EP3338279A1 - Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter - Google Patents

Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter

Info

Publication number
EP3338279A1
EP3338279A1 EP16763937.6A EP16763937A EP3338279A1 EP 3338279 A1 EP3338279 A1 EP 3338279A1 EP 16763937 A EP16763937 A EP 16763937A EP 3338279 A1 EP3338279 A1 EP 3338279A1
Authority
EP
European Patent Office
Prior art keywords
response
filter
anc
variable
secondary path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP16763937.6A
Other languages
German (de)
French (fr)
Inventor
Yang Lu
Ryan A. HELLMAN
Dayong Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cirrus Logic International Semiconductor Ltd
Original Assignee
Cirrus Logic International Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cirrus Logic International Semiconductor Ltd filed Critical Cirrus Logic International Semiconductor Ltd
Priority claimed from PCT/IB2016/001234 external-priority patent/WO2017029550A1/en
Publication of EP3338279A1 publication Critical patent/EP3338279A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3017Copy, i.e. whereby an estimated transfer function in one functional block is copied to another block
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3026Feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3027Feedforward

Definitions

  • the field of representative embodiments of this disclosure relates to methods and systems for adaptive noise cancellation (ANC), and in particular to an ANC feedback controller in which the feedback response is provided by a fixed transfer function feedback filter and a variable response filter.
  • ANC adaptive noise cancellation
  • Wireless telephones such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as MP3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise canceling using a microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.
  • An adaptive feedback noise cancelling system includes an adaptive filter that generates an anti-noise signal from an output of a sensor that senses the noise to be canceled and that is provided to an output transducer for reproduction to cancel the noise.
  • the secondary path which is the electro-acoustic path at least extending from the output transducer that reproduces the anti- noise signal generated by the ANC system to the output signal provided by the input sensor that measures the ambient noise to be canceled, determines a portion of the necessary feedback response to provide proper noise-canceling.
  • the secondary path response varies as well.
  • the ANC controller includes a fixed filter having a predetermined fixed transfer function and a variable-response filter coupled together.
  • the fixed transfer function relates to and maintains stability of a compensated feedback loop and contributes to an ANC gain of the ANC system.
  • the response of the variable-response filter compensates for variation of a transfer function of a secondary path that includes at least a path from a transducer of the ANC system to a sensor of the ANC system, so that the ANC gain is independent of the variation of the transfer function of the secondary path.
  • Figure 1A is an illustration of a wireless telephone 10, which is an example of a personal audio device in which the techniques disclosed herein can be implemented.
  • Figure IB is an illustration of a wireless telephone 10 coupled to a pair of earbuds EBl and EB2, which is an example of a personal audio system in which the techniques disclosed herein can be implemented.
  • Figure 2 is a block diagram of circuits within wireless telephone 10 and/or earbud EB of Figure 1A.
  • Figure 3A is an illustration of electrical and acoustical signal paths in Figure 1 A and Figure IB including a feedback acoustic noise canceler.
  • Figure 3B is an illustration of electrical and acoustical signal paths in Figure 1 A and Figure IB including a hybrid feed-forward/feedback acoustic noise canceler.
  • Figures 4A-4D are block diagrams depicting various examples of ANC circuits that can be used to implement ANC circuit 30 of audio integrated circuits 20A-20B of Figure 2.
  • Figures 5A-5F are graphs depicting acoustic and electric responses within the ANC systems disclosed herein.
  • Figure 6 is a block diagram depicting a digital filter that can be used to implement fixed response filter 40 within the circuits depicted in Figures 4A-4D.
  • Figure 7 is a block diagram depicting an alternative digital filter that can be used to implement fixed response filter 40 within the circuits depicted in Figures 4A-4D.
  • Figure 8 is a block diagram depicting signal processing circuits and functional blocks that can be used to implement the circuits depicted in Figure 2 and Figures 4A-4D.
  • the present disclosure encompasses noise canceling techniques and circuits that can be implemented in a personal audio device, such as a wireless telephone, tablet, note-book computer, noise-canceling headphones, as well as in other noise-canceling circuits.
  • the personal audio device includes an ANC circuit that measures the ambient acoustic environment with a sensor and generates an anti-noise signal that is output via a speaker or other transducer to cancel ambient acoustic events.
  • the example ANC circuits shown herein include a feedback filter and may include a feed-forward filter that are used to generate the anti-noise signal from the sensor output.
  • a secondary path including the acoustic path from the transducer back to the sensor, closes a feedback loop around an ANC feedback path that extends through the feedback filter, and thus the stability of the feedback loop is dependent on the characteristics of the secondary path.
  • the secondary path involves structures around and between the transducer and sensor, thus for devices such as a wireless telephone, the response of the secondary path varies with the user and the position of the device with respect to the user's ear(s).
  • the instant disclosure uses a pair of filters, one having a fixed predetermined response and the other having a variable response that compensates for secondary path variations.
  • the fixed predetermined response is selected to provide stability over the range of secondary path responses expected for the device, contributes to the acoustic noise cancellation and generally maximizes the range over which the acoustic noise cancelation operates.
  • Illustrated wireless telephone 10 is shown in proximity to a human ear 5.
  • Illustrated wireless telephone 10 is an example of a device in which techniques illustrated herein may be employed, but it is understood that not all of the elements or
  • Wireless telephone 10 includes a transducer such as speaker SPKR that reproduces distant speech received by wireless telephone 10, along with other local audio events such as ringtones, stored audio program material, near-end speech (i.e., the speech of the user of wireless telephone 10), sources from web-pages or other network communications received by wireless telephone 10 and audio indications such as battery low and other system event notifications.
  • a near-speech microphone NS is provided to capture near-end speech, which is transmitted from wireless telephone 10 to the other conversation participant(s).
  • Wireless telephone 10 includes adaptive noise canceling (ANC) circuits and features that inject an anti-noise signal into speaker SPKR to improve intelligibility of the distant speech and other audio reproduced by speaker SPKR.
  • a reference microphone R may be provided for measuring the ambient acoustic environment and is positioned away from the typical position of a user's mouth, so that the near-end speech is minimized in the signal produced by reference microphone R.
  • a third microphone, error microphone E may be provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by speaker SPKR close to ear 5, when wireless telephone 10 is in proximity to ear 5.
  • a circuit 14 within wireless telephone 10 may include an audio CODEC integrated circuit 20 that receives the signals from reference microphone R, near-speech microphone NS, and error microphone E and interfaces with other integrated circuits such as an RF integrated circuit 12 containing the wireless telephone transceiver.
  • the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit.
  • the circuits and techniques disclosed herein may be implemented partially or fully in software and/or firmware embodied in computer-readable storage media and executable by a processor circuit or other processing device such as a microcontroller.
  • the ANC techniques disclosed herein measure ambient acoustic events (as opposed to the output of speaker SPKR and/or the near-end speech) impinging on error microphone E and/or reference microphone R.
  • the ANC processing circuits of illustrated wireless telephone 10 adapt an anti-noise signal generated from the output of error microphone E and/or reference microphone R to have a characteristic that minimizes the amplitude of the ambient acoustic events present at error microphone E. Since acoustic path P(z) extends from reference microphone R to error microphone E, the ANC circuits are effectively estimating acoustic path P(z) combined with removing effects of an electro-acoustic path S(z).
  • Electro-acoustic path S(z) represents the response of the audio output circuits of CODEC IC 20 and the acoustic/electric transfer function of speaker SPKR including the coupling between speaker SPKR and error microphone E in the particular acoustic environment. Electro-acoustic path S(z) is affected by the proximity and structure of ear 5 and other physical objects and human head structures that may be in proximity to wireless telephone 10, when wireless telephone 10 is not firmly pressed to ear 5. While the illustrated wireless telephone 10 includes a two microphone ANC system with a third near-speech microphone NS, other systems that do not include separate error and reference microphones can implement the above-described techniques. Alternatively, near-speech
  • microphone NS can be used to perform the function of the reference microphone R in the above- described system. Also, in personal audio devices designed only for audio playback, near-speech microphone NS will generally not be included, and the near-speech signal paths in the circuits described in further detail below can be omitted without changing the scope of the disclosure. Also, the techniques disclosed herein can be applied in purely noise-canceling systems that do not reproduce a playback signal or conversation using the output transducer, i.e., those systems that only reproduce an anti-noise signal.
  • FIG. IB shows wireless telephone 10 and a pair of earbuds EB1 and EB2, each attached to a corresponding ear of a listener.
  • Illustrated wireless telephone 10 is an example of a device in which the techniques herein may be employed, but it is understood that not all of the elements or configurations illustrated in wireless telephone 10, or in the circuits depicted in subsequent illustrations, are required.
  • Wireless telephone 10 is connected to earbuds EB1, EB2 by a wired or wireless connection, e.g., a BLUETOOTHTM connection (BLUETOOTH is a trademark of Bluetooth SIG, Inc.).
  • Earbuds EB1, EB2 each have a corresponding transducer, such as speaker SPKRl, SPKR2, which reproduce source audio including distant speech received from wireless telephone 10, ringtones, stored audio program material, and injection of near-end speech (i.e., the speech of the user of wireless telephone 10).
  • the source audio also includes any other audio that wireless telephone 10 is required to reproduce, such as source audio from web- pages or other network communications received by wireless telephone 10 and audio indications such as battery low and other system event notifications.
  • Reference microphones Rl, R2 are provided on a surface of the housing of respective earbuds EB1, EB2 for measuring the ambient acoustic environment.
  • wireless telephone 10 includes adaptive noise canceling (ANC) circuits and features that inject an anti-noise signal into speakers SPKRl, SPKR2 to improve intelligibility of the distant speech and other audio reproduced by speakers SPKRl, SPKR2.
  • ANC adaptive noise canceling
  • an ANC circuit within wireless telephone 10 receives the signals from reference microphones Rl, R2 and error microphones El, E2.
  • all or a portion of the ANC circuits disclosed herein may be incorporated within earbuds EB1, EB2.
  • each of earbuds EB1, EB2 may constitute a stand-alone acoustic noise canceler including a separate ANC circuit.
  • Near-speech microphone NS may be provided on the outer surface of a housing of one of earbuds EBl, EB2, on a boom affixed to one of earbuds EBl, EB2, or on a combox pendant 7 located between wireless telephone 10 and either or both of earbuds EBl, EB2, as shown.
  • the ANC techniques illustrated herein measure ambient acoustic events (as opposed to the output of speakers SPKR1, SPKR2 and/or the near-end speech) impinging on error microphones El, E2 and/or reference microphones Rl, R2.
  • the ANC circuit in audio integrated circuit 20A is essentially estimating acoustic path Pi(z) combined with removing effects of an electro-acoustic path Si(z) that represents the response of the audio output circuits of audio integrated circuit 20A and the acoustic/electric transfer function of speaker SPKRl.
  • the estimated response includes the coupling between speaker SPKRl and error microphone El in the particular acoustic environment which is affected by the proximity and structure of ear 5A and other physical objects and human head structures that may be in proximity to earbud EBl.
  • audio integrated circuit 20B estimates acoustic path P 2 (z) combined with removing effects of an electro-acoustic path S 2 (z) that represents the response of the audio output circuits of audio integrated circuit 20B and the acoustic/electric transfer function of speaker SPKR2.
  • headphone and “speaker” refer to any acoustic transducer intended to be mechanically held in place proximate to a user's ear canal and include, without limitation, earphones, earbuds, and other similar devices.
  • earbuds” or “headphones” may refer to intra-concha earphones, supra-concha earphones and supra-aural earphones.
  • transducer includes headphone or speaker type transducers, but also other vibration generators such as piezo-electric transducers, magnetic vibrators such as motors, and the like.
  • sensor includes microphones, but also includes vibration sensors such as piezo-electric films, and the like.
  • FIG. 2 shows a simplified schematic diagram of audio integrated circuits 20A, 20B that include ANC processing, as coupled to respective reference microphones Rl, R2, which provides measurements of ambient audio sounds that are filtered by the ANC processing circuits within audio integrated circuits 20A, 20B, located within corresponding earbuds EBl, EB2.
  • reference microphone R may be omitted and the anti-noise signal generated entirely from error microphones El, E2.
  • Audio integrated circuits 20A, 20B may be alternatively combined in a single integrated circuit, such as integrated circuit 20 within wireless telephone 10.
  • the circuits disclosed in Figure 2 are applicable to wireless telephone 10 of Figure 1 A by omitting audio integrated circuit 20B, so that a single reference microphone input is provided for each of reference microphone R and error microphone E and a single output is provided for speaker SPKR.
  • Audio integrated circuits 20A, 20B generate outputs for their corresponding channels that are provided to the corresponding one of speakers SPKRl, SPKR2.
  • Audio integrated circuits 20A, 20B receive the signals (wired or wireless depending on the particular configuration) from reference microphones Rl, R2, near-speech microphone NS and error microphones El, E2.
  • Audio integrated circuits 20A, 20B also interface with other integrated circuits such as RF integrated circuit 12 containing the wireless telephone transceiver shown in Figure 1 A. In other configurations, the circuits and techniques disclosed herein may be
  • a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit.
  • multiple integrated circuits may be used, for example, when a wireless connection is provided from each of earbuds EBl, EB2 to wireless telephone 10 and/or when some or all of the ANC processing is performed within earbuds EB1, EB2 or a module disposed along a cable connecting wireless telephone 10 to earbuds EB1, EB2.
  • Audio integrated circuit 20 A includes an analog-to-digital converter (ADC) 21 A for receiving the reference microphone signal from reference microphone Rl (or reference microphone R in Figure 1 A) and generating a digital representation ref of the reference microphone signal. Audio integrated circuit 20A also includes an ADC 21B for receiving the error microphone signal from error microphone El (or error microphone E in Figure 1 A) and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near-speech microphone signal from near-speech microphone NS and generating a digital representation of near-speech microphone signal ns.
  • ADC analog-to-digital converter
  • Audio integrated circuit 20B receives the digital representation of near-speech microphone signal ns from audio integrated circuit 20A via the wireless or wired connections as described above.
  • Audio integrated circuit 20A generates an output for driving speaker SPKRl from amplifier Al, which amplifies the output of a digital-to-analog converter (DAC) 23 that receives the output of a combiner 26.
  • DAC digital-to-analog converter
  • Combiner 26 combines audio signals ia from internal audio sources 24, and the anti-noise signal anti-noise generated by an ANC circuit 30, which by convention has the same polarity as the noise in error microphone signal err and reference microphone signal ref and is therefore subtracted by combiner 26.
  • Combiner 26 also combines an attenuated portion of near-speech signal ns, i.e., sidetone information st, so that the user of wireless telephone 10 hears their own voice in proper relation to downlink speech ds, which is received from a radio frequency (RF) integrated circuit 22.
  • Near- speech signal ns is also provided to RF integrated circuit 22 and is transmitted as uplink speech to the service provider via an antenna ANT.
  • FIG. 3A a simplified feedback ANC circuit is shown which applies in examples of the wireless telephone shown in Figure 1 A, and to each channel of the wireless telephone system shown in Figure IB.
  • Ambient sounds Ambient travel along a primary path P(z) to error microphone E and are filtered by a feedback filter 38 to generate anti-noise provided through amplifier Al to speaker SPKR.
  • Secondary path S(z) includes the electrical path from the output of feedback filter 38 to speaker SPKR combined with the acoustic path from the speaker SPKR through error microphone E to the input of feedback filter 38.
  • the feedback gain G FB (Z) which determines the effectiveness of the acoustic noise canceling, is dependent on the response of secondary path S(z) and the transfer function H(z) of feedback filter 38.
  • an ANC feedback controller must generally be designed using multiple models representing extreme values of the response of secondary path S(z) and H(z) must be conservatively designed in order to maintain a proper phase margin (i.e., the phase between the ambient sounds and the anti-noise reproduced by speaker SPKR at an upper frequency bound at which the G(z) falls to unity) and gain margin (i.e., the attenuation relative to unity of the ambient sounds and the anti-noise reproduced by speaker SPKR at one or more frequencies for which the phase between the ambient sounds and the anti-noise reaches zero, causing positive feedback).
  • phase margin i.e., the phase between the ambient sounds and the anti-noise reproduced by speaker SPKR at an upper frequency bound at which the G(z) falls to unity
  • gain margin i.e., the attenuation relative to unity of the ambient sounds and the anti-noise reproduced by speaker SPKR at one or more frequencies for which the phase between the ambient sounds and the anti-noise reaches zero
  • phase margin/gain margin are necessary for stability of the feedback loop in an ANC system employing feedback, as the phase margin/gain margin are directly determinative of the recovery of the ANC system from a disturbance, such as high-amplitude noise, or noise that the ANC system cannot cancel.
  • increasing the gain and phase margins typically requires lowering the upper limit of the frequency response of the feedback loop, reducing the ability of the ANC system to cancel ambient noise.
  • a wide variation in the response of secondary path S(z) constrains any off-line design of the feedback controller such that the performance of the feedback cancelation is limited at higher frequencies.
  • a wide variation in the response of secondary path S(z) is typical for wireless telephones, earbuds, and the other devices described above, which are used in or in proximity to a user's ear canal.
  • FIG. 3B a simplified feed-forward/feedback ANC circuit is shown which alternatively applies to the wireless telephone shown in Figure 1 A, and to each channel of the wireless telephone system shown in Figure IB.
  • the operation of the feed-forward/feedback ANC is similar to the pure feedback approach shown in Figure 3 A, except that the anti-noise signal provided to amplifier Al is generated by both the feedback filter 38 described above, and a feedforward filter 32, which generates a portion of the anti-noise signal from the output of reference microphone R.
  • Combiner 36 combines the feed-forward anti-noise with the feedback anti-noise.
  • FIG. 4A-4D details of various exemplary ANC circuits 20 that may be included within audio integrated circuits 20A, 20B of Figure 2, are shown in accordance with various embodiments of the disclosure.
  • the above-described feedback filter 38 is implemented as a pair of filters.
  • a first filter 40 has a fixed predetermined response that is related to and helps maintain stability of the compensated feedback loop and contributes to the ANC gain of the ANC system.
  • the other filter is a variable-response filter 42, 42 A that compensates for the variations of at least a portion of the response of secondary path S(z).
  • the result is that the feedback ANC gain G FB (Z) is rendered independent of the variations in the response of secondary path S(z).
  • Figure 4A shows an ANC feedback filter 38A that receives the error microphone signal err from error microphone E, filters the error microphone signal with filter 42 having a response C(z), and filters the output of filter 42 with another filter 40 having a predetermined fixed response B(z).
  • Response C(z) represents any filter response that helps stabilize the ANC system against variations in the response of secondary path S(z), and depending on other portions of the system response, may or may not be exactly equal to the inverse S (z) of the response of secondary path S(z).
  • Figure 4B illustrates another ANC feedback filter 38B in which first filter 42A has a response SE " 1 z) that is an estimate of the inverse S _1 (z) of the response of secondary path S(z), and is controlled according to control signals from a secondary path estimator SE(z) control circuit.
  • Figure 4C illustrates yet another ANC feedback filter 38C in which first filter 42B is an adaptive filter that estimates response S _1 (z) to generate inverse response SE (z) via off-line calibration.
  • a playback signal PB (that is also reproduced by the output transducer) with delay z "D applied by delay 47 is correlated with error microphone signal err by a least-means- squared (LMS) coefficient controller 44, after the output of first filter 42B is subtracted from playback signal PB by a combiner 46.
  • LMS least-means- squared
  • the resulting adaptive filter obtains an estimate of the response of secondary path S(z) by directly measuring the effect of the response of secondary path S(z) on playback signal PB.
  • switch SI is closed and the outputs of LMS coefficient controller 44 are held constant and converted to invert the response of adaptive filter 42A to yield response SE (z).
  • Adaptive filter 42A operates as a fixed non-adaptive filter when on-line.
  • Adaptive feed-forward filter 32 receives reference microphone signal ref and under ideal circumstances, adapts its transfer function W(z) to be some portion of P(z)/S(z) to generate the feed-forward anti-noise signal FF anti-noise, which is provided to output combiner 36 that combines feed-forward anti-noise signal FF anti-noise with a feedback anti-noise signal FB anti-noise generated by an ANC feedback filter 38D.
  • ANC feedback filter 38D includes first filter 40 having fixed predetermined response B(z) and variable-response filter 42A that receives control inputs that cause the response of filter 42A to model inverse response SE " 1 z).
  • the coefficients of feed-forward adaptive filter 32 are controlled by a W coefficient control block 31 that uses a correlation of two signals to determine the response of adaptive filter 32, which generally minimizes the error, in a least-mean squares sense, between those components of reference microphone signal ref present in error microphone signal err.
  • the signals processed by W coefficient control block 31 are the reference microphone signal ref as shaped by a copy of an estimate of the response of path S(z) provided by a controllable filter 34B and another signal that includes error microphone signal err.
  • adaptive filter 32 By transforming reference microphone signal ref with a copy of the estimate SE(z) of the response of secondary path S(z), response SECOPY(Z), and minimizing error microphone signal err after removing components of error microphone signal err due to playback of source audio, i.e., playback corrected error signal PBCE, adaptive filter 32 adapts to the desired portion of the response of P(z)/S(z).
  • ANC circuit 30 includes controllable filter 34B having an SE coefficient control block 33 that provides control signals that set the response of adaptive filter 34A and controllable filter 34B to response SE(z).
  • SE coefficient control block 33 also provides control signals to coefficient inversion block 37 that computes coefficients that set the response of variable response filter 42A to inverse response SE (z) from the coefficients that determine response SE(z).
  • the other signal processed along with the output of controllable filter 34B by W coefficient control block 31 includes an inverted amount of the source audio including downlink audio signal ds and internal audio ia that has been processed by filter response SE(z), of which response SECO PY (Z) is a copy.
  • adaptive filter 32 By injecting an inverted amount of source audio, adaptive filter 32 is prevented from adapting to the relatively large amount of source audio present in error microphone signal err and by transforming the inverted copy of downlink audio signal ds and internal audio ia with the estimate of the response of path S(z).
  • the source audio that is removed from error microphone signal err before processing should match the expected version of downlink audio signal ds, and internal audio ia reproduced at error microphone signal err, since the electrical and acoustical path of S(z) is the path taken by downlink audio signal ds and internal audio ia to arrive at error microphone E.
  • Filter 34B is not an adaptive filter, per se, but has an adjustable response that is tuned to match the response of adaptive filter 34A, so that the response of controllable filter 34B tracks the adapting of adaptive filter 34A.
  • Adaptive filter 34A and SE coefficient control block 33 process the source audio (ds+ia) and error microphone signal err after removal, by combiner 36, of the above-described filtered downlink audio signal ds and internal audio ia, that has been filtered by adaptive filter 34A to represent the expected source audio delivered to error microphone E.
  • the output of combiner 36 is further filtered by an alignment filter 35 having response 1+B(z) z "D to remove the effects of the feedback signal path on the source audio delivered to error microphone E.
  • Alignment filter 35 is described in further detail in U.S. Patent Application Ser. No. 14/832,585 filed on August 21, 2015 entitled "HYBRID ADAPTIVE NOISE CANCELLATION SYSTEM WITH FILTERED
  • Adaptive filter 34A is thereby adapted to generate a signal from downlink audio signal ds and internal audio ia, that when subtracted from error microphone signal err, contains the content of error microphone signal err that is not due to source audio (ds+ia).
  • Figure 5A-5F graphs of amplitude and phase responses of portions of the ANC systems described above are shown.
  • Figure 5A shows an amplitude response (top) and phase response (bottom) of secondary path S(z) for various users.
  • the variation in the amplitude of the response of secondary path S(z) varies by lOdB or more in frequency regions of interest (typically 200Hz to 3KHz).
  • Figure 5B shows a possible design amplitude response (top) and phase response (bottom) of filter 40 response B(z)
  • Figure 5C shows the response of SE(z)SE (z) for a simulated ANC system in accordance with the above disclosure.
  • Figure 5D shows a convolution of SE(z)SE (z), illustrating that the resulting response is a short delay, e.g., 3 taps of filter 42, 42A.
  • Figure 5E shows the response B(z)C(z) of the adaptive controller in the simulated system, and
  • Figure 5F shows the closed-loop response of the simulated system, showing that the gain variation for all users has been reduced to about 2dB across the entire illustrated frequency range.
  • a filter circuit 40A that may be used to implement fixed filter 40 is shown.
  • the input signal is weighted by coefficients a 1; a 2 and a by corresponding multipliers 55A, 55B and 55C and provided to respective combiners 56A, 56B, 56C at feed-forward taps of the filter stages, which comprise digital integrators 50A and 50B.
  • a feedback tap is provided by a delay 53 and a multiplier 55D, providing the second-order low-pass response illustrated in Figure 5A.
  • the resulting topology is a delta-sigma type filter.
  • the response of fixed filter 40 may be a low-pass response, or a band-pass response.
  • FIG. 7 an alternative filter circuit 40B that may be used to implement fixed filter 40 is shown.
  • the input signal is weighted by coefficient ao by multiplier 65C and added to the output signal by combiner 66B to provide a feed-forward tap and the output of a first delay 62A is weighted by coefficient ao by another multiplier 65D and also combined with the output signal by combiner 66B.
  • a second delay 62B provides a third input to combiner 66B.
  • the input signal is combined with feedback signals provided from the output of first delay 62A and weighted by coefficient bi by a multiplier 65 A and from the output of second delay 62B and weighted by coefficient b 2 by a multiplier 65B.
  • the resulting filter is a bi-quad that can be used to implement a low-pass or band-pass filter as described above.
  • a processing circuit 140 includes a processor core 102 coupled to a memory 104 in which are stored program instructions comprising a computer program product that may implement some or all of the above-described ANC techniques, as well as other signal processing.
  • a dedicated digital signal processing (DSP) logic 106 may be provided to implement a portion of, or alternatively all of, the ANC signal processing provided by processing circuit 140.
  • Processing circuit 140 also includes ADCs 21A-21E, for receiving inputs from reference microphone Rl (or error microphone R), error microphone El (or error microphone E), near speech microphone NS, reference microphone R2, and error microphone E2, respectively.
  • reference microphone Rl or error microphone R
  • error microphone El or error microphone E
  • near speech microphone NS reference microphone R2
  • error microphone E2 have digital outputs or are communicated as digital signals from remote ADCs
  • the corresponding ones of ADCs 21A-21E are omitted and the digital microphone signal(s) are interfaced directly to processing circuit 140.
  • a DAC 23A and amplifier Al are also provided by processing circuit 140 for providing the speaker output signal to speaker SPKRl, including anti-noise as described above.
  • a DAC 23B and amplifier A2 provide another speaker output signal to speaker SPKR2.
  • the speaker output signals may be digital output signals for provision to modules that reproduce the digital output signals acoustically.

Abstract

A controller for an adaptive noise canceling (ANC) system simplifies the design of a stable control response by making the ANC gain of the system independent of a secondary path extending from a transducer of the ANC system to a sensor of the ANC system that measures the ambient noise. The controller includes a fixed filter having a predetermined fixed response, and a variable filter coupled together. The variable response filter compensates for variations of a transfer function of a secondary path that includes at least a path from a transducer of the ANC system to a sensor of the ANC system, so that the ANC gain is independent of the variations in the transfer function of the secondary path.

Description

FEEDBACK ADAPTIVE NOISE CANCELLATION (ANC) CONTROLLER AND METHOD HAVING A FEEDBACK RESPONSE PARTIALLY PROVIDED BY A FIXED- RESPONSE FILTER
FIELD OF THE INVENTION
[0001] The field of representative embodiments of this disclosure relates to methods and systems for adaptive noise cancellation (ANC), and in particular to an ANC feedback controller in which the feedback response is provided by a fixed transfer function feedback filter and a variable response filter.
BACKGROUND OF THE INVENTION [0002] Wireless telephones, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as MP3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise canceling using a microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.
[0003] In many noise cancellation systems, it is desirable to include both feed-forward noise cancellation by using a feed-forward adaptive filter for generating a feed-forward anti-noise signal from a reference microphone signal configured to measure ambient sounds and feedback noise cancellation by using a fixed-response feedback filter for generating a feedback noise cancellation signal to be combined with the feed-forward anti-noise signal. In other noise cancellation systems, only feedback noise cancellation is provided. An adaptive feedback noise cancelling system includes an adaptive filter that generates an anti-noise signal from an output of a sensor that senses the noise to be canceled and that is provided to an output transducer for reproduction to cancel the noise. [0004] In any ANC system having a feedback noise-canceling path, the secondary path, which is the electro-acoustic path at least extending from the output transducer that reproduces the anti- noise signal generated by the ANC system to the output signal provided by the input sensor that measures the ambient noise to be canceled, determines a portion of the necessary feedback response to provide proper noise-canceling. In ANC systems in which the acoustic environment around the output transducer and input sensor varies greatly, such as in a mobile telephone where the telephone's position with respect to the user's ear changes the coupling between the telephone's speaker and a microphone used to measure the ambient noise, the secondary path response varies as well. Since the feedback path transfer function for generating a proper anti- noise signal is dependent on the secondary path response, it is difficult to provide an ANC controller that is stable for all possible configurations of the acoustic path between the output transducer and input sensor that may be present in an actual implementation.
[0005] Therefore, it would be desirable to provide an ANC controller with improved stability in ANC feedback and feed-forward/feedback ANC systems.
DISCLOSURE OF THE INVENTION
[0006] The above-stated objective of providing an ANC controlled with improved stability, is accomplished in an ANC controller, a method of operation, and an integrated circuit.
[0007] The ANC controller includes a fixed filter having a predetermined fixed transfer function and a variable-response filter coupled together. The fixed transfer function relates to and maintains stability of a compensated feedback loop and contributes to an ANC gain of the ANC system. The response of the variable-response filter compensates for variation of a transfer function of a secondary path that includes at least a path from a transducer of the ANC system to a sensor of the ANC system, so that the ANC gain is independent of the variation of the transfer function of the secondary path.
[0008] The description below sets forth example embodiments according to this disclosure.
Further embodiments and implementations will be apparent to those having ordinary skill in the art. Persons having ordinary skill in the art will recognize that various equivalent techniques may be applied in lieu of, or in conjunction with, the embodiments discussed below, and all such equivalents are encompassed by the present disclosure.
DESCRIPTION OF THE DRAWINGS
[0009] Figure 1A is an illustration of a wireless telephone 10, which is an example of a personal audio device in which the techniques disclosed herein can be implemented.
[0010] Figure IB is an illustration of a wireless telephone 10 coupled to a pair of earbuds EBl and EB2, which is an example of a personal audio system in which the techniques disclosed herein can be implemented.
[0011] Figure 2 is a block diagram of circuits within wireless telephone 10 and/or earbud EB of Figure 1A.
[0012] Figure 3A is an illustration of electrical and acoustical signal paths in Figure 1 A and Figure IB including a feedback acoustic noise canceler.
[0013] Figure 3B is an illustration of electrical and acoustical signal paths in Figure 1 A and Figure IB including a hybrid feed-forward/feedback acoustic noise canceler.
[0014] Figures 4A-4D are block diagrams depicting various examples of ANC circuits that can be used to implement ANC circuit 30 of audio integrated circuits 20A-20B of Figure 2.
[0015] Figures 5A-5F are graphs depicting acoustic and electric responses within the ANC systems disclosed herein.
[0016] Figure 6 is a block diagram depicting a digital filter that can be used to implement fixed response filter 40 within the circuits depicted in Figures 4A-4D. [0017] Figure 7 is a block diagram depicting an alternative digital filter that can be used to implement fixed response filter 40 within the circuits depicted in Figures 4A-4D.
[0018] Figure 8 is a block diagram depicting signal processing circuits and functional blocks that can be used to implement the circuits depicted in Figure 2 and Figures 4A-4D.
BEST MODE FOR CARRYING OUT THE INVENTION
[0019] The present disclosure encompasses noise canceling techniques and circuits that can be implemented in a personal audio device, such as a wireless telephone, tablet, note-book computer, noise-canceling headphones, as well as in other noise-canceling circuits. The personal audio device includes an ANC circuit that measures the ambient acoustic environment with a sensor and generates an anti-noise signal that is output via a speaker or other transducer to cancel ambient acoustic events. The example ANC circuits shown herein include a feedback filter and may include a feed-forward filter that are used to generate the anti-noise signal from the sensor output. A secondary path, including the acoustic path from the transducer back to the sensor, closes a feedback loop around an ANC feedback path that extends through the feedback filter, and thus the stability of the feedback loop is dependent on the characteristics of the secondary path. The secondary path involves structures around and between the transducer and sensor, thus for devices such as a wireless telephone, the response of the secondary path varies with the user and the position of the device with respect to the user's ear(s). To provide stability over a range of variable secondary paths, the instant disclosure uses a pair of filters, one having a fixed predetermined response and the other having a variable response that compensates for secondary path variations. The fixed predetermined response is selected to provide stability over the range of secondary path responses expected for the device, contributes to the acoustic noise cancellation and generally maximizes the range over which the acoustic noise cancelation operates.
[0020] Referring now to Figure 1A, an exemplary wireless telephone 10 is shown in proximity to a human ear 5. Illustrated wireless telephone 10 is an example of a device in which techniques illustrated herein may be employed, but it is understood that not all of the elements or
configurations embodied in illustrated wireless telephone 10, or in the circuits depicted in subsequent illustrations, are required to practice what is claimed. Wireless telephone 10 includes a transducer such as speaker SPKR that reproduces distant speech received by wireless telephone 10, along with other local audio events such as ringtones, stored audio program material, near-end speech (i.e., the speech of the user of wireless telephone 10), sources from web-pages or other network communications received by wireless telephone 10 and audio indications such as battery low and other system event notifications. A near-speech microphone NS is provided to capture near-end speech, which is transmitted from wireless telephone 10 to the other conversation participant(s).
[0021] Wireless telephone 10 includes adaptive noise canceling (ANC) circuits and features that inject an anti-noise signal into speaker SPKR to improve intelligibility of the distant speech and other audio reproduced by speaker SPKR. A reference microphone R may be provided for measuring the ambient acoustic environment and is positioned away from the typical position of a user's mouth, so that the near-end speech is minimized in the signal produced by reference microphone R. A third microphone, error microphone E, may be provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by speaker SPKR close to ear 5, when wireless telephone 10 is in proximity to ear 5. A circuit 14 within wireless telephone 10 may include an audio CODEC integrated circuit 20 that receives the signals from reference microphone R, near-speech microphone NS, and error microphone E and interfaces with other integrated circuits such as an RF integrated circuit 12 containing the wireless telephone transceiver. In some embodiments of the disclosure, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. In the depicted embodiments and other embodiments, the circuits and techniques disclosed herein may be implemented partially or fully in software and/or firmware embodied in computer-readable storage media and executable by a processor circuit or other processing device such as a microcontroller. [0022] In general, the ANC techniques disclosed herein measure ambient acoustic events (as opposed to the output of speaker SPKR and/or the near-end speech) impinging on error microphone E and/or reference microphone R. The ANC processing circuits of illustrated wireless telephone 10 adapt an anti-noise signal generated from the output of error microphone E and/or reference microphone R to have a characteristic that minimizes the amplitude of the ambient acoustic events present at error microphone E. Since acoustic path P(z) extends from reference microphone R to error microphone E, the ANC circuits are effectively estimating acoustic path P(z) combined with removing effects of an electro-acoustic path S(z). Electro-acoustic path S(z) represents the response of the audio output circuits of CODEC IC 20 and the acoustic/electric transfer function of speaker SPKR including the coupling between speaker SPKR and error microphone E in the particular acoustic environment. Electro-acoustic path S(z) is affected by the proximity and structure of ear 5 and other physical objects and human head structures that may be in proximity to wireless telephone 10, when wireless telephone 10 is not firmly pressed to ear 5. While the illustrated wireless telephone 10 includes a two microphone ANC system with a third near-speech microphone NS, other systems that do not include separate error and reference microphones can implement the above-described techniques. Alternatively, near-speech
microphone NS can be used to perform the function of the reference microphone R in the above- described system. Also, in personal audio devices designed only for audio playback, near-speech microphone NS will generally not be included, and the near-speech signal paths in the circuits described in further detail below can be omitted without changing the scope of the disclosure. Also, the techniques disclosed herein can be applied in purely noise-canceling systems that do not reproduce a playback signal or conversation using the output transducer, i.e., those systems that only reproduce an anti-noise signal.
[0023] Referring now to Figure IB, another wireless telephone configuration in which the techniques disclosed herein is shown. Figure IB shows wireless telephone 10 and a pair of earbuds EB1 and EB2, each attached to a corresponding ear of a listener. Illustrated wireless telephone 10 is an example of a device in which the techniques herein may be employed, but it is understood that not all of the elements or configurations illustrated in wireless telephone 10, or in the circuits depicted in subsequent illustrations, are required. Wireless telephone 10 is connected to earbuds EB1, EB2 by a wired or wireless connection, e.g., a BLUETOOTH™ connection (BLUETOOTH is a trademark of Bluetooth SIG, Inc.). Earbuds EB1, EB2 each have a corresponding transducer, such as speaker SPKRl, SPKR2, which reproduce source audio including distant speech received from wireless telephone 10, ringtones, stored audio program material, and injection of near-end speech (i.e., the speech of the user of wireless telephone 10). The source audio also includes any other audio that wireless telephone 10 is required to reproduce, such as source audio from web- pages or other network communications received by wireless telephone 10 and audio indications such as battery low and other system event notifications. Reference microphones Rl, R2 are provided on a surface of the housing of respective earbuds EB1, EB2 for measuring the ambient acoustic environment. Another pair of microphones, error microphones El, E2, are provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by respective speakers SPKRl, SPKR2 close to corresponding ears 5A, 5B, when earbuds EB1, EB2 are inserted in the outer portion of ears 5A, 5B. As in wireless telephone 10 of Figure 1 A, wireless telephone 10 includes adaptive noise canceling (ANC) circuits and features that inject an anti-noise signal into speakers SPKRl, SPKR2 to improve intelligibility of the distant speech and other audio reproduced by speakers SPKRl, SPKR2. In the depicted example, an ANC circuit within wireless telephone 10 receives the signals from reference microphones Rl, R2 and error microphones El, E2. Alternatively, all or a portion of the ANC circuits disclosed herein may be incorporated within earbuds EB1, EB2. For example, each of earbuds EB1, EB2 may constitute a stand-alone acoustic noise canceler including a separate ANC circuit. Near-speech microphone NS may be provided on the outer surface of a housing of one of earbuds EBl, EB2, on a boom affixed to one of earbuds EBl, EB2, or on a combox pendant 7 located between wireless telephone 10 and either or both of earbuds EBl, EB2, as shown.
[0024] As described above with reference to Figure 1 A, the ANC techniques illustrated herein measure ambient acoustic events (as opposed to the output of speakers SPKR1, SPKR2 and/or the near-end speech) impinging on error microphones El, E2 and/or reference microphones Rl, R2. In the embodiment depicted in Figure IB, the ANC processing circuits of integrated circuits within earbuds EBl, EB2, or alternatively within wireless telephone 10 or combox pendant 7, individually adapt an anti-noise signal generated from the output of the corresponding reference microphone Rl, R2 to have a characteristic that minimizes the amplitude of the ambient acoustic events at the corresponding error microphone El, E2. Since acoustic path Pi(z) extends from reference microphone Rl to error microphone El, the ANC circuit in audio integrated circuit 20A is essentially estimating acoustic path Pi(z) combined with removing effects of an electro-acoustic path Si(z) that represents the response of the audio output circuits of audio integrated circuit 20A and the acoustic/electric transfer function of speaker SPKRl. The estimated response includes the coupling between speaker SPKRl and error microphone El in the particular acoustic environment which is affected by the proximity and structure of ear 5A and other physical objects and human head structures that may be in proximity to earbud EBl. Similarly, audio integrated circuit 20B estimates acoustic path P2(z) combined with removing effects of an electro-acoustic path S2(z) that represents the response of the audio output circuits of audio integrated circuit 20B and the acoustic/electric transfer function of speaker SPKR2. As used in this disclosure, the terms "headphone" and "speaker" refer to any acoustic transducer intended to be mechanically held in place proximate to a user's ear canal and include, without limitation, earphones, earbuds, and other similar devices. As more specific examples, "earbuds" or "headphones" may refer to intra-concha earphones, supra-concha earphones and supra-aural earphones. Further, the techniques disclosed herein are applicable to other forms of acoustic noise canceling, and the term "transducer" includes headphone or speaker type transducers, but also other vibration generators such as piezo-electric transducers, magnetic vibrators such as motors, and the like. The term "sensor" includes microphones, but also includes vibration sensors such as piezo-electric films, and the like.
[0025] Figure 2 shows a simplified schematic diagram of audio integrated circuits 20A, 20B that include ANC processing, as coupled to respective reference microphones Rl, R2, which provides measurements of ambient audio sounds that are filtered by the ANC processing circuits within audio integrated circuits 20A, 20B, located within corresponding earbuds EBl, EB2. In purely feedback implementations, reference microphone R may be omitted and the anti-noise signal generated entirely from error microphones El, E2. Audio integrated circuits 20A, 20B may be alternatively combined in a single integrated circuit, such as integrated circuit 20 within wireless telephone 10. Further, while the connections shown in Figure 2 apply to the wireless telephone system depicted in Figure IB, the circuits disclosed in Figure 2 are applicable to wireless telephone 10 of Figure 1 A by omitting audio integrated circuit 20B, so that a single reference microphone input is provided for each of reference microphone R and error microphone E and a single output is provided for speaker SPKR. Audio integrated circuits 20A, 20B generate outputs for their corresponding channels that are provided to the corresponding one of speakers SPKRl, SPKR2. Audio integrated circuits 20A, 20B receive the signals (wired or wireless depending on the particular configuration) from reference microphones Rl, R2, near-speech microphone NS and error microphones El, E2. Audio integrated circuits 20A, 20B also interface with other integrated circuits such as RF integrated circuit 12 containing the wireless telephone transceiver shown in Figure 1 A. In other configurations, the circuits and techniques disclosed herein may be
incorporated in a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. Alternatively, multiple integrated circuits may be used, for example, when a wireless connection is provided from each of earbuds EBl, EB2 to wireless telephone 10 and/or when some or all of the ANC processing is performed within earbuds EB1, EB2 or a module disposed along a cable connecting wireless telephone 10 to earbuds EB1, EB2.
[0026] Audio integrated circuit 20 A includes an analog-to-digital converter (ADC) 21 A for receiving the reference microphone signal from reference microphone Rl (or reference microphone R in Figure 1 A) and generating a digital representation ref of the reference microphone signal. Audio integrated circuit 20A also includes an ADC 21B for receiving the error microphone signal from error microphone El (or error microphone E in Figure 1 A) and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near-speech microphone signal from near-speech microphone NS and generating a digital representation of near-speech microphone signal ns. (In the dual earbud system of Figure IB, audio integrated circuit 20B receives the digital representation of near-speech microphone signal ns from audio integrated circuit 20A via the wireless or wired connections as described above.) Audio integrated circuit 20A generates an output for driving speaker SPKRl from amplifier Al, which amplifies the output of a digital-to-analog converter (DAC) 23 that receives the output of a combiner 26. Combiner 26 combines audio signals ia from internal audio sources 24, and the anti-noise signal anti-noise generated by an ANC circuit 30, which by convention has the same polarity as the noise in error microphone signal err and reference microphone signal ref and is therefore subtracted by combiner 26. Combiner 26 also combines an attenuated portion of near-speech signal ns, i.e., sidetone information st, so that the user of wireless telephone 10 hears their own voice in proper relation to downlink speech ds, which is received from a radio frequency (RF) integrated circuit 22. Near- speech signal ns is also provided to RF integrated circuit 22 and is transmitted as uplink speech to the service provider via an antenna ANT.
[0027] Referring now to Figure 3A, a simplified feedback ANC circuit is shown which applies in examples of the wireless telephone shown in Figure 1 A, and to each channel of the wireless telephone system shown in Figure IB. Ambient sounds Ambient travel along a primary path P(z) to error microphone E and are filtered by a feedback filter 38 to generate anti-noise provided through amplifier Al to speaker SPKR. Secondary path S(z) includes the electrical path from the output of feedback filter 38 to speaker SPKR combined with the acoustic path from the speaker SPKR through error microphone E to the input of feedback filter 38. Secondary path S(z) and feedback filter 38 constitute a feedback loop with a feedback gain GFB(Z) = l/(l+H(z)S(z)) = Q(z)/(Ambient*P(z)), where Q(z) is the error microphone signal. Q(z) is corrected, if needed, to remove any playback audio that is not the anti-noise signal. Thus, the feedback gain GFB(Z), which determines the effectiveness of the acoustic noise canceling, is dependent on the response of secondary path S(z) and the transfer function H(z) of feedback filter 38. Since GFB(Z) varies with the response of secondary path S(z), an ANC feedback controller must generally be designed using multiple models representing extreme values of the response of secondary path S(z) and H(z) must be conservatively designed in order to maintain a proper phase margin (i.e., the phase between the ambient sounds and the anti-noise reproduced by speaker SPKR at an upper frequency bound at which the G(z) falls to unity) and gain margin (i.e., the attenuation relative to unity of the ambient sounds and the anti-noise reproduced by speaker SPKR at one or more frequencies for which the phase between the ambient sounds and the anti-noise reaches zero, causing positive feedback). A proper phase margin/gain margin are necessary for stability of the feedback loop in an ANC system employing feedback, as the phase margin/gain margin are directly determinative of the recovery of the ANC system from a disturbance, such as high-amplitude noise, or noise that the ANC system cannot cancel. On the other hand, increasing the gain and phase margins typically requires lowering the upper limit of the frequency response of the feedback loop, reducing the ability of the ANC system to cancel ambient noise. A wide variation in the response of secondary path S(z) constrains any off-line design of the feedback controller such that the performance of the feedback cancelation is limited at higher frequencies. A wide variation in the response of secondary path S(z) is typical for wireless telephones, earbuds, and the other devices described above, which are used in or in proximity to a user's ear canal.
[0028] Referring now to Figure 3B, a simplified feed-forward/feedback ANC circuit is shown which alternatively applies to the wireless telephone shown in Figure 1 A, and to each channel of the wireless telephone system shown in Figure IB. The operation of the feed-forward/feedback ANC is similar to the pure feedback approach shown in Figure 3 A, except that the anti-noise signal provided to amplifier Al is generated by both the feedback filter 38 described above, and a feedforward filter 32, which generates a portion of the anti-noise signal from the output of reference microphone R. Combiner 36 combines the feed-forward anti-noise with the feedback anti-noise. The feedback gain of feedback filter 38 is still GFB(z) = l/(l+H(z)S(z)) = Q(z)/(Ambient * P(z)).
[0029] Referring now to Figures 4A-4D, details of various exemplary ANC circuits 20 that may be included within audio integrated circuits 20A, 20B of Figure 2, are shown in accordance with various embodiments of the disclosure. In each of the examples, the above-described feedback filter 38 is implemented as a pair of filters. A first filter 40 has a fixed predetermined response that is related to and helps maintain stability of the compensated feedback loop and contributes to the ANC gain of the ANC system. The other filter is a variable-response filter 42, 42 A that compensates for the variations of at least a portion of the response of secondary path S(z). The result is that the feedback ANC gain GFB(Z) is rendered independent of the variations in the response of secondary path S(z). In the equation given above for feedback gain GFB(Z) = l/(l+H(z)S(z)) is equal to l/(l+B(z)C(z)S(z)). Thus when C(z) is set to the inverse S_1(z) of the response of secondary path S(z), GFB(Z) = l/(l+B(z)S (z)S(z)) = l/(l+B(z)z"D) given S_1(z) S(z) = z"D, where z"D is a delay include to provide a causal design for filter 42A to model the inverse S (z) of the response of secondary path S(z). Thus, when C(z) = S (z), the variable transfer function of filter 42, 42A in the circuits of Figures 4A-4D compensates for variation in the response of secondary path S(z). The feedback gain GFB(Z) therefore becomes a uniform feedback gain GFB,uniform(z) that no longer depends upon the variable response of secondary path S(z). Uniform feedback gain GFB,uniform(z) then relates to or depends upon only a fixed transfer function B(z) and a set delay z"D and fixed transfer function B(z) becomes the sole control variable in determining the ANC feedback control response. In each of the cascaded filter configurations shown in Figures 4A-4D, the order of filter 40 and filters 42, 42A in the cascade may be interchanged.
[0030] Figure 4A shows an ANC feedback filter 38A that receives the error microphone signal err from error microphone E, filters the error microphone signal with filter 42 having a response C(z), and filters the output of filter 42 with another filter 40 having a predetermined fixed response B(z). Response C(z) represents any filter response that helps stabilize the ANC system against variations in the response of secondary path S(z), and depending on other portions of the system response, may or may not be exactly equal to the inverse S (z) of the response of secondary path S(z).
Figure 4B illustrates another ANC feedback filter 38B in which first filter 42A has a response SE" 1 z) that is an estimate of the inverse S_1(z) of the response of secondary path S(z), and is controlled according to control signals from a secondary path estimator SE(z) control circuit. Figure 4C illustrates yet another ANC feedback filter 38C in which first filter 42B is an adaptive filter that estimates response S_1(z) to generate inverse response SE (z) via off-line calibration. When a switch SI is opened (and thus ANC operation is muted), a playback signal PB (that is also reproduced by the output transducer) with delay z"D applied by delay 47 is correlated with error microphone signal err by a least-means- squared (LMS) coefficient controller 44, after the output of first filter 42B is subtracted from playback signal PB by a combiner 46. The resulting adaptive filter obtains an estimate of the response of secondary path S(z) by directly measuring the effect of the response of secondary path S(z) on playback signal PB. When ANC circuit 38C is operated on-line, switch SI is closed and the outputs of LMS coefficient controller 44 are held constant and converted to invert the response of adaptive filter 42A to yield response SE (z). Adaptive filter 42A operates as a fixed non-adaptive filter when on-line.
[0031] Referring to Figure 4D, a feed-forward/feedback implementation of the above-described control scheme is shown. Adaptive feed-forward filter 32 receives reference microphone signal ref and under ideal circumstances, adapts its transfer function W(z) to be some portion of P(z)/S(z) to generate the feed-forward anti-noise signal FF anti-noise, which is provided to output combiner 36 that combines feed-forward anti-noise signal FF anti-noise with a feedback anti-noise signal FB anti-noise generated by an ANC feedback filter 38D. As described above, ANC feedback filter 38D includes first filter 40 having fixed predetermined response B(z) and variable-response filter 42A that receives control inputs that cause the response of filter 42A to model inverse response SE" 1 z). The coefficients of feed-forward adaptive filter 32 are controlled by a W coefficient control block 31 that uses a correlation of two signals to determine the response of adaptive filter 32, which generally minimizes the error, in a least-mean squares sense, between those components of reference microphone signal ref present in error microphone signal err. The signals processed by W coefficient control block 31 are the reference microphone signal ref as shaped by a copy of an estimate of the response of path S(z) provided by a controllable filter 34B and another signal that includes error microphone signal err. By transforming reference microphone signal ref with a copy of the estimate SE(z) of the response of secondary path S(z), response SECOPY(Z), and minimizing error microphone signal err after removing components of error microphone signal err due to playback of source audio, i.e., playback corrected error signal PBCE, adaptive filter 32 adapts to the desired portion of the response of P(z)/S(z). To generate the estimate SE(z) of the response of secondary path S(z), ANC circuit 30 includes controllable filter 34B having an SE coefficient control block 33 that provides control signals that set the response of adaptive filter 34A and controllable filter 34B to response SE(z). SE coefficient control block 33 also provides control signals to coefficient inversion block 37 that computes coefficients that set the response of variable response filter 42A to inverse response SE (z) from the coefficients that determine response SE(z). [0032] In addition to error microphone signal err, the other signal processed along with the output of controllable filter 34B by W coefficient control block 31 includes an inverted amount of the source audio including downlink audio signal ds and internal audio ia that has been processed by filter response SE(z), of which response SECOPY(Z) is a copy. By injecting an inverted amount of source audio, adaptive filter 32 is prevented from adapting to the relatively large amount of source audio present in error microphone signal err and by transforming the inverted copy of downlink audio signal ds and internal audio ia with the estimate of the response of path S(z).The source audio that is removed from error microphone signal err before processing should match the expected version of downlink audio signal ds, and internal audio ia reproduced at error microphone signal err, since the electrical and acoustical path of S(z) is the path taken by downlink audio signal ds and internal audio ia to arrive at error microphone E. Filter 34B is not an adaptive filter, per se, but has an adjustable response that is tuned to match the response of adaptive filter 34A, so that the response of controllable filter 34B tracks the adapting of adaptive filter 34A.
[0033] Adaptive filter 34A and SE coefficient control block 33 process the source audio (ds+ia) and error microphone signal err after removal, by combiner 36, of the above-described filtered downlink audio signal ds and internal audio ia, that has been filtered by adaptive filter 34A to represent the expected source audio delivered to error microphone E. The output of combiner 36 is further filtered by an alignment filter 35 having response 1+B(z) z"D to remove the effects of the feedback signal path on the source audio delivered to error microphone E. Alignment filter 35 is described in further detail in U.S. Patent Application Ser. No. 14/832,585 filed on August 21, 2015 entitled "HYBRID ADAPTIVE NOISE CANCELLATION SYSTEM WITH FILTERED
ERROR MICROPHONE SIGNAL", the disclosure of which is incorporated herein by reference. In the above-incorporated patent application, an alignment filter is used having variable response l+SE(z)H(z) to remove the effect of the feedback portion of the ANC system, including the secondary path, on the error signal, but since in the instant disclosure H(z) = B(z)SE (z), alignment filter 35 has response l+SE(z)H(z) = l+SE(z) SE_1(z) B(z) = l+B(z)z"D. Adaptive filter 34A is thereby adapted to generate a signal from downlink audio signal ds and internal audio ia, that when subtracted from error microphone signal err, contains the content of error microphone signal err that is not due to source audio (ds+ia).
[0034] Referring now to Figures 5A-5F, graphs of amplitude and phase responses of portions of the ANC systems described above are shown. Figure 5A shows an amplitude response (top) and phase response (bottom) of secondary path S(z) for various users. As can be seen from the graph, the variation in the amplitude of the response of secondary path S(z) varies by lOdB or more in frequency regions of interest (typically 200Hz to 3KHz). Figure 5B shows a possible design amplitude response (top) and phase response (bottom) of filter 40 response B(z), while Figure 5C shows the response of SE(z)SE (z) for a simulated ANC system in accordance with the above disclosure. Figure 5D shows a convolution of SE(z)SE (z), illustrating that the resulting response is a short delay, e.g., 3 taps of filter 42, 42A. Figure 5E shows the response B(z)C(z) of the adaptive controller in the simulated system, and Figure 5F shows the closed-loop response of the simulated system, showing that the gain variation for all users has been reduced to about 2dB across the entire illustrated frequency range.
[0035] Referring now to Figure 6, a filter circuit 40A that may be used to implement fixed filter 40 is shown. The input signal is weighted by coefficients a1; a2 and a by corresponding multipliers 55A, 55B and 55C and provided to respective combiners 56A, 56B, 56C at feed-forward taps of the filter stages, which comprise digital integrators 50A and 50B. A feedback tap is provided by a delay 53 and a multiplier 55D, providing the second-order low-pass response illustrated in Figure 5A. The resulting topology is a delta-sigma type filter. Depending on requirements of the ANC system, the response of fixed filter 40 may be a low-pass response, or a band-pass response. [0036] Referring now to Figure 7, an alternative filter circuit 40B that may be used to implement fixed filter 40 is shown. The input signal is weighted by coefficient ao by multiplier 65C and added to the output signal by combiner 66B to provide a feed-forward tap and the output of a first delay 62A is weighted by coefficient ao by another multiplier 65D and also combined with the output signal by combiner 66B. A second delay 62B provides a third input to combiner 66B. The input signal is combined with feedback signals provided from the output of first delay 62A and weighted by coefficient bi by a multiplier 65 A and from the output of second delay 62B and weighted by coefficient b2 by a multiplier 65B. The resulting filter is a bi-quad that can be used to implement a low-pass or band-pass filter as described above.
[0037] Referring now to Figure 8, a block diagram of an ANC system is shown for implementing ANC techniques as described above and having a processing circuit 140 as may be implemented within audio integrated circuits 20A, 20B of Figure 2, which is illustrated as combined within one circuit, but could be implemented as two or more processing circuits that inter-communicate. A processing circuit 140 includes a processor core 102 coupled to a memory 104 in which are stored program instructions comprising a computer program product that may implement some or all of the above-described ANC techniques, as well as other signal processing. Optionally, a dedicated digital signal processing (DSP) logic 106 may be provided to implement a portion of, or alternatively all of, the ANC signal processing provided by processing circuit 140. Processing circuit 140 also includes ADCs 21A-21E, for receiving inputs from reference microphone Rl (or error microphone R), error microphone El (or error microphone E), near speech microphone NS, reference microphone R2, and error microphone E2, respectively. In alternative embodiments in which one or more of reference microphone Rl, error microphone El, near speech microphone NS, reference microphone R2, and error microphone E2 have digital outputs or are communicated as digital signals from remote ADCs, the corresponding ones of ADCs 21A-21E are omitted and the digital microphone signal(s) are interfaced directly to processing circuit 140. A DAC 23A and amplifier Al are also provided by processing circuit 140 for providing the speaker output signal to speaker SPKRl, including anti-noise as described above. Similarly, a DAC 23B and amplifier A2 provide another speaker output signal to speaker SPKR2. The speaker output signals may be digital output signals for provision to modules that reproduce the digital output signals acoustically.
[0038] While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form, and details may be made therein without departing from the spirit and scope of the invention.

Claims

WHAT IS CLAIMED IS:
1. An adaptive noise cancellation (ANC) controller, comprising:
a fixed filter having a predetermined fixed transfer function (B(z)) that relates to and maintains stability of a compensated feedback loop, wherein the fixed filter contributes to an ANC gain of an ANC system; and
a variable-response filter coupled to the fixed filter, wherein a response of the variable- response filter compensates for variations of a transfer function of a secondary path that includes at least a path from a transducer of the ANC system to a sensor of the ANC system, so that the ANC gain is independent of the variations in the transfer function of the secondary path.
2. The ANC controller of Claim 1, wherein the fixed filter causes the ANC gain to be a uniform feedback gain that depends on the predetermined fixed transfer function.
3. The ANC controller according to Claim 1, wherein the response of the variable-response filter is an inverse of the transfer function of the secondary path.
4. The ANC controller of Claim 3, wherein the response of the variable response filter is controlled in conformity with a control output of an adaptive filter of the ANC system.
5. The ANC controller according to Claim 4, wherein the variable-response filter is the adaptive filter, whereby the response of the variable-response filter is dependent on frequency content of a signal provided as an input to the variable response filter to which the response of the variable- response filter is applied.
6. The ANC controller according to Claim 4, wherein the adaptive filter is an adaptive filter of a feed-forward portion of the ANC system that adapts to cancel the effects of the secondary path on a component of a signal reproduced by the transducer of the ANC system.
7. The ANC controller according to Claim 1, wherein the sensor is a microphone and the transducer is a speaker.
8. An integrated circuit (IC) for implementing at least a portion of an audio device including acoustic noise canceling, the integrated circuit comprising:
an output for providing an output signal to an output transducer including an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer; at least one microphone input for receiving at least one microphone signal indicative of the ambient audio sounds and that contains a component due to the acoustic output of the transducer; and a processing circuit that adaptively generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener, wherein the processing circuit implements a feedback filter having a response that generates at least a portion of the anti-noise signal from the at least one microphone signal, the feedback filter comprising a fixed filter having a predetermined fixed transfer function (B(z)) and a variable-response filter coupled to the fixed filter, wherein a response of the variable-response filter compensates for variations of a transfer function of a secondary path that includes at least a path from the transducer to the at least one microphone.
9. The integrated circuit of Claim 8, wherein the fixed filter causes an ANC gain of the system formed by the feedback filter, the transducer, the at least one microphone and the secondary path to be a uniform feedback gain that depends on the predetermined fixed transfer function.
10. The integrated circuit according to Claim 8, wherein the response of the variable-response filter is an inverse of the transfer function of the secondary path.
11. The integrated circuit of Claim 10, wherein the response of the variable response filter is controlled in conformity with a control output of an adaptive filter implemented by the processing circuit that models the secondary path.
12. The integrated circuit of Claim 11, wherein the variable-response filter is the adaptive filter, whereby the response of the variable-response filter is dependent on frequency content of a signal provided as an input to the variable response filter to which the response of the variable-response filter is applied.
13. The integrated circuit of Claim 11, wherein the processing circuit further implements a feedforward adaptive filter that generates another portion of the anti-noise signal, and further implements a secondary path adaptive filter that adapts to cancel the effects of the secondary path on a component of a source audio signal reproduced by the transducer of the ANC system.
14. A method of canceling effects of ambient noise, the method comprising: adaptively generating an anti-noise signal to reduce the presence of the ambient noise; providing a result of the combining to a transducer; measuring the ambient noise with at least one sensor; filtering an output of the at least one sensor with a fixed filter having a predetermined fixed transfer function (B(z)) that relates to and maintains stability of a compensated feedback loop, wherein the fixed filter contributes to an ANC gain of an ANC system and a variable- response filter coupled to the fixed filter, wherein a response of the variable-response filter compensates for variations of a transfer function of a secondary path that includes at least a path from a transducer of the ANC system to a sensor of the ANC system, so that the ANC gain is independent of the variations in the transfer function of the secondary path.
15. The method of Claim 14, wherein the filtering causes the ANC gain to be a uniform feedback gain that depends on the predetermined fixed transfer function.
16. The method of Claim 14, wherein the response of the variable-response filter is an inverse of the transfer function of the secondary path.
17. The method of Claim 16, further comprising controlling the response of the variable response filter in conformity with a control output of an adaptive filter of the ANC system.
18. The method of Claim 17, wherein the variable-response filter is the adaptive filter, wherein the response of the variable-response filter controlled in dependence on frequency content of a signal provided as an input to the variable response filter to which the response of the variable-response filter is applied.
19. The method of Claim 17, wherein the adaptive filter is an adaptive filter of a feed-forward portion of the ANC system that adapts to cancel the effects of the secondary path on a component of a signal reproduced by the transducer of the ANC system.
20. The method of Claim 14, wherein the sensor is a microphone and the transducer is a speaker.
EP16763937.6A 2015-08-20 2016-08-19 Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter Pending EP3338279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562207657P 2015-08-20 2015-08-20
PCT/IB2016/001234 WO2017029550A1 (en) 2015-08-20 2016-08-19 Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter

Publications (1)

Publication Number Publication Date
EP3338279A1 true EP3338279A1 (en) 2018-06-27

Family

ID=62164624

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16763937.6A Pending EP3338279A1 (en) 2015-08-20 2016-08-19 Feedback adaptive noise cancellation (anc) controller and method having a feedback response partially provided by a fixed-response filter

Country Status (2)

Country Link
EP (1) EP3338279A1 (en)
CN (1) CN108140380B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140209A (en) * 2021-04-23 2021-07-20 南京邮电大学 Frequency domain active noise control method without secondary channel based on phase automatic compensation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10915614B2 (en) * 2018-08-31 2021-02-09 Cirrus Logic, Inc. Biometric authentication
CN109524021B (en) * 2018-11-29 2022-01-11 上海交通大学 Ultrasonic defense method and system based on active attack signal elimination strategy
CN109545181A (en) * 2018-12-13 2019-03-29 四川长虹电器股份有限公司 A kind of adaptive digital active noise reduction framework
CN111800687B (en) * 2020-03-24 2022-04-12 深圳市豪恩声学股份有限公司 Active noise reduction method and device, electronic equipment and storage medium
CN112700788A (en) * 2020-12-23 2021-04-23 普联国际有限公司 Echo path modeling method, device, equipment and storage medium in echo cancellation
TWI802055B (en) * 2021-10-22 2023-05-11 達發科技股份有限公司 Active noise cancellation integrated circuit for stacking multiple anti-noise signals, associated method, and active noise cancellation earbud using the same
CN116017222A (en) 2021-10-22 2023-04-25 达发科技股份有限公司 Active noise reduction integrated circuit, active noise reduction integrated circuit method and active noise reduction earphone using active noise reduction integrated circuit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793374A1 (en) * 2005-12-02 2007-06-06 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO A filter apparatus for actively reducing noise
FR2913521B1 (en) * 2007-03-09 2009-06-12 Sas Rns Engineering METHOD FOR ACTIVE REDUCTION OF SOUND NUISANCE.
GB0725111D0 (en) * 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Lower rate emulation
GB0725115D0 (en) * 2007-12-21 2008-01-30 Wolfson Microelectronics Plc Split filter
CN102113346B (en) * 2008-07-29 2013-10-30 杜比实验室特许公司 Method for adaptive control and equalization of electroacoustic channels
US8948410B2 (en) * 2008-12-18 2015-02-03 Koninklijke Philips N.V. Active audio noise cancelling
US9099077B2 (en) * 2010-06-04 2015-08-04 Apple Inc. Active noise cancellation decisions using a degraded reference
US8571226B2 (en) * 2010-12-10 2013-10-29 Sony Corporation Automatic polarity adaptation for ambient noise cancellation
US8948407B2 (en) * 2011-06-03 2015-02-03 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
EP2584558B1 (en) * 2011-10-21 2022-06-15 Harman Becker Automotive Systems GmbH Active noise reduction
EP2624251B1 (en) * 2012-01-31 2014-09-10 Harman Becker Automotive Systems GmbH Method of adjusting an anc system
EP2629289B1 (en) * 2012-02-15 2022-06-15 Harman Becker Automotive Systems GmbH Feedback active noise control system with a long secondary path
US9462376B2 (en) * 2013-04-16 2016-10-04 Cirrus Logic, Inc. Systems and methods for hybrid adaptive noise cancellation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140209A (en) * 2021-04-23 2021-07-20 南京邮电大学 Frequency domain active noise control method without secondary channel based on phase automatic compensation

Also Published As

Publication number Publication date
CN108140380B (en) 2022-05-27
CN108140380A (en) 2018-06-08

Similar Documents

Publication Publication Date Title
US10026388B2 (en) Feedback adaptive noise cancellation (ANC) controller and method having a feedback response partially provided by a fixed-response filter
US9807503B1 (en) Systems and methods for use of adaptive secondary path estimate to control equalization in an audio device
US9955250B2 (en) Low-latency multi-driver adaptive noise canceling (ANC) system for a personal audio device
KR102292773B1 (en) Integrated circuit for implementing at least part of a personal audio device and method for canceling ambient audio sounds in the vicinity of a transducer
EP3081006B1 (en) Systems and methods for providing adaptive playback equalization in an audio device
EP2847760B1 (en) Error-signal content controlled adaptation of secondary and leakage path models in noise-canceling personal audio devices
EP3080801B1 (en) Systems and methods for bandlimiting anti-noise in personal audio devices having adaptive noise cancellation
KR102391047B1 (en) An integrated circuit for implementing at least a portion of a personal audio device and a method for canceling ambient audio sound near a transducer of the personal audio device
CN108140380B (en) Adaptive noise cancellation feedback controller and method with feedback response provided in part by fixed response filter
EP2793225B1 (en) Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
EP2715720B1 (en) Personal audio device having adaptive noise cancellation
EP2987162B1 (en) Systems and methods for hybrid adaptive noise cancellation
US20160365084A1 (en) Hybrid finite impulse response filter
TW201346892A (en) Pre-shaping series filter for active noise cancellation adaptive filter
GB2547956B (en) Systems and methods for controlling adaptive noise control gain
EP3371981B1 (en) Feedback howl management in adaptive noise cancellation system
WO2017160333A1 (en) Systems and methods for adaptive active noise cancellation for multiple-driver personal audio device
GB2608237A (en) Systems and methods for active noise cancellation including secondary path estimation for playback correction

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200630

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230321