Apparatus for natural ventilation of a room having a ventilation passage combined with a noise absorber
    Zhu et al. Active control of glass panels for reduction of sound transmission through windows
    CA2757170A1 (en) Acoustic panel for receiving, emitting or absorbing sounds
    WO2016005489A2 (en) Sound attenuation device and method
    Zhu et al. Active control of glass panels for reduction
    FR2724467A1 (en) Active damping of mechanical vibrations with separate detectors for noise deadening in motor vehicle passenger compartment

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES GB IT LI NL

    17P Request for examination filed

    Effective date: 19961004

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19991117

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20000710