EP2122607B1 - Method for the active reduction of sound disturbance - Google Patents

Method for the active reduction of sound disturbance Download PDF

Info

Publication number
EP2122607B1
EP2122607B1 EP08775674A EP08775674A EP2122607B1 EP 2122607 B1 EP2122607 B1 EP 2122607B1 EP 08775674 A EP08775674 A EP 08775674A EP 08775674 A EP08775674 A EP 08775674A EP 2122607 B1 EP2122607 B1 EP 2122607B1
Authority
EP
European Patent Office
Prior art keywords
noise signal
signal
counter
filter
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08775674A
Other languages
German (de)
French (fr)
Other versions
EP2122607A2 (en
Inventor
Jean-Claude Odent
Benoît MAZEAUD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quietys
Original Assignee
Quietys
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quietys filed Critical Quietys
Publication of EP2122607A2 publication Critical patent/EP2122607A2/en
Application granted granted Critical
Publication of EP2122607B1 publication Critical patent/EP2122607B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17817Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the error signals, i.e. secondary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17855Methods, e.g. algorithms; Devices for improving speed or power requirements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone

Definitions

  • the present invention relates to a method of reducing noise pollution by active control. It also relates to a system implementing the method according to the invention.
  • the invention aims, in particular, to reduce noise pollution in an area determined by an active reduction process.
  • Noise can be any kind of annoying acoustic waves that can be considered noise in a certain area.
  • These nuisances can be of all types and frequencies ranging from a few hertz to a few thousand hertz. They can be created by any device in operation. In the case, for example, of a closed enclosure, the nuisances can be generated by devices which are located inside this enclosure. They may also be caused by sources outside the enclosure, for example when the enclosure is located near sites such as an airport, highway, railway, etc.
  • the first requires prior notification of the noise signal which is the cause of the noise nuisance to be reduced (see for example US-A-5,978,489 and WO-A-03/015074 ).
  • the noise signal is detected upstream of the active reduction processing zone and provides a reference signal which must be strongly correlated with the noise nuisance to be reduced.
  • prior knowledge of the noise signal is exploited in order to minimize the error of reduction of the noise nuisance, this error being quantified by a so-called error signal measured at the determined zone.
  • the prior information of a noise nuisance is not always available, hence the use of a second noise reduction method, called feedback, or closed loop control, in which no prior detection is required. is done.
  • the reduction error signal is used to provide a control signal for minimizing this same error signal.
  • An object of the invention is thus to provide a method of actively reducing noise pollution to better meet the constraint cited above, and therefore to achieve a better reduction of noise.
  • the sources of the noise signal are called the secondary sources and the sources of the noise signal are the primary sources.
  • the measurement of the error signal by a measuring means constituted for example by a control microphone, makes it possible to account for the reduction of the energy of the propagated noise signal and to adjust the noise signal of to reduce this same error signal.
  • the modeling of the secondary path can be carried out by transmitting, by a means of transmitting the counter-noise signal consisting for example of a loudspeaker, of a known signal, followed by a measurement of this signal at the level of the area determined by a measuring device.
  • a means of transmitting the counter-noise signal consisting for example of a loudspeaker
  • a measurement of this signal at the level of the area determined by a measuring device.
  • This determined path, and always before any reduction of the noise signal, modeling the inverse of the secondary path can be performed numerically so as not to introduce phase shift that is to say additional delay in the control chain , which would come in opposition to the main purpose of the invention. An amplitude modeling only is therefore conducted.
  • This inverse filter makes it possible to limit the resonances inherent to the electro-acoustic equipment used as well as to the topography of the treatment zone, resonances that are found in said secondary path.
  • the detection of the periodic components of the propagated noise signal allows a better knowledge of the spectral composition of said signal and consequently makes it possible to carry out band-pass filtering operations.
  • the counter-noise signal can thus be adjusted optimally to ensure, in greater stability, the best reduction of the energy of the propagated noise signal and thus of the nuisance caused by the noise signal at the zone level. determined, especially during rapid changes in periodic components.
  • the propagated noise signal is estimated from, on the one hand, the error signal, and on the other hand the feedback noise signal processed by the first filter modeling the secondary path. Indeed, by subtracting from the error signal measured in the determined zone, the counter-noise signal feedback filtered by the first filter modeling the secondary path, that is to say the acoustic path between the secondary source and the measuring means at the determined area, it is possible to make an estimate of the noise signal propagated to reduce.
  • the detection of the periodic components of the propagated noise signal can be carried out by a filtering of the propagated noise signal estimated by notch-type bandpass filters, performing an infinite impulse response (IIR) bandpass filtering. of constant amplitude everywhere except at the frequencies of the periodic components of the propagated noise signal where the bandwidths are practically nil.
  • IIR infinite impulse response
  • These filters are called Adaptive Notch Filters (ANF).
  • the method according to the invention comprises a band-pass filtering of the estimated propagated noise signal, at the frequency of all or part of the detected periodic components, said filtering providing a signal, referred to as a reference signal, consisting essentially of the periodic components of the propagated noise signal.
  • This reference signal is then used in the adjustment of the feedback noise signal, as described below.
  • the method according to the invention comprises an adjustment of at least one coefficient of a second filter, finite impulse response, provided for adjusting the feedback signal against noise as a function of the reference signal filtered by a third filter finite impulse response modeling the inverse of the secondary path in amplitude.
  • the filtered reference signal thus obtained, composed essentially of the periodic components of the estimated propagated noise signal, thus serves as a basis for adjusting the coefficients of the second filter, the function of which is precisely to eliminate the periodic components of the propagated noise signal.
  • the filtering operation by the third filter modeling in amplitude the inverse of the secondary path, makes it possible to facilitate the adjustment of the coefficients of the second filter.
  • the combination, on the one hand of the first filter modeling the secondary path and, on the other hand, of the third filter modeling in amplitude the inverse of the secondary path, results, in output, a flat response in amplitude, equal
  • This facilitates the work of the second filter which consists in finding the optimal amplitudes and phases of the signal of counter-noise feedback that minimizes the energy of the error signal and therefore the energy of the propagated noise signal.
  • ensuring this unit amplitude makes it possible to rid the second filter of the optimal amplitude search work and to focus only on the search for the optimal phase.
  • At least one coefficient of the second filter can be adjusted by an algorithm of the Least Mean Square (LMS) minimization algorithm type as a function of the reference signal processed by the first filter, the signal of the second signal.
  • LMS Least Mean Square
  • error having undergone pass-band filtering at the frequency of all or part of the detected periodic components and of a convergence coefficient, called feedback, involved in the LMS algorithm.
  • the counter-noise signal further comprises a feedback signal, called feedforward, adjusted according to the error signal and the noise signal measured by measuring means comprising for example a microphone.
  • the feedforward counter-noise signal is intended to reduce the energy of non-periodic components of the noise signal.
  • the fourth filter may be the third filter and the sixth filter may be the first filter.
  • the adjustment of the feedforward counter-noise signal comprises an adjustment of at least one coefficient of a fifth finite impulse response filter provided for adjusting said feedforward counter-noise signal in accordance with the noise signal previously processed by the fourth filter.
  • At least one coefficient of the fifth filter is adjusted by a least squares algorithm according to the error signal, the noise signal measured and previously processed by the sixth filter modeling the path.
  • the combination, on the one hand of the fourth filter modeling the secondary path and, on the other hand, of the sixth filter modeling in amplitude the inverse of the secondary path results, at the output, in a flat amplitude response, equal to 1.
  • the method according to the invention makes it possible to on the one hand to increase the size of the determined zone in which it is desired to achieve a reduction of the energy of at least one propagated noise signal, and on the other hand to realize this reduction up to frequencies higher.
  • the noise signal / error signal it is possible to process the noise over a greater distance and in a wider frequency band.
  • the method according to the invention can be implemented to achieve an "acoustic comfort bubble". Since the spatial extent of such a bubble of free space acoustic comfort is rather confined as the frequency increases, it is necessary to consider several sources of emission of several counter-noise signals and several microphones of control of reduction of the noise. propagated noise signal energy. For example, knowing that the inter-ear space is about 20 centimeters, and that we take an identical margin to allow any freedom for a user to move the head reasonably, we end up with a bubble of acoustic comfort to achieve 40 centimeters in diameter, an effective treatment up to 200 Hz maximum by considering only one average pair of emission of the noise signal / error signal measuring means.
  • the emission means of the counter-noise signal may comprise directional ultrasound transducers having a reduced emission beam.
  • the noise control contributes to reducing the noise signal in a targeted area or volume, it can quite easily increase them elsewhere. .
  • reducing disturbances in a space does not mean reducing them in all space.
  • means for transmitting a counter-noise signal such as loudspeakers are more directive at low frequencies than at high frequencies. Unless we can have speakers larger than the largest wavelength inherent in the spectrum of the noise signal to be treated, we can overcome this limitation, unless using ultrasonic transducers.
  • the directivity of the ultrasound transducers presents a great advantage to design not a complex multi-channel system but a parallelization of multiple, much less complex, monovoic systems. . Indeed, in this case, the crossed paths and the rear contributions become negligible due to the directivity of the ultrasound transducers and the fact that the entities are not taken into account in the parallelized structure does not disturb the stability of the system.
  • the system according to the invention may further comprise means for measuring the noise signal.
  • These means may comprise at least one microphone, said noise, appropriately placed according to the noise source.
  • system according to the invention may comprise band-pass filtering means of the propagated noise signal estimated at the frequency of all or part of the periodic components of the propagated noise signal, and arranged to generate a reference signal, such as as described above.
  • the means for adjusting the feedback noise signal may advantageously comprise at least a second finite impulse response filter provided for adjusting said feedback noise signal as a function of the reference signal filtered by a third impulse response filter. finite, arranged to model in amplitude the inverse of the secondary path.
  • the counter-noise signal may comprise a second feedback signal, said feedforward, the system according to the invention further comprising means for transmitting the adjusted feedforward counter-noise signal as a function of the error signal and the noise signal.
  • the system may include a fourth finite impulse response filter, amplitude modeling the inverse of the secondary path, a fifth filter, provided to adjust the feedforward counter-noise signal, based on the measured noise signal processed by the fourth filter. and a sixth filter, finite impulse response, arranged to model the secondary path.
  • the system according to the invention can advantageously comprise a plurality of means for transmitting a plurality of counter-noise signals used for the attenuation of at least one noise signal.
  • the figure 1 is a schematic representation of a configuration 10 active noise reduction through a single channel system 11 according to the invention.
  • This system 11 comprises a noise microphone for measuring a noise signal x and a transducer emitting a noise signal adjusted therein to minimize the noise nuisance caused by the noise signal x at an acoustic comfort zone 12 wherein a control microphone is provided for measuring an error signal e.
  • a control microphone is provided for measuring an error signal e.
  • the figure 3 is a block diagram representation of a channel k in the multichannel configuration 20 implementing the multichannel system 21 according to the invention making it possible to carry out the comfort bubble 22.
  • n denotes the discretized time, that is to say the sampling time, by S kk the secondary path between the secondary source k and the control microphone k, that is to say, the path direct acoustics between the secondary source k, and the microphone k.
  • the module 221 P k represents the primary path between the reference signal detection microphone x k (n) and the control microphone k.
  • the control microphone k makes it possible to measure the error signal e k at the level of the comfort bubble. We will now describe the operation of the system 21 at a level k.
  • the system 21 comprises two parts, namely a part 211, called feedforward and a part 212, called feedback.
  • the feedback portion 212 comprises a finite impulse response filter W fbk k (z) for generating and adjusting a counter-noise feedback signal yfbk k (n) .
  • This feedback portion 212 also includes two FIR filters ⁇ kk (z) digitally modeling the secondary path S kk.
  • This module 213 outputs an estimated propagated noise signal of k (n).
  • a detection and filtering module 214 makes it possible to detect the periodic components of the propagated noise signal d k (n) from the analysis of the estimated propagated noise signal of k (n) and outputs a signal of reference of k (n) composed of the detected periodic components of the estimated propagated noise signal of k (n).
  • This module 214 comprises an ANF detection block C of the periodic frequencies in the estimated propagated noise signal of k (n) and an ALE P ( ALE for Adaptive Line Enhancer ) band-pass filter block of the estimated propagated noise signal of k (n) at the frequencies of the periodic components detected by the ANF detection block C.
  • This module 214 will be detailed in the following description.
  • the reference signal of k (n) is then used by a FIR filter 1 / ⁇ kk (z) modeling in amplitude the inverse of the modeled secondary path ⁇ kk and then by a filter W fbk k (z) to adjust the signal counter-noise feedback yfbk k (n).
  • the coefficients of the filter W fbk k (z) are adjusted by a minimization algorithm according to the least squares criterion, represented by the block LMS, as a function of the reference signal of k (n) previously treated by a filter ⁇ kk (z), and error signal e k (n) that has been bandpass filtered by an ALE block P at the periodic component frequencies detected in the estimated propagated noise signal of k (n).
  • the feedforward portion 211 of the system 21 comprises a FIR filter W fwd k (z) for generating and adjusting a feedback signal feedback yfwd k (n) as a function of the noise signal x k (n) measured by means of measurement and previously filtered by a FIR filter 1 / ⁇ kk (z) modeling in amplitude the inverse of the modeled secondary path ⁇ kk .
  • the coefficients of the filter W fwd k (z) are adjusted by an algorithm LMS, represented by the block LMS, as a function, on the one hand, of the error signal e k (n), and on the other hand of the noise signal measured and previously treated by a filter ⁇ kk (z).
  • the counter-noise signals feedforward yfwd k (n) and feedback yfbk k (n) are then added by an adder ⁇ to obtain a signal of counter-noise y k (n) which is transmitted to the comfort bubble by means of emission, which are in our example ultrasonic transducers.
  • the error signal e k (n) for the k channel measured by a control microphone not shown corresponds this time to the sum, d part of the propagated noise signal d k (n), and secondly of the counter-noise signal y k (n) corresponding to the path k and having traveled the secondary path S kk (z) , that is, ie the acoustic path between the transducer k and the control microphone k.
  • e k not there k not ⁇ S kk not + d k not .
  • the figure 4 is a block diagram representation of the module 214 for detecting and filtering periodic components of the estimated propagated noise signal of k (n).
  • the frequency estimation method used in the present example involves an infinite impulse response bandpass filtering of constant amplitude everywhere else than the frequencies of the components of the noise signal, where the bandwidth is almost zero. These filters are called "notch" filters and are referred to as ANF (Adaptive Notch Filter).
  • H i (z, ⁇ ) Ni (z, ⁇ ) / D i (z, ⁇ ) .
  • a cascade decomposition, represented in FIG. figure 4 of this module 214 is chosen to determine the frequencies composing a given signal. Also, for p periodic components, we have p filters H i (z) in series.
  • cascade decomposition of block 214 is indicated by a C, for cascade, in ANF C (see figure 3 ).
  • the reference signal of k (n) and the error signal e k (n) are filtered by bandpass filters centered around the frequencies present in the noise signal. estimated propagation of k (n).
  • the complement of a notch filter, in whatever formulation is it, is a band-pass filter, denoted N ALE (z -1 ) , in which intervenes the central frequency of filtering.
  • the reference signal of k (n) is obtained by adding all the signals of ki (n) provided by the filters of sections 2141.
  • the operations of analyzing the noise signal, generating and adjusting the counter-noise signals y k (n) for all the channels k of the multi-channel noise reduction system 21 according to the invention can be integrated on a only electronic card.
  • the multiplexed digital signal obtained at the output of the converter 32, then enters a processor 33 of the DSP type which makes it possible to carry out for each channel the operations that we have described above and represented diagrammatically in FIG. figures 3 and 4 .
  • the processor 33 used in the present example is an Analog Devices processor of the SHARC range in industrial finish so resistant to extreme temperatures.
  • the implementation of the code is ensured via the interface developed by Analog Devices is the VisualDSP ++ software, which has a high-level C compiler. It is possible to work either in floating point or in fixed comma.
  • the sampling frequency at the level of the processor is configurable, using a module 331, to respond to all cases of active reduction of the energy of a sound signal.
  • the DSP 33 has been sized to accommodate operations inherent to the LMS algorithms used.
  • the DSP can accommodate more complex algorithms than those used because an external memory 34 is present on the card 30, in order to meet any additional costs in memory and calculation.
  • connection lines 35 In the case of a multi-card system, a link can be made between the different cards using the connection lines 35. This possibility has been designed to be able to extend to infinity active nuisance reduction applications. sound and not to have limitations due to the processor 33.
  • the adjustment signal of the feedback and feedforward convergence coefficients coming from the potentiometer 315 on the channel 305 is amplified by an amplifier 3051 and then an analog-to-digital conversion by means of a digital analog converter 3052 before entering the processor 33.
  • convergence coefficient is a weighting factor, strictly positive and less than 1, applied at the level of the reactualization in the LMS algorithm of the coefficients of the various filters mentioned above.
  • Transducers 316-319 used in the present example are ultrasound transducers. These ultrasound transducers 316-319 have a transmission beam 61, represented in FIG. figure 6 , very small. In addition, ultrasound, completely inaudible to the emission, distort as they spread in the air and slide into the audible spectrum and the volume in which they become audible is quite predictable.
  • the figure 7 schematically represents a first exemplary embodiment of the multi-channel system according to the invention for obtaining a comfort bubble 22 using 4 ultrasound transducers 316-319 properly placed on a desk table 71.
  • the positioning of these transducers is obviously not limited to the office alone. They can quite be arranged around an opening, a window or a door for example.
  • the comfort bubble 22 obtained is located substantially at a level corresponding to the level of the head of a user on the desk table 71.
  • FIG 8 Another embodiment of the system according to the invention is shown schematically in figure 8 .
  • This is a booth 80 intended to accommodate one or more users 81 to provide a noise reduction zone around their head. It is designed to be implemented both in public spaces and in factories, and can also be a medium for advertising.
  • the principle is as follows: a multitude of noise microphones 82 implanted at the level of the structure of the isolator 81 provide the noise signals, bases for the algorithm described above for calculating the counter-noise signals propagated by a multitude of secondary sources 83 located in the polling booth 80.
  • Display panels 85 allow the display of information such as advertising.
  • the isolator 80 includes one or more seats or buttocks 86 allowing the user 81 to land.
  • the invention is not limited to the examples of applications that we have just described and can be applied to the reduction of the energy of any sound signal in a given zone.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Physical Water Treatments (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

A method and a system for the active reduction, at a predetermined area, of the energy of a sound signal (dk(n)), also called a diffused noise signal, generated at the area by a primary signal (xk(n)), or noise signal, by the emission of a plurality of counter-noise signals (yk(n)) having an effect antagonistic to the diffused noise signal (dk(n)), each of the counter-noise signals (yk(n)) including a feedback counter-noise signal (yfbkk(n)) and a feed-forward counter-noise signal (yfwdk(n)). The method includes detecting the periodical components of diffused noise signal (dk(n)) for adjusting the feedback counter-noise signal (yfbkk(n)), and modelling the inverse of the secondary path for adjusting the feedback counter-noise (yfbkk(n)) and feed-forward counter-noise (yfwdk(n)) signals. The invention can be implemented to any type of industrial or non-industrial noise and in any location such as working places and relaxation places.

Description

La présente invention concerne un procédé de réduction de nuisances sonores par contrôle actif. Elle vise également un système mettant en oeuvre le procédé selon l'invention.The present invention relates to a method of reducing noise pollution by active control. It also relates to a system implementing the method according to the invention.

L'invention vise, en particulier, à réduire les nuisances sonores dans une zone déterminée par un procédé de réduction active. Les nuisances sonores peuvent être toutes sortes d'ondes acoustiques gênantes qui peuvent être considérées comme étant du bruit dans une zone déterminée. Ces nuisances peuvent être de tous types et de fréquences pouvant aller de quelques hertz à quelques milliers de hertz. Elle peuvent être créées par un dispositif quelconque en fonctionnement. Dans le cas, par exemple, d'une enceinte fermée, les nuisances peuvent être générées par des dispositifs qui se situent à l'intérieur de cette enceinte. Elles peuvent également être causées par des sources extérieures à l'enceinte lorsque cette dernière est, par exemple, située à proximité de sites tels qu'un aéroport, une autoroute, une voie ferrée, etc.The invention aims, in particular, to reduce noise pollution in an area determined by an active reduction process. Noise can be any kind of annoying acoustic waves that can be considered noise in a certain area. These nuisances can be of all types and frequencies ranging from a few hertz to a few thousand hertz. They can be created by any device in operation. In the case, for example, of a closed enclosure, the nuisances can be generated by devices which are located inside this enclosure. They may also be caused by sources outside the enclosure, for example when the enclosure is located near sites such as an airport, highway, railway, etc.

Les systèmes actuels de réduction active de nuisances sonores permettent d'atténuer ces nuisances par deux types de procédés. Le premier, appelé feedforward, nécessite une information préalable du signal de bruit qui est la cause de la nuisance sonore à réduire (voir par exemple US-A-5 978 489 et WO-A-03/015074 ). La détection du signal de bruit s'effectue en amont de la zone de traitement par réduction active et fournit un signal de référence qui doit être fortement corrélé à la nuisance sonore à réduire. Dans ce cas, la connaissance antérieure du signal de bruit est exploitée afin de minimiser l'erreur de réduction de la nuisance sonore, cette erreur étant quantifiée par un signal, dit d'erreur, mesurée au niveau de la zone déterminée. Cependant l'information préalable d'une nuisance sonore n'est pas toujours disponible, d'où l'utilisation d'un second procédé de réduction de nuisances sonores, appelé feedback, ou contrôle en boucle fermée, dans lequel aucune détection préalable n'est effectuée. Le signal d'erreur de réduction est exploité pour fournir un signal de contrôle destiné à minimiser ce même signal d'erreur.Current systems for actively reducing noise nuisance can mitigate these nuisances by two types of processes. The first, called feedforward, requires prior notification of the noise signal which is the cause of the noise nuisance to be reduced (see for example US-A-5,978,489 and WO-A-03/015074 ). The noise signal is detected upstream of the active reduction processing zone and provides a reference signal which must be strongly correlated with the noise nuisance to be reduced. In this case, prior knowledge of the noise signal is exploited in order to minimize the error of reduction of the noise nuisance, this error being quantified by a so-called error signal measured at the determined zone. However, the prior information of a noise nuisance is not always available, hence the use of a second noise reduction method, called feedback, or closed loop control, in which no prior detection is required. is done. The reduction error signal is used to provide a control signal for minimizing this same error signal.

Cependant, la plupart des systèmes actuels apportent des solutions limitées à la contrainte de causalité indispensable à la bonne réalisation de certaines applications de contrôle actif. Celle-ci impose de réaliser les opérations numériques intrinsèques au procédé de réduction active dans un temps très court. De ce fait, ces systèmes ont une efficacité limitée, en temps de réaction, dans l'espace et en fréquence.However, most current systems provide limited solutions to the causal constraint that is essential for the successful completion of some active control applications. This requires performing digital operations intrinsic to the active reduction process in a very short time. As a result, these systems have a limited efficiency, in reaction time, in space and in frequency.

Un objectif de l'invention est ainsi de proposer un procédé de réduction active de nuisances sonores permettant de mieux répondre à la contrainte citée ci-dessus, et donc de réaliser une meilleure réduction des nuisances sonores.An object of the invention is thus to provide a method of actively reducing noise pollution to better meet the constraint cited above, and therefore to achieve a better reduction of noise.

L'invention propose de remédier au problème précité par un procédé de réduction active au niveau d'une zone déterminée de l'énergie d'un signal sonore, dit signal de bruit propagé, engendré dans la zone déterminée par un signal primaire, dit signal de bruit. Le procédé comprend une émission, par des moyens d'émission, d'au moins un signal de contre-bruit comprenant au moins un premier signal de contre-bruit, dit feedback, d'un effet antagoniste au signal de bruit propagé, ce procédé comprenant en outre au moins une itération des opérations suivantes :

  • mesure, par des moyens de mesure disposés au niveau de la zone déterminée, d'un signal, dit d'erreur, représentant une information d'efficacité de la réduction de l'énergie du signal de bruit propagé dans la zone ;
  • modélisation, par au moins un premier filtre, d'un trajet acoustique direct, dit chemin secondaire, entre les moyens d'émission du signal de contre-bruit et les moyens de mesure du signal d'erreur éventuellement lors d'une étape préalable d'identification ;
  • détection d'au moins une composante périodique du signal de bruit propagé par analyse d'un signal de bruit propagé estimé à partir d'une part du signal d'erreur, et d'autre part du signal de contre-bruit feedback baité par le premier filtre, ladite détection fournissant ladite composante périodique ; et
  • ajustement du signal de contre-bruit feedback en fonction de la composante périodique détectée, du signal d'erreur et du chemin secondaire modélisé.
The invention proposes to remedy the aforementioned problem by an active reduction method at a given zone of the energy of a sound signal, said propagated noise signal, generated in the zone determined by a primary signal, said signal noise. The method comprises transmitting, by transmission means, at least one counter-noise signal comprising at least a first counter-noise signal, said feedback, of an antagonistic effect to the propagated noise signal, this method further comprising at least one iteration of the following operations:
  • measuring, by measuring means arranged at the determined area, a signal, said error signal, representing information of efficiency of the reduction of the energy of the noise signal propagated in the area;
  • modeling, by at least a first filter, of a direct acoustic path, said secondary path, between the means for transmitting the noise signal and the means for measuring the error signal, possibly during a preliminary step of 'identification ;
  • detecting at least one periodic component of the propagated noise signal by analyzing an estimated propagated noise signal from a part of the error signal, and secondly the feedback noise signal baited by the first filter, said detection providing said periodic component; and
  • adjusting the feedback noise signal as a function of the detected periodic component, the error signal and the modeled secondary path.

Dans la présente demande, les sources du signal de contre-bruit sont appelées les sources secondaires et les sources du signal de bruit les sources primaires.In the present application, the sources of the noise signal are called the secondary sources and the sources of the noise signal are the primary sources.

La mesure du signal d'erreur, par un moyen de mesure constitué par exemple d'un microphone de contrôle, permet de rendre compte de la réduction de l'énergie du signal de bruit propagé et d'ajuster le signal de contre-bruit de manière à diminuer ce même signal d'erreur.The measurement of the error signal, by a measuring means constituted for example by a control microphone, makes it possible to account for the reduction of the energy of the propagated noise signal and to adjust the noise signal of to reduce this same error signal.

La modélisation du chemin secondaire peut être réalisée par émission, par un moyen d'émission du signal de contre-bruit constitué par exemple d'un haut-parleur, d'un signal connu, suivie d'une mesure de ce signal au niveau de la zone déterminée par un moyen de mesure. Ainsi, en connaissant le signal émis et le signal mesuré il est possible de caractériser le trajet acoustique entre le moyen d'émission du signal de contre-bruit et le moyen de mesure au niveau de la zone déterminée. Cette modélisation peut avoir lieu avant ou pendant toute phase d'émission de contre-bruit.The modeling of the secondary path can be carried out by transmitting, by a means of transmitting the counter-noise signal consisting for example of a loudspeaker, of a known signal, followed by a measurement of this signal at the level of the area determined by a measuring device. Thus, by knowing the transmitted signal and the measured signal, it is possible to characterize the acoustic path between the emission means of the counter-noise signal and the measurement means at the determined zone. This modeling can take place before or during any phase of emission of noise.

Ce trajet déterminé, et toujours avant toute réduction du signal de bruit, une modélisation de l'inverse du chemin secondaire peut être réalisée numériquement de sorte à ne pas introduire de déphasage c'est-à-dire de retard supplémentaire dans la chaîne de contrôle, ce qui viendrait en opposition à l'objectif principal de l'invention. Une modélisation en amplitude uniquement est par conséquent menée. Ce filtre inverse permet de limiter les résonances inhérentes au matériel électro-acoustique utilisé ainsi qu'à la topographie de la zone de traitement, résonances que l'on retrouve dans ledit chemin secondaire.This determined path, and always before any reduction of the noise signal, modeling the inverse of the secondary path can be performed numerically so as not to introduce phase shift that is to say additional delay in the control chain , which would come in opposition to the main purpose of the invention. An amplitude modeling only is therefore conducted. This inverse filter makes it possible to limit the resonances inherent to the electro-acoustic equipment used as well as to the topography of the treatment zone, resonances that are found in said secondary path.

Ce qui suit intervient lors de la phase de contrôle proprement dit.The following occurs during the actual control phase.

La détection des composantes périodiques du signal de bruit propagé permet une meilleure connaissance de la composition spectrale dudit signal et permet par conséquent de réaliser des opérations de filtrage passe-bande. Le signal de contre-bruit peut ainsi être ajusté de manière optimale pour assurer, dans une plus grande stabilité, la meilleure réduction de l'énergie du signal de bruit propagé et donc de la nuisance causée par le signal de bruit au niveau de la zone déterminée, notamment lors de changements rapides des composantes périodiques.The detection of the periodic components of the propagated noise signal allows a better knowledge of the spectral composition of said signal and consequently makes it possible to carry out band-pass filtering operations. The counter-noise signal can thus be adjusted optimally to ensure, in greater stability, the best reduction of the energy of the propagated noise signal and thus of the nuisance caused by the noise signal at the zone level. determined, especially during rapid changes in periodic components.

Le signal de bruit propagé est estimé à partir, d'une part du signal d'erreur, et d'autre part du signal de contre-bruit feedback traité par le premier filtre modélisant le chemin secondaire. En effet, en retranchant au signal d'erreur mesuré dans la zone déterminée, le signal de contre-bruit feedback filtré par le premier filtre modélisant le chemin secondaire, c'est-à-dire le trajet acoustique entre la source secondaire et le moyen de mesure au niveau de la zone déterminée, il est possible de réaliser une estimation du signal de bruit propagé à réduire.The propagated noise signal is estimated from, on the one hand, the error signal, and on the other hand the feedback noise signal processed by the first filter modeling the secondary path. Indeed, by subtracting from the error signal measured in the determined zone, the counter-noise signal feedback filtered by the first filter modeling the secondary path, that is to say the acoustic path between the secondary source and the measuring means at the determined area, it is possible to make an estimate of the noise signal propagated to reduce.

La détection des composantes périodiques du signal de bruit propagé peut être réalisée par un filtrage du signal de bruit propagé estimé par des filtres passe-bande de type « notch », pour coupure, réalisant un filtrage passe-bande à réponse impulsionnelle infinie (IIR) d'amplitude constante partout sauf aux fréquences des composantes périodiques du signal de bruit propagé où les bandes passantes sont quasiment nulles. Ces filtres sont appelés des filtres notch adaptatifs (ANF : « Adaptive Notch Filter »).The detection of the periodic components of the propagated noise signal can be carried out by a filtering of the propagated noise signal estimated by notch-type bandpass filters, performing an infinite impulse response (IIR) bandpass filtering. of constant amplitude everywhere except at the frequencies of the periodic components of the propagated noise signal where the bandwidths are practically nil. These filters are called Adaptive Notch Filters (ANF).

En outre, le procédé selon l'invention comprend un filtrage passe-bande du signal de bruit propagé estimé, à la fréquence de tout ou partie des composantes périodiques détectées, ledit filtrage fournissant un signal, dit de référence, essentiellement constitué des composantes périodiques du signal de bruit propagé. Ce signal de référence est ensuite utilisé dans l'ajustement du signal de contre-bruit feedback, tel que décrit ci-dessous.In addition, the method according to the invention comprises a band-pass filtering of the estimated propagated noise signal, at the frequency of all or part of the detected periodic components, said filtering providing a signal, referred to as a reference signal, consisting essentially of the periodic components of the propagated noise signal. This reference signal is then used in the adjustment of the feedback noise signal, as described below.

En effet, le procédé selon l'invention comprend un ajustement d'au moins un coefficient d'un deuxième filtre, à réponse impulsionnelle finie, prévu pour ajuster le signal de contre-bruit feedback en fonction du signal de référence filtré par un troisième filtre à réponse impulsionnelle finie modélisant en amplitude l'inverse du chemin secondaire. Le signal de référence filtré ainsi obtenu, composé essentiellement des composantes périodiques du signal de bruit propagé estimé, sert donc de base pour l'ajustement des coefficients du deuxième filtre, dont la fonction est justement d'éliminer les composantes périodiques du signal de bruit propagé. L'opération de filtrage, par le troisième filtre modélisant en amplitude l'inverse du chemin secondaire, permet elle de faciliter l'ajustement des coefficients du second filtre.Indeed, the method according to the invention comprises an adjustment of at least one coefficient of a second filter, finite impulse response, provided for adjusting the feedback signal against noise as a function of the reference signal filtered by a third filter finite impulse response modeling the inverse of the secondary path in amplitude. The filtered reference signal thus obtained, composed essentially of the periodic components of the estimated propagated noise signal, thus serves as a basis for adjusting the coefficients of the second filter, the function of which is precisely to eliminate the periodic components of the propagated noise signal. . The filtering operation, by the third filter modeling in amplitude the inverse of the secondary path, makes it possible to facilitate the adjustment of the coefficients of the second filter.

En effet, la combinaison, d'une part du premier filtre modélisant le chemin secondaire et, d'autre part du troisième filtre modélisant en amplitude l'inverse du chemin secondaire, a pour résultat, en sortie, une réponse plate en amplitude, égale à 1. Ceci facilite le travail du deuxième filtre qui consiste à trouver les amplitudes et phases optimales du signal de contre-bruit feedback qui minimisent l'énergie du signal d'erreur et donc l'énergie du signal de bruit propagé. En effet, assurer cette amplitude unité permet de débarrasser le deuxième filtre du travail de recherche d'amplitude optimale et de se concentrer seulement sur la recherche de la phase optimale.Indeed, the combination, on the one hand of the first filter modeling the secondary path and, on the other hand, of the third filter modeling in amplitude the inverse of the secondary path, results, in output, a flat response in amplitude, equal This facilitates the work of the second filter which consists in finding the optimal amplitudes and phases of the signal of counter-noise feedback that minimizes the energy of the error signal and therefore the energy of the propagated noise signal. In fact, ensuring this unit amplitude makes it possible to rid the second filter of the optimal amplitude search work and to focus only on the search for the optimal phase.

Avantageusement, au moins un coefficient du deuxième filtre peut être ajusté par un algorithme du type algorithme de minimisation selon le critère des moindres carrés (LMS : « Least Mean Square ») en fonction du signal de référence traité par le premier filtre, du signal d'erreur ayant subi un filtrage passe-bande à la fréquence de tout ou partie des composantes périodiques détectées et d'un coefficient de convergence, dit feedback, intervenant dans l'algorithme LMS. En réalisant un tel filtrage passe-bande sur le signal d'erreur, on peut ainsi isoler les composantes périodiques du signal de bruit propagé qui sont présentes dans le signal d'erreur afin que le deuxième filtre ne se concentre que sur celles-ci.Advantageously, at least one coefficient of the second filter can be adjusted by an algorithm of the Least Mean Square (LMS) minimization algorithm type as a function of the reference signal processed by the first filter, the signal of the second signal. error having undergone pass-band filtering at the frequency of all or part of the detected periodic components and of a convergence coefficient, called feedback, involved in the LMS algorithm. By performing such bandpass filtering on the error signal, it is thus possible to isolate the periodic components of the propagated noise signal that are present in the error signal so that the second filter concentrates only on them.

Avantageusement, le signal de contre-bruit comprend en outre un signal de contre-bruit, dit feedforward, ajusté en fonction du signal d'erreur et du signal de bruit mesuré par des moyens de mesure comprenant par exemple un microphone. Le signal de contre-bruit feedforward est destiné à réduire l'énergie des composantes non périodiques du signal de bruit. Ainsi, le procédé selon l'invention permet de mettre en oeuvre de manière combinée un signal de contre-bruit feedback et un signal de contre-bruit feedforward destinés respectivement à diminuer l'énergie des composantes périodiques et des composantes non périodiques du signal de bruit.Advantageously, the counter-noise signal further comprises a feedback signal, called feedforward, adjusted according to the error signal and the noise signal measured by measuring means comprising for example a microphone. The feedforward counter-noise signal is intended to reduce the energy of non-periodic components of the noise signal. Thus, the method according to the invention makes it possible to implement, in a combined manner, a feedback noise signal and a feedforward counter-noise signal intended respectively to reduce the energy of the periodic components and the non-periodic components of the noise signal. .

Par ailleurs, le procédé selon l'invention peut comprendre en outre :

  • une modélisation en amplitude de l'inverse du chemin secondaire par au moins un quatrième filtre à réponse impulsionnelle finie et
  • une modélisation par au moins un sixième filtre à réponse impulsionnelle finie du chemin secondaire,
toujours dans la perspective de faciliter le travail d'ajustement des coefficients d'un cinquième filtre défini ci-après. Le quatrième filtre peut être identique au troisième filtre et le sixième filtre identique au premier filtre.Furthermore, the method according to the invention may furthermore comprise:
  • an amplitude modeling of the inverse of the secondary path by at least a fourth finite impulse response filter and
  • modeling by at least one sixth finite impulse response filter of the secondary path,
always in the perspective of facilitating the work of adjusting the coefficients of a fifth filter defined below. The fourth filter may be identical to the third filter and the sixth filter identical to the first filter.

Dans un exemple de réalisation non limitatif, le quatrième filtre peut être le troisième filtre et le sixième filtre peut être le premier filtre.In a non-limiting exemplary embodiment, the fourth filter may be the third filter and the sixth filter may be the first filter.

L'ajustement du signal de contre-bruit feedforward comprend un ajustement d'au moins un coefficient d'un cinquième filtre, à réponse impulsionnelle finie, prévu pour ajuster ledit signal de contre-bruit feedforward en fonction du signal de bruit préalablement traité par le quatrième filtre.The adjustment of the feedforward counter-noise signal comprises an adjustment of at least one coefficient of a fifth finite impulse response filter provided for adjusting said feedforward counter-noise signal in accordance with the noise signal previously processed by the fourth filter.

En outre, au moins un coefficient du cinquième filtre est ajusté par un algorithme du type algorithme de minimisation selon le critère des moindres carrés en fonction du signal d'erreur, du signal de bruit mesuré et traité au préalable par le sixième filtre modélisant le chemin secondaire et d'un coefficient de convergence, dit feedforward, intervenant dans l'algorithme en question.In addition, at least one coefficient of the fifth filter is adjusted by a least squares algorithm according to the error signal, the noise signal measured and previously processed by the sixth filter modeling the path. secondary and a convergence coefficient, called feedforward, involved in the algorithm in question.

Comme précédemment, la combinaison, d'une part du quatrième filtre modélisant le chemin secondaire et, d'autre part du sixième filtre modélisant en amplitude l'inverse du chemin secondaire a pour résultat, en sortie, une réponse plate en amplitude, égale à 1.As previously, the combination, on the one hand of the fourth filter modeling the secondary path and, on the other hand, of the sixth filter modeling in amplitude the inverse of the secondary path results, at the output, in a flat amplitude response, equal to 1.

Avantageusement, le procédé selon l'invention peut être mis en oeuvre pour l'atténuation d'au moins un signal de bruit par émission d'une pluralité de signaux de contre-bruit par une pluralité de moyens d'émission. Chacun des signaux de contre-bruit peut comprendre :

  • un signal de contre-bruit feedback,
  • un signal de contre-bruit feedforward, ou
  • un signal de contre-bruit feedback et un signal de contre-bruit feedforward.
Advantageously, the method according to the invention can be implemented for the attenuation of at least one noise signal by transmitting a plurality of counter-noise signals by a plurality of transmission means. Each of the counter-noise signals may include:
  • a counter-noise feedback signal,
  • a feedforward counter-noise signal, or
  • a counter-noise feedback signal and a feedforward counter-noise signal.

Par l'émission d'une pluralité de signaux de contre-bruit, et par la mise en oeuvre d'une pluralité de points de mesure de signaux d'erreur, par exemple par des microphones de contrôle, le procédé selon l'invention permet, d'une part d'augmenter la taille de la zone déterminée dans laquelle on recherche à réaliser une réduction de l'énergie d'au moins un signal de bruit propagé, et d'autre part de réaliser cette réduction jusqu'à des fréquences plus élevées. Ainsi, en augmentant le nombre de couples moyen d'émission de signal de contre-bruit/moyen de mesure de signal d'erreur, autrement dit signal de contre-bruit/signal d'erreur, on peut traiter les nuisances sonores sur une distance plus grande et dans une bande de fréquence plus large.By the emission of a plurality of counter-noise signals, and by the implementation of a plurality of measurement points of error signals, for example by control microphones, the method according to the invention makes it possible to on the one hand to increase the size of the determined zone in which it is desired to achieve a reduction of the energy of at least one propagated noise signal, and on the other hand to realize this reduction up to frequencies higher. Thus, by increasing the number of mean pairs of noise signal transmission / error signal measuring means, in other words the noise signal / error signal, it is possible to process the noise over a greater distance and in a wider frequency band.

Par exemple, le procédé selon l'invention peut être mis en oeuvre pour réaliser une « bulle de confort acoustique ». L'étendue spatiale d'une telle bulle de confort acoustique en espace libre étant assez confinée à mesure que la fréquence augmente, il faut envisager plusieurs sources d'émission de plusieurs signaux de contre-bruit et plusieurs microphones de contrôle de réduction de l'énergie du signal de bruit propagé. Pour exemple, sachant que l'espace inter-oreilles est d'environ 20 centimètres, et que l'on prend une marge identique afin de laisser toute liberté à un utilisateur pour bouger raisonnablement la tête, on se retrouve avec une bulle de confort acoustique à réaliser de 40 centimètres de diamètre, soit un traitement efficace jusqu'à 200 Hz maximum en ne considérant qu'un seul couple moyen d'émission du signal de contre-bruit/moyen de mesure du signal d'erreur. En multipliant les points de réduction des nuisances, c'est-à-dire, le nombre de microphones de contrôle, il est possible d'augmenter la fréquence maximale des signaux de bruit dont on veut diminuer l'énergie. Ainsi, avec 3 points de réduction de nuisances sonores sur cette distance, on peut traiter des signaux de bruit jusqu'à 700Hz environ dans une bulle de confort de 40 cm de diamètre. En multipliant le nombre de signaux de contre-bruit et le nombre de points de réduction et en les disposant adéquatement, on peut aussi augmenter la taille de la bulle de confort.For example, the method according to the invention can be implemented to achieve an "acoustic comfort bubble". Since the spatial extent of such a bubble of free space acoustic comfort is rather confined as the frequency increases, it is necessary to consider several sources of emission of several counter-noise signals and several microphones of control of reduction of the noise. propagated noise signal energy. For example, knowing that the inter-ear space is about 20 centimeters, and that we take an identical margin to allow any freedom for a user to move the head reasonably, we end up with a bubble of acoustic comfort to achieve 40 centimeters in diameter, an effective treatment up to 200 Hz maximum by considering only one average pair of emission of the noise signal / error signal measuring means. By multiplying the nuisance reduction points, that is to say the number of control microphones, it is possible to increase the maximum frequency of the noise signals whose energy is to be reduced. Thus, with 3 noise reduction points over this distance, noise signals up to about 700Hz can be processed in a 40 cm diameter comfort bubble. By multiplying the number of counter-noise signals and the number of reduction points and arranging them appropriately, one can also increase the size of the comfort bubble.

Par point de réduction, ou de minimisation, on entend l'emplacement d'un microphone de contrôle prévu pour mesurer un signal d'erreur.By reduction point, or minimization, is meant the location of a control microphone provided for measuring an error signal.

Suivant un autre aspect de l'invention, il est proposé un système de réduction active, au niveau d'une zone déterminée, de l'énergie d'un signal sonore, dit signal de bruit propagé, engendré dans la zone déterminée par un signal primaire, dit signal de bruit, par émission d'au moins un signal de contre-bruit comprenant au moins un premier signal de contre-bruit, dit feedback, d'un effet antagoniste au signal de bruit propagé au niveau de la zone déterminé, le système comprenant :

  • des moyens pour émettre le signal de contre-bruit ;
  • des moyens de mesure, au niveau de la zone déterminée, d'un signal, dit d'erreur, représentant une information d'efficacité de la réduction de l'énergie du signal de bruit propagé ;
  • au moins un premier filtre pour modéliser un trajet acoustique direct, dit chemin secondaire, entre les moyens d'émission du signal de contre-bruit et les moyens de mesure du signal d'erreur obtenu éventuellement au terme d'une étape préalable d'identification ; - des moyens pour estimer le signal de bruit propagé à partir d'une part du signal d'erreur, et d'autre part du signal de contre-bruit feedback traité par le premier filtre, lesdits moyens fournissant un signal de bruit propagé estimé;
  • des moyens pour détecter et fournir au moins une composante périodique du signal de bruit propagée par analyse dudit signal de bruit propagé estimé ; et
  • des moyens pour ajuster le signal de contre-bruit feedback en fonction de la composante périodique détectée, du signal d'erreur et du chemin secondaire modélisé.
According to another aspect of the invention, there is provided an active reduction system, at a given zone, the energy of a sound signal, said propagated noise signal, generated in the area determined by a signal primary, said noise signal, by emission of at least one counter-noise signal comprising at least a first counter-noise signal, said feedback, of an antagonistic effect to the noise signal propagated at the determined zone, the system comprising:
  • means for transmitting the counter-noise signal;
  • means for measuring, at the level of the determined zone, a signal, called an error signal, representing information of effectiveness of the reduction of the energy of the propagated noise signal;
  • at least one first filter for modeling a direct acoustic path, said secondary path, between the means for transmitting the noise signal and the means for measuring the error signal obtained possibly at the end of a prior identification step ; means for estimating the noise signal propagated on the one hand from the error signal, and on the other hand the feedback noise signal processed by the first filter, said means providing an estimated propagated noise signal;
  • means for detecting and providing at least one periodic component of the propagated noise signal by analyzing said estimated propagated noise signal; and
  • means for adjusting the feedback noise signal as a function of the detected periodic component, the error signal and the modeled secondary path.

Avantageusement les moyens d'émission du signal de contre-bruit peuvent comprendre des transducteurs ultrason directifs ayant un faisceau d'émission réduit. En effet, une des limitations des systèmes actuels de réduction active d'une nuisance sonore réside dans le fait que si le contre-bruit contribue à réduire le signal de bruit dans une zone ou un volume ciblé, il peut tout à fait les augmenter ailleurs. En d'autres termes, diminuer les perturbations dans un espace ne signifie pas les diminuer dans tout l'espace. De plus, des moyens d'émission d'un signal de contre-bruit tels que des haut-parleurs sont plus directifs en basses fréquences qu'en hautes fréquences. A moins de pouvoir disposer des haut-parleurs plus gros que la plus grande des longueurs d'onde inhérentes au spectre du signal de bruit à traiter, on ne pourra s'affranchir de cette limitation, sauf si on utilise des transducteurs ultrason. Les ultrasons, complètement inaudibles à l'émission, se distordent à mesure de leur propagation dans l'air et glissent dans le spectre audible. L'avantage des transducteurs ultrason réside dans le fait qu'ils ont un faisceau d'émission très réduit et le volume dans lequel les ultrasons deviennent audibles est tout à fait prédictible. Un autre avantage à l'utilisation de tels transducteurs réside dans le fait que leur directivité simplifie le système multivoies. En effet, la transposition au cas multivoies du système monovoie implique de considérer une multitude de chemins secondaires : les chemins secondaires directs entre chaque transducteur et leur microphone de contrôle associé, mais également les chemins secondaires dits croisés qui représentent les interactions entre tous les transducteurs et les microphones. D'autre part, les contributions de chaque source secondaire sur les moyens de mesure du signal de bruit, appelées contributions arrières, doivent de la même manière être considérées. Ceci exige de disposer d'une électronique à forte capacité de calcul et de mémoire. Dans le souci de minimisation des coûts souvent importants des opérations temps réel inhérentes au calcul des signaux de contre-bruit, la directivité des transducteurs ultrason présente un grand avantage pour concevoir non plus un système multivoies complexe mais une parallélisation de multiples systèmes monovoies bien moins complexes. En effet, dans ce cas, les chemins croisés et les contributions arrières deviennent négligeables du fait de la directivité des transducteurs ultrason et la non prise en compte des entités dans la structure parallélisée ne perturbe pas la stabilité du système.Advantageously, the emission means of the counter-noise signal may comprise directional ultrasound transducers having a reduced emission beam. Indeed, one of the limitations of the current active noise reduction systems is that if the noise control contributes to reducing the noise signal in a targeted area or volume, it can quite easily increase them elsewhere. . In other words, reducing disturbances in a space does not mean reducing them in all space. In addition, means for transmitting a counter-noise signal such as loudspeakers are more directive at low frequencies than at high frequencies. Unless we can have speakers larger than the largest wavelength inherent in the spectrum of the noise signal to be treated, we can overcome this limitation, unless using ultrasonic transducers. Ultrasound, completely inaudible at emission, distorts as they propagate through the air and slide into the audible spectrum. The advantage of ultrasound transducers lies in the fact that they have a very small emission beam and the volume in which the ultrasound becomes audible is quite predictable. Another advantage to the use of such transducers lies in the fact that their directivity simplifies the multi-channel system. Indeed, the transposition to the multichannel case of the single-channel system involves considering a multitude of secondary paths: the direct secondary paths between each transducer and their associated control microphone, but also the so-called secondary paths which represent the interactions between all the transducers and the microphones. On the other hand, the contributions of each secondary source on the noise signal measuring means, called backward contributions, must likewise be considered. This requires having a high computing capacity and memory electronics. In order to minimize the often significant costs of the real-time operations inherent in the calculation of the counter-noise signals, the directivity of the ultrasound transducers presents a great advantage to design not a complex multi-channel system but a parallelization of multiple, much less complex, monovoic systems. . Indeed, in this case, the crossed paths and the rear contributions become negligible due to the directivity of the ultrasound transducers and the fact that the entities are not taken into account in the parallelized structure does not disturb the stability of the system.

Le système selon l'invention peut en outre comprendre des moyens pour mesurer le signal de bruit. Ces moyens peuvent comprendre au moins un microphone, dit de bruit, adéquatement placé en fonction de la source de bruit.The system according to the invention may further comprise means for measuring the noise signal. These means may comprise at least one microphone, said noise, appropriately placed according to the noise source.

Par ailleurs, le système selon l'invention peut comprendre des moyens de filtrage passe-bande du signal de bruit propagé estimé à la fréquence de tout ou partie des composantes périodiques du signal de bruit propagé, et agencés pour générer un signal de référence, tel que décrit plus haut.Furthermore, the system according to the invention may comprise band-pass filtering means of the propagated noise signal estimated at the frequency of all or part of the periodic components of the propagated noise signal, and arranged to generate a reference signal, such as as described above.

Les moyens pour ajuster le signal de contre-bruit feedback peuvent avantageusement comprendre au moins un deuxième filtre, à réponse impulsionnelle finie, prévu pour ajuster ledit signal de contre-bruit feedback en fonction du signal de référence filtré par un troisième filtre, à réponse impulsionnelle finie, agencé pour modéliser en amplitude l'inverse du chemin secondaire.The means for adjusting the feedback noise signal may advantageously comprise at least a second finite impulse response filter provided for adjusting said feedback noise signal as a function of the reference signal filtered by a third impulse response filter. finite, arranged to model in amplitude the inverse of the secondary path.

Avantageusement, le signal de contre-bruit peut comprendre un deuxième signal de contre bruit, dit feedforward, le système selon l'invention comprenant en outre des moyens pour émettre le signal de contre-bruit feedforward ajusté en fonction du signal d'erreur et du signal de bruit.Advantageously, the counter-noise signal may comprise a second feedback signal, said feedforward, the system according to the invention further comprising means for transmitting the adjusted feedforward counter-noise signal as a function of the error signal and the noise signal.

Le système peut comprendre un quatrième filtre, à réponse impulsionnelle finie, modélisant en amplitude l'inverse du chemin secondaire, un cinquième filtre, prévu pour ajuster le signal de contre-bruit feedforward, en fonction du signal de bruit mesuré traité par le quatrième filtre et un sixième filtre, à réponse impulsionnelle finie, agencé pour modéliser le chemin secondaire.The system may include a fourth finite impulse response filter, amplitude modeling the inverse of the secondary path, a fifth filter, provided to adjust the feedforward counter-noise signal, based on the measured noise signal processed by the fourth filter. and a sixth filter, finite impulse response, arranged to model the secondary path.

Le système selon l'invention peut avantageusement, comprendre une pluralité de moyens d'émission d'une pluralité de signaux de contre-bruit, mis en oeuvre pour l'atténuation d'au moins un signal de bruit.The system according to the invention can advantageously comprise a plurality of means for transmitting a plurality of counter-noise signals used for the attenuation of at least one noise signal.

D'autres avantages et caractéristiques apparaîtront à l'examen de la description détaillée d'un mode de réalisation nullement limitatif, et des dessins annexés sur lesquels :

  • la figure 1 est une représentation schématique d'une configuration de réduction active d'un signal sonore grâce à un système monovoie selon l'invention ;
  • la figure 2 est une représentation schématique d'une configuration de réduction active d'un signal sonore grâce à un système multivoies selon l'invention ;
  • la figure 3 est une représentation schématique sous forme de blocs fonctionnels des opérations réalisées au niveau d'une voie d'un système multivoies selon l'invention comprenant une mesure du signal de bruit avec des microphones de mesure ;
  • la figure 4 est une représentation schématique sous forme de blocs fonctionnels d'un module de détection et de filtrage de composantes périodiques d'un signal de bruit propagé au niveau d'une voie d'un système multivoies selon l'invention ;
  • la figure 5 est une représentation schématique d'une carte électronique multivoies mise en oeuvre dans le système multivoies selon l'invention ;
  • la figure 6 est une représentation d'un faisceau d'émission d'un transducteur ultrason utilisé dans le système selon l'invention ;
  • la figure 7 est un premier exemple de réalisation du système multivoies selon l'invention pour l'obtention d'une bulle de confort ; et
  • la figure 8 un deuxième exemple de réalisation du système multivoies selon l'invention pour l'obtention d'une bulle de confort.
Other advantages and characteristics will appear on examining the detailed description of a non-limiting embodiment, and the appended drawings in which:
  • the figure 1 is a schematic representation of an active reduction configuration of a sound signal by means of a single-channel system according to the invention;
  • the figure 2 is a schematic representation of an active reduction configuration of a sound signal by means of a multi-channel system according to the invention;
  • the figure 3 is a schematic representation in the form of functional blocks of the operations performed at a channel of a multi-channel system according to the invention comprising a measurement of the noise signal with measurement microphones;
  • the figure 4 is a schematic representation in the form of functional blocks of a module for detecting and filtering periodic components of a noise signal propagated at a channel of a multi-channel system according to the invention;
  • the figure 5 is a schematic representation of a multi-channel electronic card implemented in the multi-channel system according to the invention;
  • the figure 6 is a representation of an emission beam of an ultrasound transducer used in the system according to the invention;
  • the figure 7 is a first embodiment of the multiway system according to the invention for obtaining a comfort bubble; and
  • the figure 8 a second embodiment of the multi-channel system according to the invention for obtaining a comfort bubble.

La figure 1 est une représentation schématique d'une configuration 10 de réduction active de nuisances sonores grâce à un système monovoie 11 selon l'invention. Ce système 11 comprend un microphone de bruit permettant de mesurer un signal de bruit x et un transducteur émettant un signal de contre-bruit y ajusté pour minimiser les nuisances sonores causées par le signal de bruit x au niveau d'une zone de confort acoustique 12 où est disposé un microphone de contrôle permettant de mesurer un signal d'erreur e. Dans la suite de la description, nous appellerons la zone de confort acoustique 12 ainsi créée « bulle de confort acoustique ».The figure 1 is a schematic representation of a configuration 10 active noise reduction through a single channel system 11 according to the invention. This system 11 comprises a noise microphone for measuring a noise signal x and a transducer emitting a noise signal adjusted therein to minimize the noise nuisance caused by the noise signal x at an acoustic comfort zone 12 wherein a control microphone is provided for measuring an error signal e. In the remainder of the description, we will call the acoustic comfort zone 12 thus created "bubble of acoustic comfort".

Or, l'étendue spatiale d'une telle bulle de confort acoustique 12 en espace libre étant assez confinée à mesure que la fréquence augmente, il faut envisager plusieurs couples de transducteur/microphone de contrôle. Pour exemple, sachant que l'espace inter-oreilles est d'environ 20 centimètres, et que l'on prend une marge identique afin de laisser toute liberté à un utilisateur de bouger raisonnablement la tête, on se retrouve avec une bulle de confort acoustique à réaliser de 40 centimètres de diamètre, soit un traitement efficace jusqu'à 200 Hz maximum en ne considérant qu'un seul couple transducteur/microphone de contrôle. En multipliant le nombre de couples transducteur/microphone de contrôle, il est possible d'augmenter la fréquence maximale de traitement. Ainsi, avec 3 points de réduction de nuisances sonores sur cette distance, on peut traiter des perturbations jusqu'à 700Hz environ dans une bulle de confort de 40 cm de diamètre. En multipliant le nombre de signaux de contre-bruit et le nombre de points de réduction et en les disposant adéquatement, on peut aussi augmenter la taille de la bulle de confort.However, the spatial extent of such an acoustic comfort bubble 12 in free space being rather confined as the frequency increases, it is necessary to consider several pairs of transducer / control microphone. For example, knowing that the inter-ear space is about 20 centimeters, and that we take an identical margin to give a user freedom to move the head reasonably, we end up with a bubble of acoustic comfort to achieve 40 centimeters in diameter, an effective treatment up to 200 Hz maximum considering only one torque transducer / microphone control. By multiplying the number of transducer / control microphone pairs, it is possible to increase the maximum frequency of treatment. Thus, with 3 noise reduction points over this distance, disturbances up to about 700 Hz can be handled in a 40 cm diameter comfort bubble. By multiplying the number of counter-noise signals and the number of reduction points and arranging them appropriately, one can also increase the size of the comfort bubble.

Ainsi, la figure 2 représente une configuration 20 de réduction active de nuisances sonores grâce à un système multivoies 21 selon l'invention. Ce système multivoies 21 comprend :

  • K microphones de bruit permettant de mesurer K signaux de bruits xk ,
  • K microphones de contrôle mesurant K signaux d'erreur ek , et
  • K transducteurs émettant K signaux de contre-bruit yk et produisant une bulle de confort acoustique 22 plus grande que la bulle de confort 12,
avec k compris entre 1 et K. Bien entendu, le nombre de microphones de contrôle, le nombre de microphones de bruit et le nombre de transducteurs peuvent ne pas être égaux. Cependant, pour une description plus claire des différentes opérations effectuées au niveau de chaque voie du système multivoies 21, nous admettrons ici que le système multivoies 21 comprend le même nombre de microphones de contrôle et de transducteurs et un microphone de bruit.So, the figure 2 represents a configuration 20 active noise reduction through a multi-channel system 21 according to the invention. This multi-channel system 21 comprises:
  • K noise microphones for measuring K noise signals x k ,
  • K control microphones measuring K error signals e k , and
  • K transducers emitting K counter-noise signals y k and producing an acoustic comfort bubble 22 larger than the comfort bubble 12,
with k between 1 and K. Of course, the number of control microphones, the number of noise microphones and the number of transducers may not be equal. However, for a clearer description of the different operations performed at each channel of the multi-channel system 21, we will admit here that the multi-channel system 21 comprises the same number of control microphones and transducers and a noise microphone.

La figure 3 est une représentation en schéma blocs d'une voie k dans la configuration multivoies 20 mettant en oeuvre le système multivoies 21 selon l'invention permettant de réaliser la bulle de confort 22. Sur la figure 3, on désigne par n le temps discrétisé, c'est-à-dire le temps d'échantillonnage, par Skk le chemin secondaire entre la source secondaire k et le microphone de contrôle k, c'est-à-dire, le trajet acoustique direct entre la source secondaire k, et le microphone k. Le module 221 Pk représente le chemin primaire entre le microphone de détection du signal de référence xk(n) et le microphone de contrôle k. Le microphone de contrôle k permet de mesurer le signal d'erreur ek au niveau de la bulle de confort. Nous allons maintenant décrire le fonctionnement du système 21 au niveau d'une voie k.The figure 3 is a block diagram representation of a channel k in the multichannel configuration 20 implementing the multichannel system 21 according to the invention making it possible to carry out the comfort bubble 22. On the figure 3 , n denotes the discretized time, that is to say the sampling time, by S kk the secondary path between the secondary source k and the control microphone k, that is to say, the path direct acoustics between the secondary source k, and the microphone k. The module 221 P k represents the primary path between the reference signal detection microphone x k (n) and the control microphone k. The control microphone k makes it possible to measure the error signal e k at the level of the comfort bubble. We will now describe the operation of the system 21 at a level k.

Le système 21 comprend deux parties, à savoir une partie 211, dite feedforward et une partie 212, dite feedback. La partie feedback 212 comprend un filtre Wfbk k(z), à réponse impulsionnelle finie, permettant de générer et d'ajuster un signal contre-bruit feedback yfbkk(n). Cette partie feedback 212 comprend également deux filtres FIR kk(z) modélisant numériquement le chemin secondaire Skk. Un module 213, composé d'un filtre kk(z) et d'un additionneur Σ, permet de réaliser une estimation du signal de bruit propagé dk(n) au niveau de la bulle de confort, à partir du signal d'erreur ek(n) mesuré par le microphone de contrôle k et du signal de contre-bruit feedback yfbkk(n) filtré par un filtre kk(z). Ce module 213 fournit en sortie un signal de bruit propagé estimé dek(n). Un module 214 de détection et de filtrage permet de réaliser une détection des composantes périodiques du signal de bruit propagé dk(n) à partir de l'analyse du signal de bruit propagé estimé dek(n) et fournit en sortie un signal de référence d'k(n) composé des composantes périodiques détectées du signal de bruit propagé estimé dek(n). Ce module 214 comprend un bloc de détection ANFC des fréquences périodiques dans le signal de bruit propagé estimé dek(n) et un bloc de filtrage passe-bande ALEP (ALE pour Adaptive Line Enhancer) du signal de bruit propagé estimé dek(n) aux fréquences des composantes périodiques détectées par le bloc de détection ANFC . Ce module 214 sera détaillé dans la suite de la description. Le signal de référence d'k(n) est ensuite utilisé par un filtre FIR 1/kk(z) modélisant en amplitude l'inverse du chemin secondaire modélisé kk puis par un filtre Wfbk k(z) pour ajuster le signal de contre-bruit feedback yfbkk(n). The system 21 comprises two parts, namely a part 211, called feedforward and a part 212, called feedback. The feedback portion 212 comprises a finite impulse response filter W fbk k (z) for generating and adjusting a counter-noise feedback signal yfbk k (n) . This feedback portion 212 also includes two FIR filters Ŝ kk (z) digitally modeling the secondary path S kk. A module 213, composed of a filter Ŝ kk (z) and an adder Σ, allows an estimation of the propagated noise signal d k (n) at the comfort bubble, from the error signal e k (n) measured by the control microphone k and feedback signal feedback yfbk k (n) filtered by a filter Ŝ kk (z). This module 213 outputs an estimated propagated noise signal of k (n). A detection and filtering module 214 makes it possible to detect the periodic components of the propagated noise signal d k (n) from the analysis of the estimated propagated noise signal of k (n) and outputs a signal of reference of k (n) composed of the detected periodic components of the estimated propagated noise signal of k (n). This module 214 comprises an ANF detection block C of the periodic frequencies in the estimated propagated noise signal of k (n) and an ALE P ( ALE for Adaptive Line Enhancer ) band-pass filter block of the estimated propagated noise signal of k (n) at the frequencies of the periodic components detected by the ANF detection block C. This module 214 will be detailed in the following description. The reference signal of k (n) is then used by a FIR filter 1 / Ŝ kk (z) modeling in amplitude the inverse of the modeled secondary path Ŝ kk and then by a filter W fbk k (z) to adjust the signal counter-noise feedback yfbk k (n).

Les coefficients du filtre Wfbk k(z) sont ajustés par un algorithme de minimisation selon le critère des moindres carrés, représenté par le bloc LMS, en fonction du signal de référence d'k(n) traité au préalable par un filtre kk(z), et du signal d'erreur ek(n) ayant subi un filtrage passe-bande par un bloc ALEP aux fréquences des composantes périodiques détectées dans le signal de bruit propagé estimé dek(n). The coefficients of the filter W fbk k (z) are adjusted by a minimization algorithm according to the least squares criterion, represented by the block LMS, as a function of the reference signal of k (n) previously treated by a filter Ŝ kk (z), and error signal e k (n) that has been bandpass filtered by an ALE block P at the periodic component frequencies detected in the estimated propagated noise signal of k (n).

La partie feedforward 211 du système 21 comprend un filtre FIR Wfwd k(z) permettant de générer et d'ajuster un signal contre-bruit feedback yfwdk(n) en fonction du signal de bruit xk(n) mesuré par des moyens de mesure et préalablement filtré par un filtre FIR 1/kk(z) modélisant en amplitude l'inverse du chemin secondaire modélisé kk. Les coefficients du filtre Wfwd k(z) sont ajustés par un algorithme LMS, représenté par le bloc LMS, en fonction, d'une part du signal d'erreur ek(n), et d'autre part du signal de bruit mesuré et préalablement traité par un filtre kk(z). The feedforward portion 211 of the system 21 comprises a FIR filter W fwd k (z) for generating and adjusting a feedback signal feedback yfwd k (n) as a function of the noise signal x k (n) measured by means of measurement and previously filtered by a FIR filter 1 / Ŝ kk (z) modeling in amplitude the inverse of the modeled secondary path Ŝ kk . The coefficients of the filter W fwd k (z) are adjusted by an algorithm LMS, represented by the block LMS, as a function, on the one hand, of the error signal e k (n), and on the other hand of the noise signal measured and previously treated by a filter Ŝ kk (z).

Les signaux de contre-bruit feedforward yfwdk(n) et feedback yfbkk(n) sont ensuite additionnés par un additionneur Σ pour obtenir un signal de contre-bruit yk(n) qui est émis vers la bulle de confort par des moyens d'émission, qui sont dans notre exemple des transducteurs ultrason.The counter-noise signals feedforward yfwd k (n) and feedback yfbk k (n) are then added by an adder Σ to obtain a signal of counter-noise y k (n) which is transmitted to the comfort bubble by means of emission, which are in our example ultrasonic transducers.

Ainsi, au niveau de la bulle de confort, le signal d'erreur ek(n) pour la voie k mesuré par un microphone de contrôle non représenté correspond à la somme, d'une part du signal de bruit propagé dk(n), et d'autre part des signaux de contre-bruit correspondant à chacune des voies du système 21 et ayant parcourus les chemins secondaires Slk(z) entre les sources secondaires associées à chacune des voies et le microphone de contrôle k, c'est-à-dire Ainsi, on peut écrire : e k n = l = 1 K S lk z y l n + d k n .

Figure imgb0001
Thus, at the level of the comfort bubble, the error signal e k (n) for the channel k measured by a control microphone (not shown) corresponds to the sum, on the one hand, of the propagated noise signal d k (n ), and secondly counter-noise signals corresponding to each of the channels of the system 21 and having traveled the secondary paths S lk (z) between the secondary sources associated with each of the channels and the control microphone k, c ' that is, we can write: e k not = Σ l = 1 K S lk z there l not + d k not .
Figure imgb0001

A noter que dans le cas où seraient utilisés les transducteurs ultrason en guise de sources secondaires, le signal d'erreur ek(n) pour la voie k mesuré par un microphone de contrôle non représenté correspond cette fois-ci à la somme, d'une part du signal de bruit propagé dk(n), et d'autre part du signal de contre-bruit yk(n) correspondant la voie k et ayant parcouru le chemin secondaire Skk(z), c'est-à-dire le trajet acoustique entre le transducteur k et le microphone de contrôle k. Dans ce cas, e k n = y k n S kk n + d k n .

Figure imgb0002
Note that in the case where ultrasonic transducers are used as secondary sources, the error signal e k (n) for the k channel measured by a control microphone not shown corresponds this time to the sum, d part of the propagated noise signal d k (n), and secondly of the counter-noise signal y k (n) corresponding to the path k and having traveled the secondary path S kk (z) , that is, ie the acoustic path between the transducer k and the control microphone k. In that case, e k not = there k not S kk not + d k not .
Figure imgb0002

La figure 4 est une représentation en schéma bloc du module 214 de détection et de filtrage des composantes périodiques du signal de bruit propagé estimé dek(n). La méthode d'estimation fréquentielle utilisée dans le présent exemple fait intervenir un filtrage passe-bande à réponse impulsionnelle infinie d'amplitude constante partout ailleurs qu'aux fréquences des composantes du signal de bruit, où la bande passante est quasiment nulle. Ces filtres sont appelés les filtres « notch » et notés ANF (Adaptive Notch Filter). Il existe deux types de filtres notch, correspondant à deux approches différentes, à savoir l'approche directe ou en treillis. Ils se présentent tous deux sous la forme rationnelle Hi (z,θ)=Ni(z,θ)/Di(z,θ). Pour un signal d'entrée, on cherche le meilleur jeu de coefficients θ qui minimisent l'erreur quadratique définie comme le filtrage de ce signal d'entrée par le filtre Hi(z,θ).The figure 4 is a block diagram representation of the module 214 for detecting and filtering periodic components of the estimated propagated noise signal of k (n). The frequency estimation method used in the present example involves an infinite impulse response bandpass filtering of constant amplitude everywhere else than the frequencies of the components of the noise signal, where the bandwidth is almost zero. These filters are called "notch" filters and are referred to as ANF (Adaptive Notch Filter). There are two types of notch filters, corresponding to two different approaches, namely the direct or lattice approach. They are both in the rational form H i ( z, θ ) = Ni (z, θ ) / D i (z, θ ) . For an input signal, we search for the best set of coefficients θ that minimize the squared error defined as the filtering of this input signal by the filter H i (z, θ ) .

La formulation en treillis se présente sous la forme suivante : H i z = 1 + ρ 2 1 + a i z - 1 + z - 2 1 + 1 + ρ 2 a i z - 1 + ρ z - 2

Figure imgb0003

avec le paramètre ai relié directement à la fréquence recherchée par la relation ai =-2cos(2πfi ) et ρ un réel strictement positif proche de 1 appelé facteur de contraction et rendant compte de la bande passante autour de la fréquence coupée.The lattice formulation is in the following form: H i z = 1 + ρ 2 1 + at i z - 1 + z - 2 1 + 1 + ρ 2 at i z - 1 + ρ z - 2
Figure imgb0003

with the parameter a i directly connected to the frequency sought by the relation a i = -2cos (2π f i ) and ρ a strictly positive real close to 1 called the contraction factor and accounting for the bandwidth around the cutoff frequency.

Dans un souci d'optimisation des opérations arithmétiques, et pour limiter l'impact perturbateur du module de détection et de filtrage 214 sur le système 21, une décomposition en cascade, représenté en figure 4, de ce module 214 est choisie afin de déterminer les fréquences composant un signal donné. Aussi, pour p composantes périodiques, on dispose de p filtres Hi(z) en série.In order to optimize the arithmetic operations, and to limit the disturbing impact of the detection and filtering module 214 on the system 21, a cascade decomposition, represented in FIG. figure 4 , of this module 214 is chosen to determine the frequencies composing a given signal. Also, for p periodic components, we have p filters H i (z) in series.

Remarquons que, la décomposition en cascade du bloc 214 est signalée par un C, pour cascade, dans ANFC (voir figure 3).Note that the cascade decomposition of block 214 is indicated by a C, for cascade, in ANF C (see figure 3 ).

En posant la relation suivante : ε ˜ i n = 1 D i ε i - 1 n

Figure imgb0004

on peut déterminer chaque paramètre ai grâce à une réécriture astucieuse de l'algorithme de minimisation selon le critère des moindres carrés récursifs (algorithme RLS : Recursive Least Squares). Pour ce faire, on fait appel à la fonction d'auto-corrélation définie récursivement par : Φ i n = λΦ i n - 1 + ε ˜ i 2 n - 1
Figure imgb0005

et, en posant Θ(n)=[a 1(n)...ap (n)] T , Γ(n)=[Φ1(n)...Φ p (n)] T , Ẽ(n)=[ε̃1(n-1)...ε̃ p (n-1)]T et E(n)=[ε̃1(n)...ε p (n)] T , avec T signifiant transposé, on utilise la relation de récurrence suivante : Θ n = Θ n - 1 + Γ - 1 n E ˜ n E n .
Figure imgb0006
By asking the following relation: ε ~ i not = 1 D i ε i - 1 not
Figure imgb0004

we can determine each parameter a i thanks to a clever rewrite of the algorithm of minimization according to the criteria of least squares recursive (algorithm RLS: Recursive Least Squares). To do this, we use the autocorrelation function defined recursively by: Φ i not = λΦ i not - 1 + ε ~ i 2 not - 1
Figure imgb0005

and, by putting Θ ( n ) = [ a 1 ( n ) ... a p ( n )] T , Γ ( n ) = [Φ 1 ( n ) ... Φ p ( n )] T , Ẽ ( n ) = [ε 1 ( n -1) ... ε p ( n -1)] T and E ( n ) = [ε 1 ( n ) ... ε p ( n )] T , with T meaning transposed , we use the following recurrence relation: Θ not = Θ not - 1 + Γ - 1 not E ~ not E not .
Figure imgb0006

Enfin, λ et ρ sont adaptés exponentiellement grâce à la récursion suivante : { λ n = λ 0 λ n - 1 + 1 - λ 0 λ ρ n = ρ 0 ρ n - 1 + 1 - ρ 0 ρ

Figure imgb0007

ce qui permet de commencer avec une largeur de bande élevée, de sorte à permettre à chaque section 2141 de détecter une composante périodique, puis de la resserrer afin de pouvoir préciser cette détection. C'est aussi un moyen de limiter les conflits entre sections, sachant que ceux-ci peuvent quand même se produire.Finally, λ and ρ are exponentially adapted thanks to the following recursion: { λ not = λ 0 λ not - 1 + 1 - λ 0 λ ρ not = ρ 0 ρ not - 1 + 1 - ρ 0 ρ
Figure imgb0007

this makes it possible to start with a high bandwidth, so as to allow each section 2141 to detect a periodic component, then to tighten it in order to be able to specify this detection. It is also a way to limit conflicts between sections, knowing that they can still occur.

Pour des questions de stabilité et de rapidité de convergence, le signal de référence d'k(n) et le signal d'erreur ek(n) sont filtrés par des filtres passe-bande centrés autour des fréquences présentes dans le signal de bruit propagé estimé dek(n). Le complémentaire d'un filtre notch, sous quelque formulation soit-il, est un filtre passe-bande, noté N ALE (z-1), dans lequel intervient la fréquence centrale de filtrage.For reasons of stability and speed of convergence, the reference signal of k (n) and the error signal e k (n) are filtered by bandpass filters centered around the frequencies present in the noise signal. estimated propagation of k (n). The complement of a notch filter, in whatever formulation is it, is a band-pass filter, denoted N ALE (z -1 ) , in which intervenes the central frequency of filtering.

Ainsi, tel que représenté sur la figure 4, le module de détection et de filtrage 112 est composé d'autant de sections 2141 en cascade que de composantes périodiques à détecter. Chaque section i se présente sous la forme d'un filtre Hi(z-1) comprenant :

  • un ensemble 2142, composé de deux blocs notés 1/Diz-1) et
    Cet ensemble 2142 est prévu pour réaliser la détection d'une composante périodique ai du signal de bruit propagé estimé dek(n); et
  • un filtre 2143, noté et prévu pour filtrer le signal de bruit propagé estimé dek(n) à la fréquence de la composante périodique ai détecté par l'ensemble 2142. Ce filtre 2143 fournit en sortie un signal d'ki(n) composé seulement de la composante périodique ai du signal de bruit propagé estimé dek(n).
Thus, as represented on the figure 4 , the detection and filtering module 112 is composed of as many sections 2141 in cascade as periodic components to be detected. Each section i is in the form of a filter H i (z -1 ) comprising:
  • a set 2142, composed of two blocks denoted 1 / D iz -1 ) and
    This set 2142 is designed to perform the detection of a periodic component a i of the estimated propagated noise signal of k (n) ; and
  • a filter 2143, noted and adapted to filter the estimated propagated noise signal of k (n) at the frequency of the periodic component a i detected by the set 2142. This filter 2143 outputs a signal of k i (n ) composed only of the periodic component a i of the estimated propagated noise signal of k (n).

Le signal de référence d'k(n) est obtenu par addition de tous les signaux d'ki(n) fournis par les filtres des sections 2141.The reference signal of k (n) is obtained by adding all the signals of ki (n) provided by the filters of sections 2141.

Remarquons que cette opération d'addition est signalée par un P, comme parallèle, dans ALEP (voir figure 3).Note that this addition operation is indicated by a P, as parallel, in ALE P (see figure 3 ).

Les opérations d'analyse du signal de bruit, de génération et d'ajustement des signaux de contre-bruit yk(n) pour toutes les voies k du système de réduction des nuisances sonores multivoies 21 selon l'invention peuvent être intégrées sur une seule carte électronique.The operations of analyzing the noise signal, generating and adjusting the counter-noise signals y k (n) for all the channels k of the multi-channel noise reduction system 21 according to the invention can be integrated on a only electronic card.

La figure 5 représente schématiquement un exemple de carte électronique 30 pour un système multivoies de réduction de nuisances sonores présentant 6 voies 300-305 en entrée, et 4 voies 306-309 en sortie. En entrée de cette carte 30 :

  • les voies 300-303 correspondant à quatre signaux d'erreur, respectivement e1(n)-e4(n), mesurés par quatre microphones de contrôle, respectivement 310-313, disposés dans de la bulle de confort 22 ;
  • la voie 304 correspond au signal de bruit x(n) mesuré par un microphone de bruit ; et
  • la voie 305 correspond à un signal provenant d'un potentiomètre 315 permettant d'ajuster les coefficients de convergence feedback et feedforward intervenant dans les algorithmes LMS utilisés.
The figure 5 schematically represents an example of an electronic card 30 for a multichannel noise reduction system having 6 channels 300-305 input, and 4 channels 306-309 output. In entry of this card 30:
  • the channels 300-303 corresponding to four error signals, respectively e 1 (n) -e 4 (n), measured by four control microphones, respectively 310-313, arranged in the comfort bubble 22;
  • channel 304 corresponds to the noise signal x (n) measured by a noise microphone; and
  • the channel 305 corresponds to a signal coming from a potentiometer 315 making it possible to adjust the feedback and feedforward convergence coefficients involved in the LMS algorithms used.

En sortie de cette carte 30 :

  • les voies 306-309 correspondent à quatre signaux de contre-bruit, respectivement y1(n)-y4(n), destinés à être émis par quatre transducteurs, respectivement 316-319, adéquatement disposés.
At the exit of this card 30:
  • the channels 306-309 correspond to four counter-noise signals, respectively y 1 (n) -y 4 (n), intended to be emitted by four transducers, respectively 316-319, suitably arranged.

Pour chacune des voies 300-304, la carte comporte :

  • un étage 320 de pré-amplification, réalisant une pré-amplification des signaux de chacune des voies 300 - 304, à l'aide de pré-amplificateurs 3200-3204 ;
  • un étage de gain 330, disposé en sortie de l'étage 320, et appliquant un gain aux signaux de chacune des voies 300 - 304 à l'aide d'amplificateurs 3300-3304 de gain réglable ;
  • un étage 340 de filtrage anti-repliement en sortie de l'étage de gain 330, et réalisant un filtrage anti-repliement des signaux de chacune des voies 300-304, à l'aide de filtres anti-repliement 3400-3404. La fréquence d'échantillonnage au niveau des filtres 3400-3404 est réglable à l'aide d'un module 3405 ;
  • en sortie de l'étage 340, un multiplexeur 31 réalisant un multiplexage des signaux des voies 300 - 304 ; et
  • en sortie du multiplexeur 31, un convertisseur analogique-numérique 32, réalisant une conversion analogique numérique du signal multiplexé.
For each of the channels 300-304, the card comprises:
  • a pre-amplification stage 320, pre-amplifying the signals of each of the channels 300 - 304, using pre-amplifiers 3200-3204;
  • a gain stage 330, disposed at the output of the stage 320, and applying a gain to the signals of each of the channels 300 - 304 using amplifiers 3300-3304 of adjustable gain;
  • an anti-aliasing filtering stage 340 at the output of the gain stage 330, and performing anti-aliasing filtering of the signals of each of the channels 300-304, using anti-aliasing filters 3400-3404. The sampling frequency at the 3400-3404 filters is adjustable using a 3405 module;
  • at the output of the stage 340, a multiplexer 31 performing a multiplexing of the signals of the channels 300 - 304; and
  • at the output of the multiplexer 31, an analog-digital converter 32, performing an analog digital conversion of the multiplexed signal.

Le signal numérique multiplexé, obtenu en sortie du convertisseur 32, entre ensuite dans un processeur 33 de type DSP qui permet de réaliser pour chaque voie les opérations que nous avons décrites ci-dessus et représentées schématiquement en figures 3 et 4. Le processeur 33 utilisé dans l'exemple présent est un processeur Analog Devices de la gamme SHARC en finition industrielle donc résistant aux températures extrêmes. L'implémentation du code est assurée via l'interface développée par Analog Devices soit le logiciel VisualDSP++, logiciel qui possède un compilateur C de haut niveau. Il est possible de travailler soit en virgule flottante soit en virgule fixe. La fréquence d'échantillonnage au niveau du processeur est paramétrable, à l'aide d'un module 331, pour répondre à tous les cas de réduction active de l'énergie d'un signal sonore.The multiplexed digital signal, obtained at the output of the converter 32, then enters a processor 33 of the DSP type which makes it possible to carry out for each channel the operations that we have described above and represented diagrammatically in FIG. figures 3 and 4 . The processor 33 used in the present example is an Analog Devices processor of the SHARC range in industrial finish so resistant to extreme temperatures. The implementation of the code is ensured via the interface developed by Analog Devices is the VisualDSP ++ software, which has a high-level C compiler. It is possible to work either in floating point or in fixed comma. The sampling frequency at the level of the processor is configurable, using a module 331, to respond to all cases of active reduction of the energy of a sound signal.

Le DSP 33 a été dimensionné pour accueillir des opérations inhérentes aux algorithmes LMS utilisés. Le DSP peut accueillir des algorithmes plus complexes que ceux utilisés car une mémoire externe 34 est présente sur la carte 30, afin de subvenir aux éventuels surcoût en mémoire et calcul.The DSP 33 has been sized to accommodate operations inherent to the LMS algorithms used. The DSP can accommodate more complex algorithms than those used because an external memory 34 is present on the card 30, in order to meet any additional costs in memory and calculation.

Dans le cas d'un système multi-cartes, une liaison peut être effectuée entre les différentes cartes à l'aide des lignes de connexion 35. Cette éventualité a été pensée afin de pouvoir étendre à l'infini les applications de réduction active des nuisances sonores et de ne pas avoir de limitations dues au processeur 33.In the case of a multi-card system, a link can be made between the different cards using the connection lines 35. This possibility has been designed to be able to extend to infinity active nuisance reduction applications. sound and not to have limitations due to the processor 33.

En sortie du processeur 33, le signal numérique est composé des signaux de contre-bruit y1(n)-y4(n). Ce signal numérique est converti à l'aide d'un convertisseur numérique-analogique 36. Puis le signal analogique obtenu entre dans un démultiplexeur 37 et subi un démultiplexage. Après le démultiplexage les différents signaux de contre-bruit y1(n)-y4(n) sont séparés et se trouvent sur les voies de sortie 306-309. Avant d'être émis par les transducteurs 316-319, les signaux de contre-bruit subissent :

  • un lissage par un étage de lissage 350 comprenant des filtres passe-bas 3500-3503. La fréquence d'échantillonnage au niveau des filtres 3500-3503 est réglable à l'aide du module 3405 ;
  • une diminution en gain par un étage de gain 360 comprenant des amplificateurs 3600-3603 de gain réglable ; et
  • une amplification en puissance par un étage d'amplification de puissance 370 comprenant des amplificateurs de puissance. Cet étage d'amplification de puissance 370 peut ne pas se trouver sur la carte 30 telle que représentée en figure 5.
At the output of the processor 33, the digital signal is composed of the counter-noise signals y 1 (n) -y 4 (n). This digital signal is converted using a digital-to-analog converter 36. Then the analog signal obtained enters a demultiplexer 37 and demultiplexed. After the demultiplexing the different counter-noise signals y 1 (n) -y 4 (n) are separated and located on exit routes 306-309. Before being emitted by the transducers 316-319, the counter-noise signals undergo:
  • smoothing by a smoothing stage 350 comprising low-pass filters 3500-3503. The sampling frequency at the 3500-3503 filters is adjustable using the 3405 module;
  • a gain reduction by a gain stage 360 comprising amplifiers 3600-3603 of adjustable gain; and
  • power amplification by a power amplification stage 370 comprising power amplifiers. This power amplification stage 370 may not be on the board as shown in FIG. figure 5 .

Le signal de réglage des coefficients de convergence feedback et feedforward provenant du potentiomètre 315 sur la voie 305 subi une amplification grâce à un amplificateur 3051 puis une conversion analogique-numérique grâce à un convertisseur analogique numérique 3052 avant d'entrer dans le processeur 33. Ce coefficient de convergence est un facteur de pondération, strictement positif et inférieur à 1, appliqué au niveau de la réactualisation dans l'algorithme LMS des coefficients des divers filtres précédemment cités.The adjustment signal of the feedback and feedforward convergence coefficients coming from the potentiometer 315 on the channel 305 is amplified by an amplifier 3051 and then an analog-to-digital conversion by means of a digital analog converter 3052 before entering the processor 33. convergence coefficient is a weighting factor, strictly positive and less than 1, applied at the level of the reactualization in the LMS algorithm of the coefficients of the various filters mentioned above.

Les transducteurs 316-319 utilisés dans le présent exemple sont des transducteurs ultrason. Ces transducteurs ultrason 316-319 ont un faisceau d'émission 61, représenté en figure 6, très réduit. De plus, les ultrasons, complètement inaudibles à l'émission, se distordent à mesure de leur propagation dans l'air et glissent dans le spectre audible et le volume dans lequel ils deviennent audibles est tout à fait prédictible.Transducers 316-319 used in the present example are ultrasound transducers. These ultrasound transducers 316-319 have a transmission beam 61, represented in FIG. figure 6 , very small. In addition, ultrasound, completely inaudible to the emission, distort as they spread in the air and slide into the audible spectrum and the volume in which they become audible is quite predictable.

La figure 7 représente schématiquement d'un premier exemple de réalisation du système multivoies selon l'invention pour l'obtention d'une bulle de confort 22 à l'aide des 4 transducteurs ultrason 316-319 adéquatement placés sur une table de bureau 71. Le positionnement de ces transducteurs n'est évidemment pas limité au seul bureau. Ils peuvent tout à fait être disposés autour d'une ouverture, une fenêtre ou une porte par exemple. La bulle de confort 22 obtenue est située sensiblement à un niveau correspondant au niveau de la tête d'un utilisateur sur la table de bureau 71.The figure 7 schematically represents a first exemplary embodiment of the multi-channel system according to the invention for obtaining a comfort bubble 22 using 4 ultrasound transducers 316-319 properly placed on a desk table 71. The positioning of these transducers is obviously not limited to the office alone. They can quite be arranged around an opening, a window or a door for example. The comfort bubble 22 obtained is located substantially at a level corresponding to the level of the head of a user on the desk table 71.

Une autre réalisation du système selon l'invention est schématisée en figure 8. Il s'agit d'un isoloir 80 destiné à accueillir un ou plusieurs utilisateurs 81 pour leur fournir une zone de réduction des nuisances sonores autour de leur tête. Il est conçu pour être implanté aussi bien dans des espaces publics que dans des usines, et peut aussi constituer un support pour publicité.Another embodiment of the system according to the invention is shown schematically in figure 8 . This is a booth 80 intended to accommodate one or more users 81 to provide a noise reduction zone around their head. It is designed to be implemented both in public spaces and in factories, and can also be a medium for advertising.

Le principe est le suivant : une multitude de microphones de bruit 82 implantés au niveau de la structure de l'isoloir 81 fournissent les signaux de bruits, bases pour l'algorithme décrit précédemment pour calculer les signaux de contre-bruit propagés par une multitude de sources secondaires 83 implantées dans l'isoloir 80. Un réseau de microphones de contrôle 84, autour duquel se trouve la bulle de confort, permet l'adaptation en temps réel des filtres décrits plus haut. Des panneaux d'affichages 85 permettent l'affichage d'informations telles que de la publicité. L'isoloir 80 comprend un ou plusieurs sièges ou repose fesses 86 permettant à l'utilisateur 81 de se poser.The principle is as follows: a multitude of noise microphones 82 implanted at the level of the structure of the isolator 81 provide the noise signals, bases for the algorithm described above for calculating the counter-noise signals propagated by a multitude of secondary sources 83 located in the polling booth 80. A network of control microphones 84, around which is the comfort bubble, allows the real-time adaptation of the filters described above. Display panels 85 allow the display of information such as advertising. The isolator 80 includes one or more seats or buttocks 86 allowing the user 81 to land.

L'avantage d'une telle intégration de la bulle de confort est que l'on mêle aux performances basses fréquences du contrôle actif l'efficacité connue des traitements acoustiques par matériaux passifs, dont la structure et la cabine de l'isoloir est revêtue. Ainsi, on obtient une atténuation tout à fait satisfaisante et homogène sur l'ensemble du spectre de bruit.The advantage of such integration of the comfort bubble is that the low frequency performance of the active control is combined with the known efficiency of passive material acoustic treatments, whose structure and the booth of the booth is coated. Thus, a completely satisfactory and homogeneous attenuation is obtained over the entire noise spectrum.

Bien entendu l'invention n'est pas limitée aux exemples d'applications que nous venons de décrire et peut être appliquée à la réduction de l'énergie de n'importe quel signal sonore dans une zone déterminée.Naturally, the invention is not limited to the examples of applications that we have just described and can be applied to the reduction of the energy of any sound signal in a given zone.

Claims (17)

  1. Method for the active reduction in a determined zone (22) of the energy of a sound signal (dk(n)), called propagated noise signal, generated in said zone (22) by a primary signal (xk(n)), called noise signal, said method comprising a transmission, by transmission means, of at least one counter-noise signal (yk(n)) comprising at least one first so-called feedback counter-noise signal (yfbkk(n)), counteracting said propagated noise signal (dk(n)), said method also comprising at least one iteration of the following operations:
    - measurement, by measurement means arranged in said determined zone (22), of a so-called error signal (ek(n)), representing information on the effectiveness of the reduction of the energy of the propagated noise signal (dk(n)) in said zone (22);
    - modelling, by at least one first filter (Ŝkk(z)), of a direct acoustic path (Skk), called secondary path, between said transmission means of the counter-noise signal (yk(n)) and said measurement means of said error signal (ek(n));
    - detection of at least one periodic component of said propagated noise signal (dk(n)) by analysis of a propagated noise signal (dek(n)) estimated from, on the one hand, the error signal (ek(n)) and, on the other hand, the feedback counter-noise signal (yfbkk(n)) processed by the first filter (Ŝkk(z)), said detection providing said periodic component; and
    - adjustment of said feedback counter-noise signal (yfbkk(n)) as a function of said detected periodic component, of said error signal (ek(n)) and of said modelled secondary path (Ŝkk(z)).
  2. Method according to claim 1, characterized in that it also comprises a band-pass filtering of the estimated propagated noise signal (dek(n)), at the frequency of all or some of the detected periodic components, said filtering providing a so-called reference signal (d'k(n)).
  3. Method according to claim 2, characterized in that the adjustment of the feedback counter-noise signal (yfbkk(n)) comprises an adjustment of at least one coefficient of a second finite impulsional response filter (Wfbk k(z)), said second filter being provided to adjust said feedback counter-noise signal (yfbkk(n)) as a function of the reference signal (d'k(n)) filtered by a third finite impulsional response filter (1/Ŝkk(z)) amplitude modelling the inverse of the secondary path.
  4. Method according to claim 3, characterized in that at least one coefficient of the second filter (Wfbk k(z)) is adjusted by an algorithm of the minimization algorithm type according to the least mean squares (LMS) criterion as a function of the reference signal (d'k(n)) processed beforehand by the first filter (Ŝkk(z)), of the error signal (ek(n)) that has previously undergone a band-pass filtering at the frequency of all or some of the detected periodic components and of a so-called feedback convergence coefficient.
  5. Method according to any one of the previous claims, characterized in that the counter-noise signal (yk(n)) also comprises a so-called feedforward counter-noise signal (yfwdk(n)), adjusted as a function of the error signal (ek(n)), of the noise signal (xk(n)) measured by measurement means (314).
  6. Method according to claim 5, characterized in that it also comprises an amplitude modelling of the inverse of the secondary path (Skk) by at least one fourth finite impulsional response filter (1/Skk(z)).
  7. Method according to claim 6, characterized in that the adjustment of the feedforward counter-noise signal (yfwdk(n)) comprises an adjustment of at least one coefficient of a fifth finite impulsional response filter (Wfwd k(z)), said fifth filter being provided to adjust said feedforward counter-noise signal (yfwdk(n)) as a function of the noise signal (xk(n)) processed beforehand by the fourth filter (1/Ŝkk(z)).
  8. Method according to claim 7, characterized in that at least one coefficient of the fifth filter (Wfwd k(z)) is adjusted by an algorithm of the least mean squares (LMS) algorithm type as a function of the error signal (ek(n)), of the measured noise signal (xk(n)) processed beforehand by a sixth filter (Ŝkk(z)) modelling the secondary path (Skk) and of a so-called feedforward convergence coefficient.
  9. Method according to any one of the previous claims, characterized in that it is used to attenuate at least one propagated noise signal (dk(n)) by transmission of a plurality of counter-noise signals (y1(n)-y4(n)) by a plurality of transmission means (316-319).
  10. System of active reduction, in a determined zone (22), of the energy of a sound signal (dk(n)), called propagated noise signal, generated in said zone (22) by a primary signal (xk(n)), called noise signal, by transmission of at least one counter-noise signal (yk(n)) comprising at least one first so-called feedback counter-noise signal (yfbkk(n)), counteracting said propagated noise signal (dk(n)) in the determined zone (22), said system comprising :
    - means (316-319) for transmitting the counter-noise signal (yk(n));
    - means (310-313) of measuring, in said determined zone (22), a so-called error signal (ek(n)), representing information on the effectiveness of the reduction of the energy of said propagated noise signal (dk(n));
    - at least one first filter (Ŝkk(z)) for modelling a direct acoustic path (Skk), called secondary path, between said transmission means (316-319) of the counter-noise signal (yk(n)) and said measurement means (310-313) of said error signal (ek(n)).
    - means (213) for estimating the propagated noise signal (dk(n)) from, on the one hand, the error signal (ek(n)) and, on the other hand, the feedback counter-noise signal (yfbkk(n)) processed by the first filter (Ŝkk(z)), said means (213) providing an estimated propagated noise signal (dek(n)).
    - means (214) for detecting and providing at least one periodic component of said propagated noise signal (dk(n)) by analysis of said estimated propagated noise signal (dek(n)); and
    - means for adjusting said feedback counter-noise signal (yfbkk(n)) as a function of said detected periodic component, of said error signal (ek(n)) and of said modelled secondary path (Ŝkk(z)).
  11. System according to claim 10, characterized in that the means (316-319) for transmitting the counter-noise signal (yk(n)) comprise ultrasonic transducers having a reduced transmission beam (61).
  12. System according to any one of claims 10 or 11, characterized in that it also comprises means for band-pass filtering (214) of the estimated propagated noise signal (dek(n)) at the frequency of all or some of the detected periodic components, said filtering means providing a reference signal (d'k(n)).
  13. System according to claim 12, characterized in that the means for adjusting the feedback counter-noise signal (yfbkk(n)) comprise at least one second, finite impulsional response, filter (Wfbk k(z) provided to adjust said feedback counter-noise signal (yfbkk(n)) as a function of the reference signal (d'k(n)) filtered by a third filter (1/Ŝkk(z)) amplitude modelling the inverse of the second path.
  14. System according to any one of claims 10 to 13, characterized in that the counter-noise signal (yk(n)) comprises a second so-called feedforward counter-noise signal (yfwdk(n)), the system also comprising means for adjusting said feedforward counter-noise signal (yfwdk(n)) as a function of the error signal (ek(n)) and of the noise signal (xk(n)).
  15. System according to claim 14, characterized in that it also comprises a fourth, finite impulsional response, filter (1/Ŝkk(z)), arranged for amplitude modelling the inverse of the secondary path.
  16. System according to claim 15, characterized in that it also comprises a fifth filter (Wfwd k(z)), provided to adjust the feedforward counter-noise signal (yfwdk(n)), as a function of the noise signal (xk(n)) processed by the fourth filter (1/Ŝkk(z)).
  17. System according to any one of claims 10 to 16, characterized in that it also comprises a plurality of transmission means (316-319) of a plurality of counter-noise signals (y1(n)-y4(n)).
EP08775674A 2007-03-09 2008-03-04 Method for the active reduction of sound disturbance Active EP2122607B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0701718A FR2913521B1 (en) 2007-03-09 2007-03-09 METHOD FOR ACTIVE REDUCTION OF SOUND NUISANCE.
PCT/FR2008/050371 WO2008125774A2 (en) 2007-03-09 2008-03-04 Method for the active reduction of sound disturbance

Publications (2)

Publication Number Publication Date
EP2122607A2 EP2122607A2 (en) 2009-11-25
EP2122607B1 true EP2122607B1 (en) 2011-01-12

Family

ID=38619783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08775674A Active EP2122607B1 (en) 2007-03-09 2008-03-04 Method for the active reduction of sound disturbance

Country Status (7)

Country Link
US (1) US8401204B2 (en)
EP (1) EP2122607B1 (en)
AT (1) ATE495521T1 (en)
DE (1) DE602008004461D1 (en)
ES (1) ES2359783T3 (en)
FR (1) FR2913521B1 (en)
WO (1) WO2008125774A2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9165549B2 (en) * 2009-05-11 2015-10-20 Koninklijke Philips N.V. Audio noise cancelling
EP2647002B1 (en) 2010-12-03 2024-01-31 Cirrus Logic, Inc. Oversight control of an adaptive noise canceler in a personal audio device
US8908877B2 (en) 2010-12-03 2014-12-09 Cirrus Logic, Inc. Ear-coupling detection and adjustment of adaptive response in noise-canceling in personal audio devices
EP2863389B1 (en) 2011-02-16 2019-04-17 Dolby Laboratories Licensing Corporation Decoder with configurable filters
US8737634B2 (en) 2011-03-18 2014-05-27 The United States Of America As Represented By The Secretary Of The Navy Wide area noise cancellation system and method
US9824677B2 (en) 2011-06-03 2017-11-21 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
US8958571B2 (en) 2011-06-03 2015-02-17 Cirrus Logic, Inc. MIC covering detection in personal audio devices
US9318094B2 (en) 2011-06-03 2016-04-19 Cirrus Logic, Inc. Adaptive noise canceling architecture for a personal audio device
US9462370B2 (en) 2012-02-08 2016-10-04 Kyushu Institute Of Technology Muting device
US9123321B2 (en) 2012-05-10 2015-09-01 Cirrus Logic, Inc. Sequenced adaptation of anti-noise generator response and secondary path response in an adaptive noise canceling system
US9318090B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Downlink tone detection and adaptation of a secondary path response model in an adaptive noise canceling system
US9532139B1 (en) 2012-09-14 2016-12-27 Cirrus Logic, Inc. Dual-microphone frequency amplitude response self-calibration
US9414150B2 (en) 2013-03-14 2016-08-09 Cirrus Logic, Inc. Low-latency multi-driver adaptive noise canceling (ANC) system for a personal audio device
US9620101B1 (en) 2013-10-08 2017-04-11 Cirrus Logic, Inc. Systems and methods for maintaining playback fidelity in an audio system with adaptive noise cancellation
US10219071B2 (en) 2013-12-10 2019-02-26 Cirrus Logic, Inc. Systems and methods for bandlimiting anti-noise in personal audio devices having adaptive noise cancellation
US9478212B1 (en) 2014-09-03 2016-10-25 Cirrus Logic, Inc. Systems and methods for use of adaptive secondary path estimate to control equalization in an audio device
US9559803B2 (en) * 2015-04-03 2017-01-31 National Security Technologies, Llc Electromagnetic spectrum management system
WO2017029550A1 (en) * 2015-08-20 2017-02-23 Cirrus Logic International Semiconductor Ltd Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter
EP3338279A1 (en) * 2015-08-20 2018-06-27 Cirrus Logic International Semiconductor Ltd. Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter
US10013966B2 (en) 2016-03-15 2018-07-03 Cirrus Logic, Inc. Systems and methods for adaptive active noise cancellation for multiple-driver personal audio device
US10515620B2 (en) * 2017-09-19 2019-12-24 Ford Global Technologies, Llc Ultrasonic noise cancellation in vehicular passenger compartment
SE1850077A1 (en) * 2018-01-24 2019-07-25 Creo Dynamics Ab Active noise control method and system using variable actuator and sensor participation
US10951974B2 (en) 2019-02-14 2021-03-16 David Clark Company Incorporated Apparatus and method for automatic shutoff of aviation headsets
JP7241119B2 (en) * 2021-03-18 2023-03-16 本田技研工業株式会社 Active noise control device
CN113409755B (en) * 2021-07-26 2023-10-31 北京安声浩朗科技有限公司 Active noise reduction method and device and active noise reduction earphone
CN116439913B (en) * 2023-04-14 2024-03-15 中国人民解放军海军潜艇学院 Marine active hearing protection type earmuff and protection method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940519A (en) * 1996-12-17 1999-08-17 Texas Instruments Incorporated Active noise control system and method for on-line feedback path modeling and on-line secondary path modeling
US5978489A (en) * 1997-05-05 1999-11-02 Oregon Graduate Institute Of Science And Technology Multi-actuator system for active sound and vibration cancellation
SG106582A1 (en) * 2000-07-05 2004-10-29 Univ Nanyang Active noise control system with on-line secondary path modeling
WO2003015074A1 (en) * 2001-08-08 2003-02-20 Nanyang Technological University,Centre For Signal Processing. Active noise control system with on-line secondary path modeling
GB0208421D0 (en) * 2002-04-12 2002-05-22 Wright Selwyn E Active noise control system for reducing rapidly changing noise in unrestricted space
US7835529B2 (en) * 2003-03-19 2010-11-16 Irobot Corporation Sound canceling systems and methods

Also Published As

Publication number Publication date
WO2008125774A4 (en) 2009-02-19
ATE495521T1 (en) 2011-01-15
EP2122607A2 (en) 2009-11-25
FR2913521A1 (en) 2008-09-12
US8401204B2 (en) 2013-03-19
US20100034398A1 (en) 2010-02-11
ES2359783T3 (en) 2011-05-26
DE602008004461D1 (en) 2011-02-24
FR2913521B1 (en) 2009-06-12
WO2008125774A3 (en) 2008-12-31
WO2008125774A2 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
EP2122607B1 (en) Method for the active reduction of sound disturbance
EP2680262B1 (en) Method for suppressing noise in an acoustic signal for a multi-microphone audio device operating in a noisy environment
US6377637B1 (en) Sub-band exponential smoothing noise canceling system
JP4195267B2 (en) Speech recognition apparatus, speech recognition method and program thereof
EP2538409B1 (en) Noise reduction method for multi-microphone audio equipment, in particular for a hands-free telephony system
EP2530673B1 (en) Audio device with suppression of noise in a voice signal using a fractional delay filter
EP2057835B1 (en) Method of reducing the residual acoustic echo after echo removal in a hands-free device
EP0932964B1 (en) Method and device for blind equalizing of transmission channel effects on a digital speech signal
EP0752181B1 (en) Frequency-domain adaptive-filter acoustic echo canceller
US20040264610A1 (en) Interference cancelling method and system for multisensor antenna
EP0854626B1 (en) Method and device for echo cancellation
FR2595498A1 (en) METHODS AND DEVICES FOR MITIGATING EXTERNAL NOISE FROM TYMPAN AND ENHANCING THE INTELLIGIBILITY OF ELECTRO-ACOUSTIC COMMUNICATIONS
EP1052838A1 (en) Method and device for stereo echo cancelling by filtering in the frequency domain
EP0998166A1 (en) Device for audio processing,receiver and method for filtering the wanted signal and reproducing it in presence of ambient noise
EP0903960B1 (en) Antenna formed by a plurality of acoustic detectors
EP1429316B1 (en) System and method for multi-referenced correction of spectral voice distortions introduced by a communication network
EP0884926B1 (en) Method and device for optimized processing of an interfering signal when recording sound
KR100873000B1 (en) Directional voice filtering system using microphone array and method thereof
EP1039736B1 (en) Method and device for adaptive identification and related adaptive echo canceller
WO2017089688A1 (en) Method and device for estimating sound reverberation
EP3025342B1 (en) Method for suppressing the late reverberation of an audible signal
EP2515300B1 (en) Method and system for noise reduction
EP1155497B1 (en) Antenna treatment method and system
FR2967848A1 (en) SPECTRUM CORRECTION SYSTEM INTENDED IN PARTICULAR FOR A SHOWROOM
WO2020074522A1 (en) Method and device for controlling the distortion of a loudspeaker system on board a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090929

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602008004461

Country of ref document: DE

Date of ref document: 20110224

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008004461

Country of ref document: DE

Effective date: 20110224

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110112

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2359783

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110526

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110412

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110512

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110412

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

BERE Be: lapsed

Owner name: QUIETYS

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

26N No opposition filed

Effective date: 20111013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008004461

Country of ref document: DE

Effective date: 20111013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20120302

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140926

Year of fee payment: 7

Ref country code: ES

Payment date: 20140926

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140929

Year of fee payment: 7

Ref country code: FR

Payment date: 20140925

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140930

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008004461

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150304

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140304