EP0852793B1 - Hybrid active vibration control method and device, particularly for mechanical and acoustic vibration and the like - Google Patents

Hybrid active vibration control method and device, particularly for mechanical and acoustic vibration and the like Download PDF

Info

Publication number
EP0852793B1
EP0852793B1 EP96932664A EP96932664A EP0852793B1 EP 0852793 B1 EP0852793 B1 EP 0852793B1 EP 96932664 A EP96932664 A EP 96932664A EP 96932664 A EP96932664 A EP 96932664A EP 0852793 B1 EP0852793 B1 EP 0852793B1
Authority
EP
European Patent Office
Prior art keywords
input
output
sensor
linked
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96932664A
Other languages
German (de)
French (fr)
Other versions
EP0852793A1 (en
Inventor
Christian Carme
André PREUMONT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technofirst SA
Original Assignee
Technofirst SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technofirst SA filed Critical Technofirst SA
Publication of EP0852793A1 publication Critical patent/EP0852793A1/en
Application granted granted Critical
Publication of EP0852793B1 publication Critical patent/EP0852793B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17817Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the error signals, i.e. secondary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/117Nonlinear
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3012Algorithms
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3023Estimation of noise, e.g. on error signals
    • G10K2210/30232Transfer functions, e.g. impulse response
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3026Feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3027Feedforward
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3048Pretraining, e.g. to identify transfer functions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3053Speeding up computation or convergence, or decreasing the computational load
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/503Diagnostics; Stability; Alarms; Failsafe
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/512Wide band, e.g. non-recurring signals

Definitions

  • the present invention relates to active attenuation of vibrations, i.e. the operation which consists in attenuating certain vibrations, by superimposing other vibrations created in phase opposition with the vibrations to be attenuated.
  • the feedback loop includes an input connected to so-called “close” vibration sensor means, arranged on the framework, and an output connected to actuator means of vibrations placed on the frame, near the means close sensors.
  • the signal measured by the sensor means close is directly injected into the actuator means at through filtering means which correct said signal to try to cancel his energy.
  • This retroactive technique makes it possible to obtain an attenuation vibration with a certain gain, without causing instability in a processing frequency band.
  • this processing band corresponds to low frequencies, for example in sound vibrations at the frequency band ranging from 0 to 600 Hz.
  • the anticipation technique is articulated around means adaptive filtering whose coefficients are adapted in real time according to an algorithm chosen so as to minimize the energy of the vibrations captured by the means close sensors according to the energy of the vibrations of reference received by the remote sensor means.
  • active feedback depreciation is here performed on a single frequency, which makes this solution inappropriate and ineffective for active treatment on a wide frequency band.
  • This active depreciation is in equivalent to passive amortization since it does not than the fundamental frequency of the framework, which is totally different from active broadband control by retroactive filtering.
  • this is a simple juxtaposition of early screening and amortization active in which no synergy of techniques is implementation.
  • the present invention provides a solution to these problems.
  • Another object of the invention is to provide attenuation active type "hybrid" in which filtering by anticipation is grafted onto feedback filtering or conversely, in order to improve the respective behavior said filtering in advance and by feedback with a resulting attenuation greater than the algebraic sum attenuations of said filterings taken separately.
  • the framework includes at least one cavity defined by one ear and passive mitigation means, the first means sensors and actuator means being housed in said cavity while the second sensor means being arranged out of the cavity.
  • the framework includes a metal beam, a plate, a trellis, seat, ventilation duct or the like.
  • the first and second sensor means comprise each at least: a type of sound sensor element microphone, a type acceleration sensor element accelerometer, a displacement sensor element, an element speed sensor, a strain sensor element, a force sensor element or the like.
  • the first sensor means comprise two sensor elements, one being associated with the means of filtering in advance, the other being associated with the means filtering by feedback.
  • the actuator means comprise a source speaker-type sounds, a test body, a jar vibrating or the like.
  • the filtering means by feedback include a plurality of analog filters and / or active numerics of order greater than or equal to 1, arranged for generate a transfer function to avoid instabilities in the first frequency band in the sense of Nyquist, and the transfer function of the filtering means by feedback is determined so that the phase of said transfer function does not go through the value 0 in the first frequency band.
  • the feedback filtering means are infinite impulse response type.
  • the means of advance filtering are finite impulse response, and the minimization algorithm is of the average least squares type.
  • the device comprises a plurality of first sensor means, and means actuators and the device is articulated around a master / slave multiprocessor structure, each processor slave being responsible for controlling a single actuator means.
  • the present invention also relates to a method active hybrid attenuation of vibrations, in particular mechanical, sound or similar vibrations used by the device described above.
  • the frame likely to be subject to vibrations at attenuate includes a cavity 2 delimited by an ear 4 and attenuation means 6 of the helmet type 6.
  • the helmet with retroactive filter is the one sold by the company TECHNOFIRST.
  • this helmet is equipped with a mitigation device active acoustic feedback.
  • the pre-amplification means 9, the filtering means by feedback 12 and the amplification means 18 constitute here a feedback loop 30 arranged in a known manner to generate active acoustic attenuation without generate instability in a selected frequency band.
  • Figure 1 there is shown near the helmet, a noise source 40 liable to generate vibrations sound for experimental and test purposes.
  • the frequency band in which the means filtering methods are effective without causing instability in the sense of Nyquist is of the order of 0 to 600 Hz for sound vibrations (figure 3).
  • the filtering means by feedback 12 include a plurality of active analog filters of order greater than or equal to 1, arranged to generate a transfer function to avoid instabilities in the frequency band 0-600 Hz in the sense of Nyquist, and the transfer function of the filtering means 12 is determined so that the phase of said function of transfer does not go through the value 0 in the band 0-600 Hz.
  • the helmet allows treatment wide band up to 600 Hz and noise attenuations of around 20 dB.
  • a pumping effect appears at from 650 Hz which results in an increase in noise level in relation to the action of the mitigation means passive alone.
  • This phenomenon is well known from the skilled person, and constitutes a non-linearity (degradations performance) compared to the expected results of observing the open loop system.
  • the Applicant has posed the problem of remedying the disadvantages related to feedback filtering.
  • the solution according to the invention consists first of all, in use an additional microphone 100 placed at a certain distance from the microphone 8.
  • the microphone additional 100 is arranged on the upper part of the means which allow the two shells of the helmet. Under these conditions, the additional microphone 100 is close to the noise source 40 and thus makes it possible to retrieve useful information to be processed.
  • this remote microphone can be arranged differently.
  • summing means 110 are provided at the level of the feedback loop 30. These summing means 110 have a first input 112 connected to the output 16 of the filtering means 12, a second input 114 and an output 116 connected to input 20 of the means amplifiers 18.
  • type filtering means by anticipation are grafted to the feedback loop 30 to improve feedback filtering and, more exactly, in order to linearize the active attenuation in the entire frequency band wider than the 0-600 band Hz and thus improve the active attenuation gain in the widened band which can go up to 3000 Hz (figure 4), by total elimination of the mentioned pumping effect above.
  • the means of advance filtering 130 include a first input 132 connected to the microphone additional 100, a second input 134 connected to the microphone 8 and an output 136 connected to the second input 114 of the summing means 110.
  • the coefficients filtering the anticipation filtering means 130 are adapted in real time according to an algorithm chosen for minimize the energy of vibrations picked up by the microphone 8, depending on the energy of the vibrations picked up by the microphone 100, in order to linearize the retroactive attenuation in a whole frequency band wider than the band of frequencies processed directly by feedback, speed up convergence of the minimization algorithm, and improve the robustness of the anticipation filtering means.
  • the means of advance filtering include type finite impulse response filters adaptive 140.
  • the coefficients of the filters 140 are updated in real time by a minimization algorithm 150.
  • the minimization algorithm is of the type of mean least squares, also called LMS for "LEAST MEAN SQUARES ".
  • the active attenuation of the "hybrid" type obtained according to the invention results from a combination of means of filtering by anticipation and by feedback in which the advance filtering is grafted on the filtering by feedback or vice versa.
  • This combination of filtering in advance and by feedback according to the invention improves behavior respective of said filterings, with active attenuation resulting greater than the algebraic sum of the attenuations individual said filterings taken separately.
  • the anticipation filtering means 130 comprise a first A8 acquisition module associated with sensor means relatives 8 and a second A100 acquisition module associated with remote sensor means 100.
  • the A8 and A100 acquisition modules are generally alike. However, in some configurations, the acquisition modules can be different. Their constituent elements are identified by the suffix 8 when associated with sensor means 8 and 100 when associated with the remote capture means 100.
  • Each acquisition module is connected to processing means DSP which will ensure in particular the minimization algorithm described above.
  • the digital processing means are of the type PSN digital signal processor.
  • DSP processor includes an E8 input for receiving signals leaving the A8 acquisition module and an E100 input receiving signals from the A100 acquisition module.
  • DSP processor includes signal output digital for a R rendering module.
  • This R rendering module includes a digital / analog converter CNAR and a FLR smoothing filter, for example low pass type, the input of which receives the outgoing signal from the digital / analog converter CNAR and whose output is connected to the second input 114 of the summing means 110.
  • a digital / analog converter CNAR and a FLR smoothing filter, for example low pass type, the input of which receives the outgoing signal from the digital / analog converter CNAR and whose output is connected to the second input 114 of the summing means 110.
  • the DSP processor is the one sold by the company TEXAS INSTRUMENT under the reference TMS 320C25.
  • the means of feedback filtering 12 are put into operation as well that the noise source 40, while the filtering means in advance are put in pause position.
  • the preamplifiers are regulated on the means of advance filtering PE8 and PE100, to be in full scale of CAN8 analog / digital converters and CAN100.
  • the transfer function is sampled and saved in the memory of the DSP processor.
  • the transfer function is sampled at the frequency of 3000 Hz on a number of 80 points.
  • the digital processing means acquire periodically, and in real time, the distant noise picked up by remote sensor means 100. They also calculate signal energy, representative of the sum of energies signals delivered by nearby sensor means 8. Then, the anticipation filter means 150 are placed in search of optimal parameters for the best active attenuation. Knowledge of impulse responses previously measured, signals from the means close and remote sensors in real time, allows a minimization algorithm chosen to determine, in time real, the attenuation control signal values active acoustics.
  • the purpose of convergence here is to minimize the energy of signals delivered by the microphone 8 placed in the cavity to denoise from the helmet.
  • the minimization algorithm uses the technique mean least squares which is most prevalent in real-time applications.
  • the minimization algorithm may be a frequency algorithm working on transforms of Fourier of the signals considered.
  • control 8 takes account of filtering by feedback here.
  • the instability information related to filtering by feedback are introduced in the impulse response of the filter in advance.
  • the information broadband active attenuation related to filtering by feedback appear in the sampled items of the impulse response.
  • Figures 3 to 10B show the spectral densities of power measured using a fixed microphone in the ear of the experimenter in different configurations. Adverse reactions due to instability of the feedback filtering (rejection up to 8 dB) are eliminated by the action of the advance filtering device (see figures 3, 4 and 5).
  • the anticipation device makes it possible to obtain, outside the feed back processing band (o-600 Hz), a gain in attenuation of 2 to 10 dB compared to a passive helmet (figure 6).
  • the device described with reference to Figures 1 and 2 uses a single-channel type processing, articulated around the processor TMS 320C25 from TEXAS INSTRUMENT which can execute 10 million instructions per second.
  • a multi-channel device comprising a plurality of sensors 8, remote sensors 100 and actuators 10.
  • the processor can only work at sampling frequencies less than or equal to 1000 Hz.
  • the present invention also provides a solution to these problems.
  • the attenuation device is capable of manage a plurality of channels, for example twenty channels analog input capable of receiving signals from 19 close sensors individualized in 8-1 to 8-19 and a remote sensor 100.
  • the device according to the invention also includes at least sixteen capable output channels to convey signals to sixteen individualized actuators in 10-1 to 10-16.
  • Such a structure implies the processing of I (number error sensor integer 8) times J (integer number of actuators) impulse responses, one RIJ response for each combination of actuators J and error sensors I.
  • the device is articulated around a master / slave multiprocessor structure, each processor slave being responsible for controlling a single actuator means.
  • the DSPM master processor does the acquisition of all the signals emanating from the sensors 8 and 100, in particular the so-called remote reference signals as well as the so-called error control signals. He distributes them then to all DSPE slave processors, individualized here in DSPE-1 to DSPE-16.
  • Each DSPE slave processor calculates the output signal of a single actuator 10.
  • the sensors 8 and the remote sensor 100 are connected to the inputs of a BA acquisition block whose output is connected to the DSPM master processor.
  • This BA acquisition block includes, like the acquisition modules A described with reference to FIG. 2, a preamplifier element PE, preferably a conditioning filter specific to the chosen application FAT and a converter analog / digital CAN.
  • a preamplifier element PE preferably a conditioning filter specific to the chosen application FAT and a converter analog / digital CAN.
  • the conditioning filter can be digital (anti-overlap) or analog (specific).
  • a laptop type microcomputer can be provided. he is in this case connected to the master processor and is provided with all control software for the entire installation.
  • the digital assembly is articulated around a processor element PSN digital signal, for example the one sold by the TEXAS INSTRUMENT under the reference TMS 320C50.
  • Each slave processor is dedicated to the control of a single actuator.
  • this is the processor associated with the 10-1 actuator and which is in connection with all microphones 8 as well as with the remote microphone 100.
  • All signals from sensors 8 and 100 are routed through the BA acquisition block and the DSPM master processor to the DSPE-1 slave processor.
  • the DSPE slave processor generally includes the same elements than those of the single-channel device described with reference in Figure 2. Thus, we find the means of restitution R, the feedback filtering means 12 as well as the advance filtering 130.
  • a summing element 110 receives signals from both at its two inputs filtering to deliver the attenuation signal on its output to the actuator 10-1.
  • the slave processor includes communication with the DSPM master processor.
  • pairs of transducers 8 and 10 i.e. the treatment routes on which are applied the respective feedback filtering means.
  • each DSPE slave processor calculates, in parallel advance filtering, feedback filtering which associated with it, in the case of filtering by feedback of digital type.
  • the structure subject to vibrations can also be a metal beam, a plate, a trellis, a seat, ventilation duct or the like.
  • the sensor means can be sensor means of sounds, but also of acceleration, constraint, force, displacement, speed or the like.
  • the means actuators can be not just a sound actuator such as a speaker, but also a test body, a piezoelectric element, or the like.
  • close sensor means may include two elements sensors, one being associated with the filtering means by anticipation, the other being associated with the filtering means by feedback.

Abstract

A filtering device consisting of a nonadaptive feedback filter that generates active attenuation of the vibration on the framework, without generating instability in a first frequency band, and an adaptive feedforward filter is disclosed. Feedforward filtering coefficients are adapted in real time according to an algorithm chosen to minimize the energy of the types of vibration which are picked up by a sensing device as a function of the energy of the types of vibration which are picked up by the sensing device, and of the previously measured transfer function, in the presence of a feedback filtering device and in the absence of a feedforward filtering device, between an actuator device and a first sensing device. The device makes it possible to linearize the feedback attenuation throughout a second frequency band which is wider than the first frequency band, to accelerate the convergence of the minimization algorithm and to enhance the robustness of the feedforward filter.

Description

La présente invention concerne l'atténuation active de vibrations, c'est-à-dire l'opération qui consiste à atténuer certaines vibrations, en superposant d'autres vibrations créées en opposition de phase avec les vibrations à atténuer.The present invention relates to active attenuation of vibrations, i.e. the operation which consists in attenuating certain vibrations, by superimposing other vibrations created in phase opposition with the vibrations to be attenuated.

Elle s'applique à l'atténuation active de toutes vibrations et plus particulièrement aux vibrations sonores, mécaniques ou analogues.It applies to the active attenuation of all vibrations and more particularly to sound, mechanical vibrations or the like.

On connaít déjà la technique d'atténuation active par rétroaction, appelée encore "FEED BACK", et qui est fondée sur une boucle de contre-réaction agencée pour engendrer une atténuation active sur une ossature sujette aux vibrations (FR 86 03394).We already know the technique of active attenuation by feedback, also called "FEED BACK", which is based on a feedback loop arranged to generate a active attenuation on a frame subject to vibrations (FR 86 03394).

La boucle de contre-réaction comprend une entrée reliée à des moyens capteurs de vibrations dits "proches", disposés sur l'ossature, et une sortie reliée à des moyens actionneurs de vibrations disposés sur l'ossature, à proximité des moyens capteurs proches. Le signal mesuré par les moyens capteurs proches est directement injecté aux moyens actionneurs à travers des moyens de filtrage qui corrigent ledit signal pour tenter d'annuler son énergie.The feedback loop includes an input connected to so-called “close” vibration sensor means, arranged on the framework, and an output connected to actuator means of vibrations placed on the frame, near the means close sensors. The signal measured by the sensor means close is directly injected into the actuator means at through filtering means which correct said signal to try to cancel his energy.

Cette technique rétroactive permet d'obtenir une atténuation vibratoire avec un certain gain, sans engendrer d'instabilité dans une bande de fréquences de traitement. Le plus souvent, cette bande de traitement correspond à des basses fréquences, par exemple en vibrations sonores à la bande de fréquences allant de 0 à 600 Hz.This retroactive technique makes it possible to obtain an attenuation vibration with a certain gain, without causing instability in a processing frequency band. Most of the time, this processing band corresponds to low frequencies, for example in sound vibrations at the frequency band ranging from 0 to 600 Hz.

Toutefois, cette technique rétroactive engendre des instabilités en hautes fréquences. Elle n'est donc pas totalement satisfaisante pour obtenir une atténuation vibratoire dans une large bande de fréquences.However, this retroactive technique generates instabilities at high frequencies. It is therefore not totally satisfactory for obtaining vibration attenuation in a wide frequency band.

On connaít aussi la technique d'atténuation active par anticipation, appelée encore "FEED FORWARD", dans laquelle des vibrations de référence, en amont de la propagation des vibrations, et destinées à se propager dans le milieu à traiter sont détectées par des moyens capteurs dits "distants", puis traitées par des moyens de filtrage afin de déterminer la commande à appliquer aux moyens actionneurs.We also know the technique of active attenuation by anticipation, also called "FEED FORWARD", in which reference vibrations, upstream of the propagation of vibrations, and intended to propagate in the medium to process are detected by so-called "remote" sensor means, then processed by filtering means in order to determine the command to be applied to the actuator means.

La technique par anticipation est articulée autour de moyens de filtrage de type adaptatif dont les coefficients sont adaptés en temps réel selon un algorithme choisi de façon à minimiser l'énergie des vibrations captées par les moyens capteurs proches en fonction de l'énergie des vibrations de référence captées par les moyens capteurs distants.The anticipation technique is articulated around means adaptive filtering whose coefficients are adapted in real time according to an algorithm chosen so as to minimize the energy of the vibrations captured by the means close sensors according to the energy of the vibrations of reference received by the remote sensor means.

Une telle technique par anticipation est satisfaisante généralement pour traiter des vibrations dans une bande de fréquences étroite. Par contre, lorsqu'il s'agit d'atténuer des vibrations dans une large bande de fréquences, elle nécessite généralement un filtrage adaptatif long et coûteux.Such a technique in advance is satisfactory usually to deal with vibrations in a band of narrow frequencies. However, when it comes to mitigating vibrations in a wide frequency band, it generally requires long and costly adaptive filtering.

Une solution pour écourter le temps de convergence de l'algorithme de filtrage par anticipation est décrite dans le document MIYASAKI et al, 1994, "Consideration about Feed back, Feed forward, Hybrid Control for Active Control of Micro-Vibration", Second International Conference on Motion on Vibration Control, Yokohama, Aug.30-sept. 3, 1994. Elle consiste à juxtaposer un amortissement actif de type rétroactif et le filtrage par anticipation. L'amortissement actif par rétroaction effectue d'abord un amortissement des vibrations à une fréquence donnée, généralement la fréquence fondamentale de vibration de l'ossature. Ensuite, le filtrage par anticipation effectue son atténuation sur des vibrations ainsi pré-amorties, ce qui permet de comprimer la réponse impulsionnelle des chemins secondaires moyens actionneurs/moyens capteurs proches et écourte ainsi le traitement du filtrage par anticipation.A solution to shorten the convergence time of the anticipation filtering algorithm is described in the document MIYASAKI et al, 1994, "Consideration about Feed back, Feed forward, Hybrid Control for Active Control of Micro-Vibration ", Second International Conference on Motion on Vibration Control, Yokohama, Aug 30-Sept. 3, 1994. She consists in juxtaposing an active depreciation of retroactive type and advance filtering. Active depreciation by feedback first dampens vibrations at a given frequency, usually the frequency fundamental vibration of the frame. Then the filtering in anticipation performs its attenuation on vibrations thus pre-amortized, which allows the response to be compressed impulse of the secondary paths means actuators / means close sensors and thus shortens the processing of the advance filtering.

Cependant, l'amortissement actif par rétroaction est ici effectué sur une seule fréquence, ce qui rend cette solution inappropriée et inefficace pour un traitement actif sur une large bande de fréquences. Cet amortissement actif est en fait équivalent à un amortissement passif puisqu'il ne traite que la fréquence fondamentale de l'ossature, ce qui est totalement différent d'un contrôle actif large bande par filtrage rétroactif. De plus, il s'agit ici d'une simple juxtaposition du filtrage par anticipation et d'un amortissement actif dans laquelle aucune synergie des techniques est mise en place.However, active feedback depreciation is here performed on a single frequency, which makes this solution inappropriate and ineffective for active treatment on a wide frequency band. This active depreciation is in equivalent to passive amortization since it does not than the fundamental frequency of the framework, which is totally different from active broadband control by retroactive filtering. In addition, this is a simple juxtaposition of early screening and amortization active in which no synergy of techniques is implementation.

On connaít aussi des structures d'atténuation active du bruit (WO95/20841) dans lesquelles les moyens de filtrage par anticipation et les moyens de filtrage par rétroaction sont simplement juxtaposés en série pour atténuer le bruit. De plus, les moyens de filtrage par anticipation et les moyens de filtrage par rétroaction sont tous les deux de type adaptatif, ce qui empêche une réelle synergie entre lesdits moyens de filtrage par anticipation et par rétroaction.We also know active noise attenuation structures (WO95 / 20841) in which the filtering means by anticipation and the feedback filtering means are simply juxtaposed in series to reduce noise. Of plus, the means of advance filtering and the means filtering are both of type adaptive, which prevents real synergy between said means of filtering by anticipation and by feedback.

La présente invention apporte une solution à ces problèmes.The present invention provides a solution to these problems.

Elle vise tout d'abord à fournir une atténuation active des vibrations dans une large bande de fréquences.First, it aims to provide active mitigation of vibrations in a wide frequency band.

Un autre but de l'invention est de fournir une atténuation active de type "hybride" dans laquelle le filtrage par anticipation est greffé sur le filtrage par rétroaction ou réciproquement, afin d'améliorer le comportement respectif desdits filtrages par anticipation et par rétroaction avec une atténuation résultante supérieure à la somme algébrique des atténuations desdits filtrages prises séparément.Another object of the invention is to provide attenuation active type "hybrid" in which filtering by anticipation is grafted onto feedback filtering or conversely, in order to improve the respective behavior said filtering in advance and by feedback with a resulting attenuation greater than the algebraic sum attenuations of said filterings taken separately.

La présente invention porte sur un dispositif d'atténuation active de vibrations, du type comprenant:

  • une ossature susceptible d'être sujette à des vibrations à atténuer;
  • des premiers moyens capteurs de vibrations, disposés sur l'ossature selon une première relation géométrique prédéterminée par rapport à ladite ossature;
  • des moyens actionneurs de vibrations, disposés sur l'ossature à proximité des premiers moyens capteurs; et
  • des moyens de filtrage comprenant au moins une entrée reliée aux premiers moyens capteurs et une sortie reliée aux moyens actionneurs, les moyens de filtrage étant agencés pour engendrer une atténuation active des vibrations sur l'ossature,
  • des seconds moyens capteurs de vibrations, disposés sur l'ossature selon une seconde relation géométrique prédéterminée par rapport à ladite ossature;
  • des moyens sommateurs possédant une première entrée, une seconde entrée, et une sortie reliée aux moyens actionneurs.
The present invention relates to an active vibration attenuation device, of the type comprising:
  • a frame likely to be subject to vibrations to be attenuated;
  • first vibration sensor means, disposed on the frame in a first predetermined geometric relationship with respect to said frame;
  • vibration actuator means, disposed on the frame near the first sensor means; and
  • filtering means comprising at least one input connected to the first sensor means and one output connected to the actuator means, the filtering means being arranged to generate active attenuation of vibrations on the frame,
  • second vibration sensing means, disposed on the frame in a second predetermined geometric relationship with respect to said frame;
  • summing means having a first input, a second input, and an output connected to the actuator means.

Selon une définition générale de l'invention, les moyens de filtrage comprennent:

  • des moyens de filtrage par rétroaction de type non adaptatif possédant une entrée reliée aux premiers moyens capteurs et une sortie reliée à la première entrée des moyens sommateurs, et propres à engendrer une atténuation active non adaptative des vibrations sur l'ossature, sans engendrer d'instabilité dans une première bande de fréquences;
  • des moyens de mesure propres à mesurer, au préalable, en présence des moyens de filtrage par rétroaction, la fonction de transfert entre les moyens actionneurs et les premiers moyens capteurs;
  • des moyens de filtrage par anticipation de type adaptatif comprenant une première entrée reliée aux seconds moyens capteurs, une seconde entrée reliée aux premiers moyens capteurs, et une sortie reliée à la seconde entrée des moyens sommateurs;
les coefficients de filtrage des moyens de filtrage par anticipation étant adaptés en temps réel selon un algorithme choisi pour minimiser l'énergie des vibrations captées par les premiers moyens capteurs en fonction de l'énergie des vibrations captées par les seconds moyens capteurs, et de la fonction de transfert préalablement mesurée;
ce qui permet de linéariser l'atténuation rétroactive dans toute une seconde bande de fréquences plus large que la première bande de fréquences, d'accélérer la convergence de l'algorithme de minimisation, et d'améliorer la robustesse des moyens de filtrage par anticipation.According to a general definition of the invention, the filtering means comprise:
  • non-adaptive type feedback filtering means having an input connected to the first sensor means and an output connected to the first input of the summing means, and capable of generating an active non-adaptive attenuation of the vibrations on the framework, without generating instability in a first frequency band;
  • measurement means suitable for measuring, beforehand, in the presence of the feedback filtering means, the transfer function between the actuator means and the first sensor means;
  • adaptive type anticipation filtering means comprising a first input connected to the second sensor means, a second input connected to the first sensor means, and an output connected to the second input of the summing means;
the filter coefficients of the anticipation filter means being adapted in real time according to an algorithm chosen to minimize the energy of the vibrations picked up by the first sensor means as a function of the energy of the vibrations picked up by the second sensor means, and the transfer function previously measured;
which makes it possible to linearize the retroactive attenuation in a whole second frequency band wider than the first frequency band, to accelerate the convergence of the minimization algorithm, and to improve the robustness of the anticipation filtering means.

Selon un premier mode de réalisation de l'invention, l'ossature comprend au moins une cavité délimitée par une oreille et des moyens d'atténuation passifs, les premiers moyens capteurs et les moyens actionneurs étant logés dans ladite cavité tandis que les seconds moyens capteurs étant disposés hors de la cavité.According to a first embodiment of the invention, the framework includes at least one cavity defined by one ear and passive mitigation means, the first means sensors and actuator means being housed in said cavity while the second sensor means being arranged out of the cavity.

Dans un autre mode de réalisation de l'invention, l'ossature comprend une poutre de type métallique, une plaque, un treillis, un siège, une gaine de ventilation ou analogue.In another embodiment of the invention, the framework includes a metal beam, a plate, a trellis, seat, ventilation duct or the like.

En pratique, les premiers et seconds moyens capteurs comprennent chacun au moins: un élément capteur de sons de type microphone, un élément capteur d'accélération de type accéléromètre, un élément capteur de déplacement, un élément capteur de vitesse, un élément capteur de contrainte, un élément capteur de force ou analogue.In practice, the first and second sensor means comprise each at least: a type of sound sensor element microphone, a type acceleration sensor element accelerometer, a displacement sensor element, an element speed sensor, a strain sensor element, a force sensor element or the like.

Dans une variante, les premiers moyens capteurs comprennent deux éléments capteurs, l'un étant associé aux moyens de filtrage par anticipation, l'autre étant associé aux moyens de filtrage par rétroaction.In a variant, the first sensor means comprise two sensor elements, one being associated with the means of filtering in advance, the other being associated with the means filtering by feedback.

De préférence, les moyens actionneurs comprennent une source de sons de type haut-parleur, un corps d'épreuve, un pot vibrant ou analogue.Preferably, the actuator means comprise a source speaker-type sounds, a test body, a jar vibrating or the like.

Avantageusement, les moyens de filtrage par rétroaction comprennent une pluralité de filtres analogiques et/ou numériques actifs d'ordre supérieur ou égal à 1, agencés pour engendrer une fonction de transfert permettant d'éviter des instabilités dans la première bande de fréquences au sens de Nyquist, et la fonction de transfert des moyens de filtrage par rétroaction est déterminée de telle sorte que la phase de ladite fonction de transfert ne passe pas par la valeur 0 dans la première bande de fréquences.Advantageously, the filtering means by feedback include a plurality of analog filters and / or active numerics of order greater than or equal to 1, arranged for generate a transfer function to avoid instabilities in the first frequency band in the sense of Nyquist, and the transfer function of the filtering means by feedback is determined so that the phase of said transfer function does not go through the value 0 in the first frequency band.

En pratique, les moyens de filtrage par rétroaction sont de type à réponse impulsionnelle infinie.In practice, the feedback filtering means are infinite impulse response type.

Par exemple, les moyens de filtrage par anticipation sont à réponse impulsionnelle finie, et l'algorithme de minimisation est du type des moindres carrés moyens.For example, the means of advance filtering are finite impulse response, and the minimization algorithm is of the average least squares type.

Selon un autre aspect de l'invention, le dispositif comprend une pluralité de premiers moyens capteurs, et de moyens actionneurs et le dispositif est articulé autour d'une structure à multiprocesseurs maítre/esclaves, chaque processeur esclave étant chargé de piloter un seul moyen actionneur.According to another aspect of the invention, the device comprises a plurality of first sensor means, and means actuators and the device is articulated around a master / slave multiprocessor structure, each processor slave being responsible for controlling a single actuator means.

La présente invention a également pour objet un procédé d'atténuation active hybride des vibrations, notamment des vibrations mécaniques, sonores ou analogues, mis en oeuvre par le dispositif décrit ci-avant.The present invention also relates to a method active hybrid attenuation of vibrations, in particular mechanical, sound or similar vibrations used by the device described above.

D'autres caractéristiques et avantages de l'invention apparaítront à la lumière de la description détaillée ci-après et des dessins annexés dans lesquels:

  • la figure 1 est une représentation schématique du dispositif d'atténuation acoustique active selon l'invention;
  • la figure 2 représente schématiquement les moyens essentiels et constitutifs du dispositif de la figure 1 selon l'invention;
  • la figure 3 sont des courbes illustrant l'atténuation des vibrations sonores en présence/absence de moyens de filtrage par rétroaction, dans une bande de fréquences allant de 0 à 2500 Hz;
  • les figures 4 et 5 sont des courbes illustrant l'atténuation des vibrations sonores en présence/absence de moyens de filtrage hybride selon l'invention, dans une bande de fréquences allant de 0 à 2500 Hz;
  • les figures 6 et 7 sont des courbes illustrant l'atténuation des vibrations sonores en présence/absence des moyens de filtrage hybride selon l'invention, dans une bande de fréquences allant de 500 Hz à 1500 Hz;
  • la figure 8 est une courbe illustrant l'atténuation des vibrations sonores en présence/absence des moyens de filtrage hybride selon l'invention, dans une bande de fréquences allant de 0 à 500 Hz;
  • les figures 9, 10A et 10B sont des courbes illustrant l'atténuation des vibrations sonores en présence/absence des filtrage par anticipation;
  • la figure 11 représente schématiquement la structure du dispositif d'atténuation multi-voies selon l'invention, dans lequel les filtrages par anticipation et par rétroaction sont numériques;
  • la figure 12 représente schématiquement les éléments constitutifs du processeur esclave du dispositif de la figure 11;
  • la figure 13 représente schématiquement la structure du dispositif d'atténuation multi-voies selon l'invention, dans lequel le filtrage par rétroaction est analogique; et
  • la figure 14 représente schématiquement l'assemblage du filtrage par rétroaction analogique dans le dispositif de la figure 13.
Other characteristics and advantages of the invention will become apparent in the light of the detailed description below and the appended drawings in which:
  • Figure 1 is a schematic representation of the active acoustic attenuation device according to the invention;
  • FIG. 2 schematically represents the essential and constitutive means of the device of FIG. 1 according to the invention;
  • FIG. 3 are curves illustrating the attenuation of sound vibrations in the presence / absence of filtering means by feedback, in a frequency band going from 0 to 2500 Hz;
  • Figures 4 and 5 are curves illustrating the attenuation of sound vibrations in the presence / absence of hybrid filtering means according to the invention, in a frequency band ranging from 0 to 2500 Hz;
  • Figures 6 and 7 are curves illustrating the attenuation of sound vibrations in the presence / absence of the hybrid filtering means according to the invention, in a frequency band ranging from 500 Hz to 1500 Hz;
  • FIG. 8 is a curve illustrating the attenuation of sound vibrations in the presence / absence of the hybrid filtering means according to the invention, in a frequency band going from 0 to 500 Hz;
  • Figures 9, 10A and 10B are curves illustrating the attenuation of sound vibrations in the presence / absence of advance filtering;
  • FIG. 11 schematically represents the structure of the multi-channel attenuation device according to the invention, in which the filtering by anticipation and by feedback is digital;
  • FIG. 12 schematically represents the constituent elements of the slave processor of the device of FIG. 11;
  • FIG. 13 schematically represents the structure of the multi-channel attenuation device according to the invention, in which the filtering by feedback is analog; and
  • FIG. 14 schematically represents the assembly of the filtering by analog feedback in the device of FIG. 13.

Sur la figure 1, on a représenté une application particulièrement avantageuse, non limitative, de l'invention, à savoir l'atténuation des vibrations sonores. Dans cette application, l'ossature susceptible d'être sujette à des vibrations à atténuer comprend une cavité 2 délimitée par une oreille 4 et des moyens d'atténuation 6 de type casque 6.In Figure 1, there is shown a particularly application advantageous, nonlimiting, of the invention, namely attenuation of sound vibrations. In this app, the frame likely to be subject to vibrations at attenuate includes a cavity 2 delimited by an ear 4 and attenuation means 6 of the helmet type 6.

Par exemple, le casque à filtre rétroactif est celui vendu par la société TECHNOFIRST.For example, the helmet with retroactive filter is the one sold by the company TECHNOFIRST.

De façon connue, ce casque est équipé d'un dispositif d'atténuation acoustique active par rétroaction.In known manner, this helmet is equipped with a mitigation device active acoustic feedback.

En pratique, ce dispositif d'atténuation par rétroaction comprend pour chaque oreille:

  • un microphone 8 disposé dans la cavité 2;
  • un haut-parleur 10 disposé dans la cavité 2 à proximité du microphone 8;
  • des moyens de pré-amplification 9 comprenant une entrée 7 reliée au microphone 8 et une sortie 11,
  • des moyens de filtrage par rétroaction 12 comprenant une entrée 14 reliée à la sortie 11, et une sortie 16; et
  • des moyens d'amplification 18 comprenant une entrée 20 reliée à la sortie 16, et une sortie 22 reliée à l'entrée du haut-parleur 10.
In practice, this feedback attenuation device comprises for each ear:
  • a microphone 8 disposed in the cavity 2;
  • a speaker 10 disposed in the cavity 2 near the microphone 8;
  • pre-amplification means 9 comprising an input 7 connected to the microphone 8 and an output 11,
  • feedback filtering means 12 comprising an input 14 connected to the output 11, and an output 16; and
  • amplification means 18 comprising an input 20 connected to the output 16, and an output 22 connected to the input of the loudspeaker 10.

Les moyens de pré-amplification 9, les moyens de filtrage par rétroaction 12 et les moyens d'amplification 18 constituent ici une boucle de contre-réaction 30 agencée de façon connue pour engendrer une atténuation acoustique active sans engendrer d'instabilité dans une bande de fréquences choisies. The pre-amplification means 9, the filtering means by feedback 12 and the amplification means 18 constitute here a feedback loop 30 arranged in a known manner to generate active acoustic attenuation without generate instability in a selected frequency band.

Sur la figure 1, on a représenté à proximité du casque, une source de bruit 40 susceptible d'engendrer des vibrations sonores à des fins expérimentales et de test.In Figure 1, there is shown near the helmet, a noise source 40 liable to generate vibrations sound for experimental and test purposes.

Par exemple, la bande de fréquences dans laquelle les moyens de filtrage par rétroaction sont efficaces sans engendrer d'instabilité au sens de Nyquist, est de l'ordre de 0 à 600 Hz pour des vibrations sonores (figure 3).For example, the frequency band in which the means filtering methods are effective without causing instability in the sense of Nyquist, is of the order of 0 to 600 Hz for sound vibrations (figure 3).

En pratique, les moyens de filtrage par rétroaction 12 comprennent une pluralité de filtres analogiques actifs d'ordre supérieur ou égal à 1, agencés pour engendrer une fonction de transfert permettant d'éviter des instabilités dans la bande de fréquence 0-600 Hz au sens de Nyquist, et la fonction de transfert des moyens de filtrage 12 est déterminée de telle sorte que la phase de ladite fonction de transfert ne passe pas par la valeur 0 dans la bande 0-600 Hz.In practice, the filtering means by feedback 12 include a plurality of active analog filters of order greater than or equal to 1, arranged to generate a transfer function to avoid instabilities in the frequency band 0-600 Hz in the sense of Nyquist, and the transfer function of the filtering means 12 is determined so that the phase of said function of transfer does not go through the value 0 in the band 0-600 Hz.

Un tel filtrage par rétroaction est par exemple décrit dans le Brevet français 86 03394.Such feedback filtering is for example described in French Patent 86,03394.

En référence à la figure 3, le casque permet un traitement large bande jusqu'à 600 Hz et des atténuations de bruit de l'ordre de 20 dB. Cependant, un effet de pompage apparaít à partir de 650 Hz qui se traduit par une augmentation du niveau de bruit par rapport à l'action des moyens d'atténuation passive seule. Ce phénomène est tout à fait connu de l'homme du métier, et constitue une non-linéarité (dégradations des performances) par rapport aux résultats attendus de l'observation du système en boucle ouverte.Referring to Figure 3, the helmet allows treatment wide band up to 600 Hz and noise attenuations of around 20 dB. However, a pumping effect appears at from 650 Hz which results in an increase in noise level in relation to the action of the mitigation means passive alone. This phenomenon is well known from the skilled person, and constitutes a non-linearity (degradations performance) compared to the expected results of observing the open loop system.

Le Demandeur s'est posé le problème de remédier aux inconvénients liés au filtrage par rétroaction.The Applicant has posed the problem of remedying the disadvantages related to feedback filtering.

La solution selon l'invention consiste tout d'abord, à utiliser un microphone supplémentaire 100 disposé à une certaine distance du microphone 8. Par exemple, le microphone supplémentaire 100 est disposé sur la partie supérieure des moyens qui permettent de rattacher les deux coquilles du casque. Dans ces conditions, le microphone supplémentaire 100 est proche de la source de bruit 40 et permet ainsi de récupérer une information utile à traiter. Bien évidemment, ce microphone distant peut être disposé différemment.The solution according to the invention consists first of all, in use an additional microphone 100 placed at a certain distance from the microphone 8. For example, the microphone additional 100 is arranged on the upper part of the means which allow the two shells of the helmet. Under these conditions, the additional microphone 100 is close to the noise source 40 and thus makes it possible to retrieve useful information to be processed. Of course, this remote microphone can be arranged differently.

Ensuite, selon l'invention, des moyens sommateurs 110 sont prévus au niveau de la boucle de contre-réaction 30. Ces moyens sommateurs 110 possèdent une première entrée 112 reliée à la sortie 16 des moyens de filtrage 12, une seconde entrée 114 et une sortie 116 reliée à l'entrée 20 des moyens amplificateurs 18.Next, according to the invention, summing means 110 are provided at the level of the feedback loop 30. These summing means 110 have a first input 112 connected to the output 16 of the filtering means 12, a second input 114 and an output 116 connected to input 20 of the means amplifiers 18.

Enfin, selon l'invention, des moyens de filtrage de type par anticipation sont greffés à la boucle de contre-réaction 30 afin d'améliorer le filtrage par rétroaction et, plus exactement, afin de linéariser l'atténuation active dans la totalité d'une bande de fréquences plus large que la bande 0-600 Hz et d'améliorer ainsi le gain d'atténuation active dans la bande élargie qui peut aller jusqu'à 3000 Hz (figure 4), par suppression totale de l'effet de pompage mentionné ci-avant.Finally, according to the invention, type filtering means by anticipation are grafted to the feedback loop 30 to improve feedback filtering and, more exactly, in order to linearize the active attenuation in the entire frequency band wider than the 0-600 band Hz and thus improve the active attenuation gain in the widened band which can go up to 3000 Hz (figure 4), by total elimination of the mentioned pumping effect above.

En pratique, les moyens de filtrage par anticipation 130 comprennent une première entrée 132 reliée au microphone supplémentaire 100, une seconde entrée 134 reliée au microphone 8 et une sortie 136 reliée à la seconde entrée 114 des moyens sommateurs 110.In practice, the means of advance filtering 130 include a first input 132 connected to the microphone additional 100, a second input 134 connected to the microphone 8 and an output 136 connected to the second input 114 of the summing means 110.

Comme on le verra plus en détail ci-après, les coefficients de filtrage des moyens de filtrage par anticipation 130 sont adaptés en temps réel selon un algorithme choisi pour minimiser l'énergie des vibrations captées par le microphone 8, en fonction de l'énergie des vibrations captées par le microphone 100, afin de linéariser l'atténuation rétroactive dans toute une bande de fréquences plus large que la bande de fréquences traitée directement par rétroaction, d'accélérer la convergence de l'algorithme de minimisation, et d'améliorer la robustesse des moyens de filtrage par anticipation. As will be seen in more detail below, the coefficients filtering the anticipation filtering means 130 are adapted in real time according to an algorithm chosen for minimize the energy of vibrations picked up by the microphone 8, depending on the energy of the vibrations picked up by the microphone 100, in order to linearize the retroactive attenuation in a whole frequency band wider than the band of frequencies processed directly by feedback, speed up convergence of the minimization algorithm, and improve the robustness of the anticipation filtering means.

En pratique, les moyens de filtrage par anticipation comprennent des filtres à réponse impulsionnelle finie de type adaptatif 140. Les coefficients des filtres 140 sont réactualisés en temps réel par un algorithme de minimisation 150. Par exemple, l'algorithme de minimisation est du type des moindres carrés moyens, appelés encore LMS pour "LEAST MEAN SQUARES".In practice, the means of advance filtering include type finite impulse response filters adaptive 140. The coefficients of the filters 140 are updated in real time by a minimization algorithm 150. For example, the minimization algorithm is of the type of mean least squares, also called LMS for "LEAST MEAN SQUARES ".

Cette linéarisation est observable au moins en deux points, notamment au niveau de la bande 0-600 Hz dans laquelle le gain d'atténuation dans la bande est amélioré; ainsi qu'au niveau de la bande 600-1100 Hz dans laquelle la réapparition des vibrations liées au pompage du filtrage rétroactif est supprimée et dans laquelle une atténuation apparaít alors que celle-ci n'existe pas en présence d'un filtrage par rétroaction seul (figures 3 à 8).This linearization can be observed at least at two points, especially in the 0-600 Hz band in which the attenuation gain in the band is improved; as well as band level 600-1100 Hz in which the reappearance vibrations related to the pumping of the retroactive filtering is deleted and in which an attenuation appears while this does not exist in the presence of feedback filtering alone (Figures 3 to 8).

Cette accélération de la convergence de l'algorithme de minimisation ainsi que l'amélioration de la robustesse des moyens de filtrage par anticipation est observable en comparant les courbes d'atténuation obtenues par les moyens de filtrage par anticipation seuls (figures 9, 10A et 10B) par rapport aux courbes d'atténuation obtenues par les moyens de filtrage hybride selon l'invention (figures 4 à 8).This acceleration of the convergence of the algorithm minimization as well as improving the robustness of means of early filtering is observable in comparing the attenuation curves obtained by the means advance filtering alone (Figures 9, 10A and 10B) compared to the attenuation curves obtained by the means hybrid filtering according to the invention (Figures 4 to 8).

Il est à remarquer que l'atténuation active de type "hybride" obtenue selon l'invention résulte d'une combinaison des moyens de filtrage par anticipation et par rétroaction dans laquelle le filtrage par anticipation est greffé sur le filtrage par rétroaction ou réciproquement.It should be noted that the active attenuation of the "hybrid" type obtained according to the invention results from a combination of means of filtering by anticipation and by feedback in which the advance filtering is grafted on the filtering by feedback or vice versa.

Cette combinaison des filtrages par anticipation et par rétroaction selon l'invention permet d'améliorer le comportement respectif desdits filtrages, avec une atténuation active résultante supérieure à la somme algébrique des atténuations individuelles desdits filtrages prises séparément.This combination of filtering in advance and by feedback according to the invention improves behavior respective of said filterings, with active attenuation resulting greater than the algebraic sum of the attenuations individual said filterings taken separately.

Sur la figure 2, on a représenté en détail les éléments constitutifs des moyens de filtrage par rétroaction ainsi que les éléments constitutifs des moyens de filtrage par anticipation, ces derniers étant combinés avec les moyens de filtrage par rétroaction selon l'invention.In Figure 2, there is shown in detail the elements constituting the filtering means by feedback as well as the constituent elements of the anticipation filtering means, the latter being combined with the means of filtering by feedback according to the invention.

Les moyens de filtrage par anticipation 130 comprennent un premier module d'acquisition A8 associé aux moyens capteurs proches 8 et un second module d'acquisition A100 associé aux moyens capteurs distants 100.The anticipation filtering means 130 comprise a first A8 acquisition module associated with sensor means relatives 8 and a second A100 acquisition module associated with remote sensor means 100.

Les modules d'acquisition A8 et A100 sont généralement semblables. Toutefois, dans certaines configurations, les modules d'acquisitions peuvent être différents. Leurs éléments constitutifs sont individualisés par le suffixe 8 lorsqu'ils sont associés aux moyens capteurs 8 et 100 lorsqu'ils sont associés aux moyens de capture distants 100.The A8 and A100 acquisition modules are generally alike. However, in some configurations, the acquisition modules can be different. Their constituent elements are identified by the suffix 8 when associated with sensor means 8 and 100 when associated with the remote capture means 100.

Chaque module d'acquisition comprend:

  • un élément pré-amplificateur d'entrée PE possédant une entrée reliée aux moyens capteurs 8 ou 100 associés et une sortie;
  • un filtre de conditionnement FAT spécifique à l'application choisie, de préférence de type anti-recouvrement possédant une entrée reliée à la sortie du pré-amplificateur d'entrée et une sortie; et
  • un convertisseur analogique/numérique CAN possédant une entrée reliée à la sortie du filtre de conditionnement et une sortie.
Each acquisition module includes:
  • an input pre-amplifier element PE having an input connected to the associated sensor means 8 or 100 and an output;
  • a FAT conditioning filter specific to the chosen application, preferably of the anti-overlap type having an input connected to the output of the input preamplifier and an output; and
  • an analog / digital ADC converter having an input connected to the output of the conditioning filter and an output.

Chaque module d'acquisition est relié à des moyens de traitement DSP qui vont assurer notamment l'algorithme de minimisation décrite ci-avant.Each acquisition module is connected to processing means DSP which will ensure in particular the minimization algorithm described above.

En pratique, les moyens de traitement numérique sont de type processeur à signal numérique PSN. In practice, the digital processing means are of the type PSN digital signal processor.

Le processeur DSP comprend une entrée E8 recevant les signaux sortant du module d'acquisition A8 et une entrée E100 recevant les signaux sortant du module d'acquisition A100.DSP processor includes an E8 input for receiving signals leaving the A8 acquisition module and an E100 input receiving signals from the A100 acquisition module.

Le processeur DSP comprend une sortie délivrant un signal numérique destiné à un module de restitution R.DSP processor includes signal output digital for a R rendering module.

Ce module de restitution R comprend un convertisseur numérique/analogique CNAR et un filtre de lissage FLR, par exemple de type passe-bas, dont l'entrée reçoit le signal sortant du convertisseur numérique/analogique CNAR et dont la sortie est reliée à la seconde entrée 114 des moyens sommateurs 110.This R rendering module includes a digital / analog converter CNAR and a FLR smoothing filter, for example low pass type, the input of which receives the outgoing signal from the digital / analog converter CNAR and whose output is connected to the second input 114 of the summing means 110.

Par exemple, le processeur DSP est celui vendu par la société TEXAS INSTRUMENT sous la référence TMS 320C25.For example, the DSP processor is the one sold by the company TEXAS INSTRUMENT under the reference TMS 320C25.

Le fonctionnement du dispositif selon l'invention est le suivant.The operation of the device according to the invention is the next.

Dans une première étape d'initialisation, les moyens de filtrage par rétroaction 12 sont mis en fonctionnement, ainsi que la source de bruit 40, tandis que les moyens de filtrage par anticipation sont mis en position pause.In a first initialization step, the means of feedback filtering 12 are put into operation as well that the noise source 40, while the filtering means in advance are put in pause position.

On règle sur les moyens de filtrage par anticipation les préamplificateurs d'entrée PE8 et PE100, pour être en pleine échelle des convertisseurs analogiques/numériques CAN8 et CAN100.The preamplifiers are regulated on the means of advance filtering PE8 and PE100, to be in full scale of CAN8 analog / digital converters and CAN100.

Ensuite, on arrête la source de bruit 40. On mesure alors la fonction de transfert du chemin dit secondaire entre le haut-parleur 10 et le microphone dit de contrôle 8 par une méthode d'initialisation, par exemple en excitant les moyens actionneurs par des signaux de type Diracs, bruit blanc, de référence filtrée ou analogue.Then we stop the noise source 40. We then measure the transfer function of the so-called secondary path between the speaker 10 and the so-called control microphone 8 by a method initialization, for example by exciting the actuator means by Diracs type signals, white noise, filtered reference or the like.

Enfin, la fonction de transfert est échantillonnée et sauvegardée dans la mémoire du processeur DSP. Par exemple, la fonction de transfert est échantillonnée à la fréquence de 3000 Hz sur un nombre de 80 points. Avantageusement, on règle le gain de l'amplificateur 18 afin que l'excitation du haut-parleur 10 produise à la sortie du pré-amplificateur PE8, un niveau de signal proche de celui réglé lors de l'étape précédente relative au réglage dynamique des convertisseurs.Finally, the transfer function is sampled and saved in the memory of the DSP processor. For example, the transfer function is sampled at the frequency of 3000 Hz on a number of 80 points. Advantageously, we settle the gain of amplifier 18 so that the excitation of the speaker 10 produces at the output of the PE8 preamplifier, a signal level close to that set in step previous relating to the dynamic adjustment of the converters.

Cette fonction de transfert ainsi préalablement mesurée va servir ensuite dans la phase de calibration pour l'adaptation des éléments de filtrage par anticipation.This transfer function thus previously measured will then use in the calibration phase for adaptation elements of advance filtering.

En condition de fonctionnement, c'est-à-dire pendant la phase de minimisation du dispositif de contrôle hybride (c'est-à-dire combinaison feedforward avec feedback ou réciproquement), les moyens de traitement numérique acquièrent périodiquement, et en temps réel, le bruit distant capté par les moyens capteurs distants 100. Ils calculent également l'énergie du signal, représentative de la somme des énergies des signaux délivrés par les moyens capteurs proches 8. Ensuite, les moyens de filtrage par anticipation 150 sont placés en recherche des paramètres optimaux pour la meilleure atténuation active. La connaissance des réponses impulsionnelles préalablement mesurées, des signaux issus des moyens capteurs proches et distants en temps réel, permet à un algorithme de minimisation choisi de déterminer, en temps réel, les valeurs du signal de commande d'atténuation acoustique active.In operating condition, i.e. during the phase minimization of the hybrid control device (i.e. feedforward combination with feedback or vice versa), the digital processing means acquire periodically, and in real time, the distant noise picked up by remote sensor means 100. They also calculate signal energy, representative of the sum of energies signals delivered by nearby sensor means 8. Then, the anticipation filter means 150 are placed in search of optimal parameters for the best active attenuation. Knowledge of impulse responses previously measured, signals from the means close and remote sensors in real time, allows a minimization algorithm chosen to determine, in time real, the attenuation control signal values active acoustics.

Le but de la convergence est ici de minimiser l'énergie des signaux délivrés par le microphone 8 disposé dans la cavité à débruiter du casque.The purpose of convergence here is to minimize the energy of signals delivered by the microphone 8 placed in the cavity to denoise from the helmet.

Par exemple, l'algorithme de minimisation utilise la technique des moindres carrés moyens qui est le plus répandu dans le domaine des applications en temps réel.For example, the minimization algorithm uses the technique mean least squares which is most prevalent in real-time applications.

En variante, l'algorithme de minimisation peut être un algorithme fréquentiel travaillant sur les transformés de Fourier des signaux considérés. Alternatively, the minimization algorithm may be a frequency algorithm working on transforms of Fourier of the signals considered.

Il est à remarquer que la réponse impulsionnelle ou la fonction de transfert des chemins haut-parleur/microphone de contrôle 8 tient compte ici du filtrage par rétroaction.It should be noted that the impulse response or the speaker / microphone path transfer function from control 8 takes account of filtering by feedback here.

Ainsi, les informations d'instabilité liées au filtrage par rétroaction sont introduites dans la réponse impulsionnelle du filtre par anticipation. De même, les informations d'atténuation active large bande liées au filtrage par rétroaction apparaissent dans les éléments échantillonnés de la réponse impulsionnelle.Thus, the instability information related to filtering by feedback are introduced in the impulse response of the filter in advance. Similarly, the information broadband active attenuation related to filtering by feedback appear in the sampled items of the impulse response.

Grâce à la participation de ces informations liées donc à l'instabilité du filtrage par rétroaction ainsi que les informations liées à l'atténuation active large bande de ce filtrage, le filtrage par anticipation va apporter plusieurs types d'améliorations en référence aux figures 3 à 10B :

  • annulation des amplifications de signaux en haute fréquences liées aux instabilités par rétroaction;
  • atténuation du bruit en dehors de la bande de traitement du filtrage par rétroaction (gain jusqu'à 10 dB par rapport au traitement passif des coquilles dans le cas du casque);
  • amélioration du traitement dans la totalité de la bande de traitement de filtrage par rétroaction (gain jusqu'à 15 dB par rapport au filtrage par rétroaction seul), ce qui permet de le rendre encore plus linéaire;
  • amélioration de la robustesse du système, par exemple aux effets Larsen;
  • amélioration des performances par rapport à des filtrages par rétroaction et des filtrages par anticipation utilisés séparément.
  • accélération de la convergence de l'algorithme de minimisation,
  • amélioration de la robustesse des moyens de filtrage par anticipation (observable en comparant les courbes d'atténuation obtenues par les moyens de filtrage par anticipation seuls (figures 9, 10A et 10B) par rapport aux courbes d'atténuation obtenues par les moyens de filtrage hybride selon l'invention (figures 4 à 8).
Thanks to the participation of this information therefore linked to the instability of the feedback filtering as well as the information related to the active broadband attenuation of this filtering, the anticipation filtering will bring several types of improvements with reference to FIGS. 10B:
  • cancellation of amplifications of high frequency signals linked to instabilities by feedback;
  • noise attenuation outside the feedback filtering processing band (gain up to 10 dB compared to passive shell processing in the case of headphones);
  • improved processing in the entire feedback filtering processing band (gain up to 15 dB compared to feedback filtering alone), which makes it even more linear;
  • improved robustness of the system, for example to Larsen effects;
  • improved performance compared to feedback filtering and anticipation filtering used separately.
  • acceleration of the convergence of the minimization algorithm,
  • improvement of the robustness of the anticipation filtering means (observable by comparing the attenuation curves obtained by the anticipation filtering means alone (FIGS. 9, 10A and 10B) compared to the attenuation curves obtained by the hybrid filtering means according to the invention (Figures 4 to 8).

Il est à remarquer que l'action du filtrage par anticipation ne perturbe pas celle du filtrage par rétroaction dans le sens où l'on peut arrêter la minimisation en cours du filtrage par anticipation sans altérer les performances du filtrage par rétroaction.Note that the action of advance filtering does not disturb that of filtering by feedback in the sense where we can stop the minimization during the advance filtering without affecting the performance of the filtering by feedback.

Sur les figures 3 à 10B, on a représenté les densités spectrales de puissance mesurées à l'aide d'un microphone fixé dans l'oreille de l'expérimentateur dans différentes configurations. Les effets indésirables dus à l'instabilité du filtrage par rétroaction (réjection jusqu'à 8 dB) sont éliminés par l'action du dispositif de filtrage par anticipation (voir figures 3, 4 et 5).Figures 3 to 10B show the spectral densities of power measured using a fixed microphone in the ear of the experimenter in different configurations. Adverse reactions due to instability of the feedback filtering (rejection up to 8 dB) are eliminated by the action of the advance filtering device (see figures 3, 4 and 5).

Mieux encore, le dispositif par anticipation permet d'obtenir, en dehors de la bande de traitement du feed back (o-600 Hz), un gain en atténuation de 2 à 10 dB par rapport à un casque passif (figure 6).Better still, the anticipation device makes it possible to obtain, outside the feed back processing band (o-600 Hz), a gain in attenuation of 2 to 10 dB compared to a passive helmet (figure 6).

De même, on a mesuré des meilleurs résultats d'anti-bruits en basse fréquences jusqu'à +15 dB.Likewise, better anti-noise results have been measured in low frequencies up to +15 dB.

Le dispositif décrit en référence aux figures 1 et 2, utilise un traitement de type mono-voie, articulé autour du processeur TMS 320C25 de chez TEXAS INSTRUMENT qui peut exécuter 10 millions d'instructions par seconde.The device described with reference to Figures 1 and 2, uses a single-channel type processing, articulated around the processor TMS 320C25 from TEXAS INSTRUMENT which can execute 10 million instructions per second.

Toutefois, il peut être trop lent lorsqu'il doit piloter un dispositif multivoies comprenant une pluralité de capteurs 8, de capteurs distants 100 et d'actionneurs 10. However, it may be too slow when it has to drive a multi-channel device comprising a plurality of sensors 8, remote sensors 100 and actuators 10.

Par exemple, pour un fonctionnement du dispositif avec cinq microphones 8, cinq hauts-parleurs 10, 60 points pour les réponses impulsionnelles et 15 coefficients de filtrage par anticipation, le processeur ne peut travailler qu'à des fréquences d'échantillonnage inférieures ou égales à 1000 Hz.For example, for operation of the device with five microphones 8, five speakers 10, 60 points for impulse responses and 15 filter coefficients by anticipation, the processor can only work at sampling frequencies less than or equal to 1000 Hz.

Or, certaines expérimentations nécessitent un traitement rapide, pour un nombre de microphones 8 dits d'erreurs et de sources de contre-bruits 10 supérieur à cinq.However, certain experiments require treatment fast, for a number of microphones 8 known as errors and sources of noise reduction 10 greater than five.

De plus, pour garder la pleine efficacité de l'algorithme de minimisation, il peut être nécessaire d'avoir une bonne connaissance de la réponse impulsionnelle des trajets secondaires. Il faut donc enregistrer en mémoire cette réponse avec un grand nombre de points. Ce nombre de points détermine aussi le nombre d'échantillons du signal de référence issu du capteur distant 100 qu'il faut conserver également en mémoire interne, d'où le problème de la capacité mémoire.In addition, to keep the full efficiency of the algorithm minimization it may be necessary to have good knowledge of the path impulse response secondary. We must therefore save this memory answer with a large number of points. This number of points also determines the number of signal samples reference from remote sensor 100 which must be kept also in internal memory, hence the problem of capacity memory.

La présente invention apporte également une solution à ces problèmes.The present invention also provides a solution to these problems.

Selon l'invention, le dispositif d'atténuation est capable de gérer une pluralité de voies, par exemple vingt voies d'entrée analogiques susceptibles de recevoir les signaux émanant de 19 capteurs proches individualisés en 8-1 à 8-19 et d'un capteur distant 100. Le dispositif selon l'invention comprend également au moins seize voies de sorties capables de véhiculer des signaux vers seize actionneurs individualisés en 10-1 à 10-16.According to the invention, the attenuation device is capable of manage a plurality of channels, for example twenty channels analog input capable of receiving signals from 19 close sensors individualized in 8-1 to 8-19 and a remote sensor 100. The device according to the invention also includes at least sixteen capable output channels to convey signals to sixteen individualized actuators in 10-1 to 10-16.

Une telle structure implique le traitement de I (nombre entier de capteur d'erreur 8) fois J (nombre entier d'actionneurs) réponses impulsionnelles, une réponse RIJ pour chaque combinaison d'actionneurs J et de capteurs d'erreurs I.Such a structure implies the processing of I (number error sensor integer 8) times J (integer number of actuators) impulse responses, one RIJ response for each combination of actuators J and error sensors I.

Très avantageusement, le dispositif est articulé autour d'une structure à multiprocesseurs maítre/esclaves, chaque processeur esclave étant chargé de piloter un seul moyen actionneur.Very advantageously, the device is articulated around a master / slave multiprocessor structure, each processor slave being responsible for controlling a single actuator means.

En référence à la figure 11, le processeur maítre DSPM fait l'acquisition de tous les signaux émanant des capteurs 8 et 100, notamment les signaux de référence dits distants ainsi que les signaux de contrôle dits d'erreur. Il les distribue ensuite à tous les processeurs esclaves DSPE, individualisés ici en DSPE-1 à DSPE-16.Referring to Figure 11, the DSPM master processor does the acquisition of all the signals emanating from the sensors 8 and 100, in particular the so-called remote reference signals as well as the so-called error control signals. He distributes them then to all DSPE slave processors, individualized here in DSPE-1 to DSPE-16.

Chaque processeur esclave DSPE calcule le signal de sortie d'un seul actionneur 10.Each DSPE slave processor calculates the output signal of a single actuator 10.

En pratique, les capteurs 8 et le capteur distant 100 sont reliés aux entrées d'un bloc d'acquisition BA dont la sortie est reliée au processeur maítre DSPM.In practice, the sensors 8 and the remote sensor 100 are connected to the inputs of a BA acquisition block whose output is connected to the DSPM master processor.

Ce bloc d'acquisition BA comprend, comme les modules d'acquisition A décrits en référence à la figure 2, un élément pré-amplificateur PE, un filtre de conditionnement de préférence spécifique à l'application choisie FAT et un convertisseur analogique/numérique CAN.This BA acquisition block includes, like the acquisition modules A described with reference to FIG. 2, a preamplifier element PE, preferably a conditioning filter specific to the chosen application FAT and a converter analog / digital CAN.

Le filtre de conditionnement peut être numérique (anti-recouvrement) ou bien analogique (spécifique).The conditioning filter can be digital (anti-overlap) or analog (specific).

Un micro-ordinateur de type PC portable peut être prévu. Il est dans ce cas relié au processeur maítre et est muni de tous les logiciels de pilotage de l'ensemble de l'installation.A laptop type microcomputer can be provided. he is in this case connected to the master processor and is provided with all control software for the entire installation.

L'ensemble numérique est articulé autour d'un élément processeur de signal numérique PSN, par exemple celui vendu par la société TEXAS INSTRUMENT sous la référence TMS 320C50.The digital assembly is articulated around a processor element PSN digital signal, for example the one sold by the TEXAS INSTRUMENT under the reference TMS 320C50.

En référence à la figure 12, Chaque processeur esclave est dédié à la commande d'un seul actionneur. Par exemple, il s'agit du processeur associé à l'actionneur 10-1 et qui est en relation avec tous les microphones 8 ainsi qu'avec le microphone distant 100.Referring to Figure 12, Each slave processor is dedicated to the control of a single actuator. For example, this is the processor associated with the 10-1 actuator and which is in connection with all microphones 8 as well as with the remote microphone 100.

Tous les signaux des capteurs 8 et 100 sont acheminés via le bloc d'acquisition BA et le processeur maítre DSPM vers le processeur esclave DSPE-1.All signals from sensors 8 and 100 are routed through the BA acquisition block and the DSPM master processor to the DSPE-1 slave processor.

Le processeur esclave DSPE comprend généralement les mêmes éléments que ceux du dispositif monovoie décrit en référence à la figure 2. Ainsi, on retrouve les moyens de restitution R, les moyens de filtrage par rétroaction 12 ainsi que le filtrage par anticipation 130. Un élément sommateur 110 reçoit sur ses deux entrées les signaux émanant des deux filtrages pour délivrer sur sa sortie le signal d'atténuation vers l'actionneur 10-1.The DSPE slave processor generally includes the same elements than those of the single-channel device described with reference in Figure 2. Thus, we find the means of restitution R, the feedback filtering means 12 as well as the advance filtering 130. A summing element 110 receives signals from both at its two inputs filtering to deliver the attenuation signal on its output to the actuator 10-1.

Le processeur esclave comprend une communication avec le processeur maítre DSPM.The slave processor includes communication with the DSPM master processor.

Dans le cas d'un filtrage par rétroaction de type analogique (figure 14), des modifications sont apportées au niveau du bloc de restitution. Un sommateur individuel 100-1, c'est-à-dire associé au processeur esclave DSPE-1, permet d'ajouter le signal analogique issu du filtrage par rétroaction 12-1 au signal analogique issu du filtrage spécifique FLR-1.In the case of analog feedback filtering (Figure 14), changes are made to the restitution block. An individual summator 100-1, i.e. associated with the slave processor DSPE-1, allows to add the analog signal from 12-1 feedback filtering at analog signal from specific FLR-1 filtering.

Il est à remarquer que le filtrage par rétroaction n'a de sens que pour un couple de transducteurs comprenant un actionneur et un capteur de sons. Dans ces conditions, le nombre de filtrages par rétroaction numériques ou analogiques est égal à:

  • soit au nombre de capteurs 8, lorsque ce nombre est égal au nombre d'actionneurs 10,
  • soit au nombre d'actionneurs 10, si ce nombre est inférieur au nombre de capteurs 8,
  • soit au nombre de capteurs 8, si celui-ci est inférieur au nombre d'actionneurs 10.
It should be noted that the feedback filtering only makes sense for a pair of transducers comprising an actuator and a sound sensor. Under these conditions, the number of filterings by digital or analog feedback is equal to:
  • either the number of sensors 8, when this number is equal to the number of actuators 10,
  • either the number of actuators 10, if this number is less than the number of sensors 8,
  • or the number of sensors 8, if this is less than the number of actuators 10.

On définit ainsi le nombre maximal de filtrages par rétroaction.This defines the maximum number of filterings by feedback.

On définit aussi la notion de couples de transducteurs 8 et 10, c'est-à-dire les voies de traitement sur lesquelles sont appliquées les moyens de filtrage par rétroaction respectifs.We also define the notion of pairs of transducers 8 and 10, i.e. the treatment routes on which are applied the respective feedback filtering means.

Ensuite, chaque processeur esclave DSPE calcule, en parallèle du filtrage par anticipation, le filtrage par rétroaction qui lui est associé, dans le cas d'un filtrage par rétroaction de type numérique.Then, each DSPE slave processor calculates, in parallel advance filtering, feedback filtering which associated with it, in the case of filtering by feedback of digital type.

Dans le cas d'un filtrage par rétroaction de type analogique (figure 12), il est prévu un réseau de connexions dans lequel s'enfichent des modules de filtrage par rétroaction entre les couples de transducteurs 8,10 choisis.In the case of analog feedback filtering (Figure 12), there is a network of connections in which plug-in filtering modules by feedback between the couples of transducers 8,10 chosen.

Dans la description ci-avant, nous avons décrit une application liée aux vibrations sonores. Toutefois, l'invention s'applique à l'atténuation active de toute vibration.In the description above, we have described an application related to sound vibrations. However, the invention applies to the active attenuation of any vibration.

Ainsi, l'ossature sujette à des vibrations peut être aussi une poutre de type métallique, une plaque, un treillis, un siège, une gaine de ventilation ou analogue. Dans ces conditions, les moyens capteurs peuvent être des moyens capteurs de sons, mais aussi d'accélération, de contrainte, de force, de déplacement, de vitesse ou analogue. De même, les moyens actionneurs peuvent être non seulement un actionneur de sons tel qu'un haut-parleur, mais aussi un corps d'épreuve, un élément piézo-électrique, ou analogue. Par ailleurs, les moyens capteurs proches peuvent comprendre deux éléments capteurs, l'un étant associé aux moyens de filtrage par anticipation, l'autre étant associé aux moyens de filtrage par rétroaction.Thus, the structure subject to vibrations can also be a metal beam, a plate, a trellis, a seat, ventilation duct or the like. In these conditions, the sensor means can be sensor means of sounds, but also of acceleration, constraint, force, displacement, speed or the like. Likewise, the means actuators can be not just a sound actuator such as a speaker, but also a test body, a piezoelectric element, or the like. In addition, close sensor means may include two elements sensors, one being associated with the filtering means by anticipation, the other being associated with the filtering means by feedback.

Claims (17)

  1. Active vibration attenuation device of the type comprising:
    a framework likely to be subject to vibration to be attenuated;
    first vibration sensor means (8), arranged on the framework in a first predetermined geometric relationship with respect to said framework;
    vibration actuator means (10), arranged on the framework in proximity to the first sensor means (8) ; and
    filtering means comprising at least one input linked to the first sensor means and an output linked to the actuator means, the filtering means being configured to generate active attenuation of the vibration on the framework;
    second vibration sensor means (100), remote, arranged on the framework in a second predetermined geometric relationship with respect to said framework;
    summation means (110) possessing a first input (112), a second input (114), and an output linked to the actuator means (10);
    characterized in that the filtering means comprise:
    nonadaptive-type feedback filtering means (12) possessing an input linked to the first sensor means (8) and an output (16) linked to the first input (112) of the summation means, and suitable for generating nonadaptive active attenuation of the vibration on the framework, without generating instability in a first frequency band;
    means suitable for measuring, in advance, and in the presence of the feedback filtering means, the transfer function between the actuator means (10) and the first sensor means (8);
    adaptive-type feedforward filtering means (130) comprising a first input (132) linked to the second sensor means (100), a second input (134) linked to the first sensor means (8), and an output linked to the second input (114) of the summation means (110);
       the filtering coefficients (140) of the feedforward filtering means (130) being adapted in real time according to an algorithm chosen to minimize the energy of the vibration which is picked up by the first sensor means (8) as a function of the energy of the vibration which is picked up by the second sensor means (100), and of the thus previously measured transfer function, which makes it possible to linearize the feedback attenuation throughout a second frequency band which is wider than the first frequency band, to accelerate the convergence of the minimization algorithm, and to enhance the robustness of the feedforward filtering means.
  2. Device according to claim 1, characterized in that the framework comprises at least one cavity (2) bounded by an ear (4) and passive attenuation means (6), the first sensor means (8) and the actuator means (10) being lodged in said cavity (2), while the second sensor means (100) being arranged outside the cavity.
  3. Device according to claim 1, characterized in that the framework comprises a metal-type beam, or a plate, or a trellis, or a seat,or a ventilation duct or the like.
  4. Device according to claim 1, characterized in that the first sensor means (8) comprise at least: a sound sensor element of microphone type, an acceleration sensor element of accelerometer type, a movement sensor element, a speed sensor element, a stress sensor element, a force sensor element or the like.
  5. Device according to claim 4, characterized in that the first sensor means (8) comprise two sensor elements, one being associated with the feedforward filtering means, the other being associated with the feedback filtering means.
  6. Device according to claim 1, characterized in that the second sensor means (100) comprise at least: a sound sensor element of microphone type, an acceleration sensor element of accelerometer type, a movement sensor element, a speed sensor element, a stress sensor element, a force sensor element or the like.
  7. Device according to claim 1, characterized in that the actuator means (10) comprise a sound source of loudspeaker type, a test unit, a vibrating platform or the like.
  8. Device according to one of the preceding claims, characterized in that the feedback filtering means (12) comprise a plurality of active digital and/or analog filters of order greater than or equal to 1, configured to generate a transfer function making it possible to avoid instability in the first frequency band in the Nyquist sense, and in that the transfer function of the feedback filtering means is determined in such a way that the phase of said transfer function does not pass through the value zero in the first band.
  9. Device according to any one of the preceding claims, characterized in that the feedback filtering means (12) are of the infinite impulse-response type.
  10. Device according to any one of the preceding claims, characterized in that the feedforward filtering means (130) comprise:
    a first acquisition module (A8) possessing an input linked to the output of the first sensor means (8), and an output;
    a second acquisition module (A100) possessing an input linked to the output of the second sensor means (100), and an output;
    digital processing means possessing a first input linked to the output of the first acquisition module (A8), a second input linked to the output of the second acquisition module (A100), and an output, said digital processing means being suitable for controlling the algorithm for minimizing the energy of the vibration which is picked up by the first sensor means (8) as a function of the energy of the vibration which is picked up by the second sensor means (100); and
    a reproduction module (R) possessing an input linked to the output of the digital processing means and an output linked to the second input (114) of the summation means.
  11. Device according to claim 10, characterized in that the first and second acquisition modules (A8 and A100) comprise:
    an input preamplifier element (PE) possessing an input receiving the signals output by the first sensor means (8) or by the second sensor means (100), and an output;
    a conditioning filter (FAT) adapted to the chosen application and possessing an input linked to the output of the input preamplifier element, and an output; and
    an analog/digital converter (CAN) possessing an input linked to the output of the conditioning filter and an output linked to an input of the digital processing means.
  12. Device according to claim 10, characterized in that the reproduction module (R) comprises:
    a digital/analog converter (CNA) possessing an input linked to the output of the digital processing means, and an output; and
    a smoothing filter (FLR) possessing an input linked to the output of the digital/analog converter and an output linked to the second input (114) of the summation means (110).
  13. Device according to claim 10, characterized in that the feedforward filtering means (130) are finite impulse-response filters and in that the minimization algorithm is of the least mean squares type.
  14. Device according to claim 10, characterized in that the digital processing means are of the digital signal processor type.
  15. Device according to any one of the preceding claims, characterized in that it comprises a plurality of first sensor means (8-1, 8-2, 8-3, etc.), and of actuator means (10-1, 10-2, etc.) and in that the device is centered around a structure with master/slave multiprocessors, each slave processor (DSPE-1) being tasked with driving a single actuator means (10-1).
  16. Method of active vibration attenuation, particularly of acoustic vibration, of the type comprising the following stages:
    a) providing a framework likely to be subject to vibration to be attenuated;
    b) providing first vibration sensor means (8), arranged an the framework in a first predetermined geometric relationship with respect to said framework;
    c) providing vibration actuator means (10), arranged on the framework in proximity to the first sensor means ;
    d) providing filtering means comprising at least one input linked to the first sensor means (8) and an output (16);
    e) configuring the filtering means so as to generate active attenuation of the vibration an the framework;
    f) providing second vibration sensor means (100), remote, arranged on the framework in a second predetermined geometric relationship;
    g) providing summation means (110) possessing a first input (112), a second input (114), and an output linked to the actuator means (10);
    characterized in that it further comprises the
    following stages:
    h) providing nonadaptive-type feedback filtering means (12) possessing an input linked to the first sensor means (8) and an output (16) linked to the first input (112) of the summation means, and configuring the said feedback filtering means so as to generate nonadaptive-type active attenuation of the vibration on the framework, without generating instability in a first frequency band;
    i) measuring, in advance, and in the presence of the feedback filtering means, the transfer function between the actuator means (10) and the first sensor means (8) ;
    j) providing nonadaptive-type feedforward filtering means (130) comprising a first input (132) linked to the second sensor means (100), a second input (134) linked to the first sensor means (8), and an output linked to the second input (114) of the summation means (110) ;
    k) adapting the filtering coefficients (140) of the feedforward filtering means (130) in real time according to an algorithm chosen to minimize the energy of the vibration which is picked up by the first sensor means (8) as a function of the energy of the vibration which is picked up by the second sensor means (100), and the previously measured transfer function;
    which makes it possible to linearize the feedback attenuation throughout a second frequency band which is wider than the first frequency band, to accelerate the convergence of the minimization algorithm, and to enhance the robustness of the feedforward filtering means.
  17. Method according to claim 16, characterized in that it is implemented by a device according to any one of claims 1 to 15.
EP96932664A 1995-09-27 1996-09-27 Hybrid active vibration control method and device, particularly for mechanical and acoustic vibration and the like Expired - Lifetime EP0852793B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9511327A FR2739214B1 (en) 1995-09-27 1995-09-27 METHOD AND DEVICE FOR ACTIVE HYBRID MITIGATION OF VIBRATION, ESPECIALLY MECHANICAL, SOUND OR SIMILAR VIBRATION
FR9511327 1995-09-27
PCT/FR1996/001512 WO1997012359A1 (en) 1995-09-27 1996-09-27 Hybrid active vibration control method and device, particularly for mechanical and acoustic vibration and the like

Publications (2)

Publication Number Publication Date
EP0852793A1 EP0852793A1 (en) 1998-07-15
EP0852793B1 true EP0852793B1 (en) 2001-11-28

Family

ID=9482962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96932664A Expired - Lifetime EP0852793B1 (en) 1995-09-27 1996-09-27 Hybrid active vibration control method and device, particularly for mechanical and acoustic vibration and the like

Country Status (8)

Country Link
US (1) US6449369B1 (en)
EP (1) EP0852793B1 (en)
AT (1) ATE209813T1 (en)
AU (1) AU719457B2 (en)
CA (1) CA2231071C (en)
DE (1) DE69617449T2 (en)
FR (1) FR2739214B1 (en)
WO (1) WO1997012359A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078672A (en) * 1997-05-06 2000-06-20 Virginia Tech Intellectual Properties, Inc. Adaptive personal active noise system
FR2774796B1 (en) * 1998-02-06 2001-10-05 Sagem ANTI-NOISE DEVICE WITH THRESHOLD DETECTION
US20040013273A1 (en) * 2002-07-22 2004-01-22 Siemens Vdo Automotive, Inc. Calibration for an active noise control system
US20040086135A1 (en) * 2002-11-01 2004-05-06 Siemens Vdo Automotive Inc. Active noise control system using pure feedforward method with order-based offline calibration
FR2857551B1 (en) * 2003-04-30 2007-12-28 Senneisher Electronic Gmbh & C DEVICE FOR CAPTURING OR REPRODUCING AUDIO SIGNALS
GB2401744B (en) 2003-05-14 2006-02-15 Ultra Electronics Ltd An adaptive control unit with feedback compensation
US7181296B2 (en) * 2003-08-06 2007-02-20 Asml Netherlands B.V. Method of adaptive interactive learning control and a lithographic manufacturing process and apparatus employing such a method
US7308106B2 (en) * 2004-05-17 2007-12-11 Adaptive Technologies, Inc. System and method for optimized active controller design in an ANR system
DE102005016204A1 (en) * 2005-04-07 2006-10-12 Sennheiser Electronic Gmbh & Co. Kg Headphone for connection to an external active noise compensation device
CN101233783B (en) * 2005-07-29 2011-12-21 松下电器产业株式会社 Loudspeaker device
GB2446966B (en) 2006-04-12 2010-07-07 Wolfson Microelectronics Plc Digital circuit arrangements for ambient noise-reduction
JP5564743B2 (en) * 2006-11-13 2014-08-06 ソニー株式会社 Noise cancellation filter circuit, noise reduction signal generation method, and noise canceling system
JP2008122729A (en) * 2006-11-14 2008-05-29 Sony Corp Noise reducing device, noise reducing method, noise reducing program, and noise reducing audio outputting device
JP4506873B2 (en) * 2008-05-08 2010-07-21 ソニー株式会社 Signal processing apparatus and signal processing method
US8718291B2 (en) 2011-01-05 2014-05-06 Cambridge Silicon Radio Limited ANC for BT headphones
US8693700B2 (en) * 2011-03-31 2014-04-08 Bose Corporation Adaptive feed-forward noise reduction
US9495952B2 (en) * 2011-08-08 2016-11-15 Qualcomm Incorporated Electronic devices for controlling noise
FR2983026A1 (en) 2011-11-22 2013-05-24 Parrot AUDIO HELMET WITH ACTIVE NON-ADAPTIVE TYPE NOISE CONTROL FOR LISTENING TO AUDIO MUSIC SOURCE AND / OR HANDS-FREE TELEPHONE FUNCTIONS
EP2677765B1 (en) * 2012-06-20 2018-11-28 AKG Acoustics GmbH Headphone for active noise suppression
FR3022954A1 (en) 2014-06-30 2016-01-01 Christian Carme INSTALLATION FOR RECOVERING THE ENERGY OF A WAVE AND / OR FOR ACTIVE ATTENUATION OF SAID HOULE
CN104602163B (en) * 2014-12-31 2017-12-01 歌尔股份有限公司 Active noise reduction earphone and method for noise reduction control and system applied to the earphone
WO2018089345A1 (en) 2016-11-08 2018-05-17 Andersen Corporation Active noise cancellation systems and methods
FR3063173B1 (en) * 2017-02-22 2019-06-07 Hyvibe INSTRUMENT OF ACOUSTIC MUSIC, PERFECTED
FR3069932B1 (en) * 2017-08-01 2019-09-06 Hyvibe PERFECTED SOUND RESTITUTION FROM A DEVICE WITH VIBRANT MECHANICAL ACTUATOR
US10916234B2 (en) 2018-05-04 2021-02-09 Andersen Corporation Multiband frequency targeting for noise attenuation
CN114706432B (en) * 2022-05-20 2023-04-28 哈尔滨理工大学 Random micro-vibration active vibration isolation control method based on cross-medium time delay

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025724A (en) * 1975-08-12 1977-05-24 Westinghouse Electric Corporation Noise cancellation apparatus
FR2595498B1 (en) * 1986-03-07 1989-06-02 Centre Nat Rech Scient METHODS AND DEVICES FOR MITIGATING EXTERNAL NOISE ARISING AT TYMPAN AND IMPROVING THE INTELLIGIBILITY OF ELECTROACOUSTIC COMMUNICATIONS
US5091954A (en) * 1989-03-01 1992-02-25 Sony Corporation Noise reducing receiver device
DE69328851T2 (en) * 1992-07-07 2000-11-16 Sharp Kk Active control device with an adaptive digital filter
US5613009A (en) * 1992-12-16 1997-03-18 Bridgestone Corporation Method and apparatus for controlling vibration
GB2274757A (en) * 1993-01-28 1994-08-03 Secr Defence Ear defenders employing active noise control
FR2701784B1 (en) * 1993-02-18 1995-05-12 Matra Sep Imagerie Inf Method and device for active vibration damping.
US5481615A (en) * 1993-04-01 1996-01-02 Noise Cancellation Technologies, Inc. Audio reproduction system
US5425105A (en) * 1993-04-27 1995-06-13 Hughes Aircraft Company Multiple adaptive filter active noise canceller
US5452361A (en) * 1993-06-22 1995-09-19 Noise Cancellation Technologies, Inc. Reduced VLF overload susceptibility active noise cancellation headset
US5475761A (en) * 1994-01-31 1995-12-12 Noise Cancellation Technologies, Inc. Adaptive feedforward and feedback control system
US5745580A (en) * 1994-11-04 1998-04-28 Lord Corporation Reduction of computational burden of adaptively updating control filter(s) in active systems
US6085307A (en) * 1996-11-27 2000-07-04 Vlsi Technology, Inc. Multiple native instruction set master/slave processor arrangement and method thereof

Also Published As

Publication number Publication date
EP0852793A1 (en) 1998-07-15
CA2231071A1 (en) 1997-04-03
US6449369B1 (en) 2002-09-10
CA2231071C (en) 2009-01-27
AU719457B2 (en) 2000-05-11
DE69617449T2 (en) 2002-08-01
WO1997012359A1 (en) 1997-04-03
ATE209813T1 (en) 2001-12-15
FR2739214A1 (en) 1997-03-28
DE69617449D1 (en) 2002-01-10
AU7136096A (en) 1997-04-17
FR2739214B1 (en) 1997-12-19

Similar Documents

Publication Publication Date Title
EP0852793B1 (en) Hybrid active vibration control method and device, particularly for mechanical and acoustic vibration and the like
EP0237454B1 (en) Processes and devices for attenuating noise from an external origin arriving at the ear drum, and for improving the intelligibility of electro-acoustic communications
FR2636189A1 (en) ELECTRONIC NOISE MITIGATION SYSTEM
EP2597889B1 (en) Headphones with non-adaptive active noise control
EP2518724B1 (en) Microphone/headphone audio headset comprising a means for suppressing noise in a speech signal, in particular for a hands-free telephone system
EP2122607B1 (en) Method for the active reduction of sound disturbance
EP3171612A1 (en) Audio headphones with active noise control, anti-occlusion control and passive attenuation cancellation, based on the presence or the absence of a vocal activity of the headphone user
FR2704969A1 (en) Active double wall acoustic attenuation device
FR2533100A1 (en) METHOD AND APPARATUS FOR MITIGATION OF NOISE NOISE
EP0829079B1 (en) Personal active noise cancellation method and device having invariant impulse response
FR2726681A1 (en) ACTIVE DOUBLE WALL ACOUSTIC MITIGATION DEVICE
FR2740599A1 (en) ACTIVE ACOUSTIC MITIGATION DEVICE INTENDED TO BE ARRANGED WITHIN A DUCT, PARTICULARLY FOR SOUNDPROOFING A VENTILATION AND / OR AIR CONDITIONING NETWORK
FR2536891A2 (en) APPARATUS FOR MITIGATING SOUND VIBRATIONS AND REMOVING VIBRATIONS
FR2841721A1 (en) ECHO PROCESSING DEVICE FOR SINGLE-CHANNEL OR MULTI-CHANNEL COMMUNICATION SYSTEM
EP0861486B1 (en) Method and device for recovering a wanted acoustic signal from a composite acoustic signal including interference components
FR2967848A1 (en) SPECTRUM CORRECTION SYSTEM INTENDED IN PARTICULAR FOR A SHOWROOM
EP3979663A1 (en) Audio headset with noise-reduction
WO2020074522A1 (en) Method and device for controlling the distortion of a loudspeaker system on board a vehicle
EP1014669A1 (en) Acoustic system for echo cancellation
FR3136308A1 (en) Noise-canceling headphones
WO2003037034A1 (en) Device for capturing and restoring sound using several sensors
FR2840759A1 (en) Public address system sound response correction having applied enclosure signal convolved with pulse response temporal return between enclosure/target zone.
FR3131972A1 (en) Method for managing the low frequencies of a loudspeaker and device for implementing said method
BE853039A (en) IMPROVEMENTS RELATED TO ACTIVE SOUND MITIGATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19991116

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNOFIRST

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011128

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011128

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011128

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011128

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011128

REF Corresponds to:

Ref document number: 209813

Country of ref document: AT

Date of ref document: 20011215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 69617449

Country of ref document: DE

Date of ref document: 20020110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020228

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020228

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020530

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: *TECHNOFIRST

Effective date: 20020930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150806

Year of fee payment: 20

Ref country code: DE

Payment date: 20150828

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150731

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150915

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69617449

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160926