EP0884926B1 - Method and device for optimized processing of an interfering signal when recording sound - Google Patents

Method and device for optimized processing of an interfering signal when recording sound Download PDF

Info

Publication number
EP0884926B1
EP0884926B1 EP98401368A EP98401368A EP0884926B1 EP 0884926 B1 EP0884926 B1 EP 0884926B1 EP 98401368 A EP98401368 A EP 98401368A EP 98401368 A EP98401368 A EP 98401368A EP 0884926 B1 EP0884926 B1 EP 0884926B1
Authority
EP
European Patent Office
Prior art keywords
signal
power spectral
spectral density
observation
disturbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98401368A
Other languages
German (de)
French (fr)
Other versions
EP0884926A1 (en
Inventor
Pascal Scalart
André Gilloire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP0884926A1 publication Critical patent/EP0884926A1/en
Application granted granted Critical
Publication of EP0884926B1 publication Critical patent/EP0884926B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the invention relates to a method and a device for optimized processing of a disturbing signal during a sound recording.
  • the disturbing signal itself can be considered as the sum of N elementary components and verifying the relation:
  • a common solution proposed for solving such a problem may consist in co-operating a number N of devices, each of them being optimized and dedicated to the reduction or even the local elimination of 'a given component p k (t) of the disturbing signal.
  • the disturbing signal p (t) can be considered as composed of an observation noise b (t), vehicle rolling noise, aerodynamic noise such as wind, air flow, as well as an acoustic echo signal z (t) from the coupling acoustic between speaker and plug microphone of his.
  • the disturbing signal p (t) can be considered as composed, not only of an observation noise b (t) and a acoustic echo signal z (t), but also of a signal r (t) generated by the reverberation effect of the room where sound recording is performed.
  • the solutions proposed, in such a context, can be classified into two main types, depending on whether the signal is considered to be essentially harmful echo and noise, or noise and reverberation.
  • the solutions adopted correspond to a cascade of elementary treatments, each of them being adapted to a particular component of the disturbing signal.
  • EP-A-0 767 569 describes an echo processing system acoustics by an adaptive filtering technique.
  • a special feature of this system lies in the use of filter control parameters, not adaptation and forgetting factor, variable over time and adapting automatically to the acoustic environment.
  • a posteriori optimization of these treatments may, where appropriate, be considered. Such a procedure inevitably implies, on the one hand, a permanent exchange information between these elementary treatments and, on the other hand, the application of concerted constraints on the adjustment parameters of these. Such a posterior optimization of such systems has shown the limitations of this approach because of the results ultimately obtained.
  • the object of the present invention is to remedy the shortcomings and disadvantages of processes, processes and prior art systems previously described.
  • the process of a priori optimization of treatment a disturbing signal during a sound recording, from an observation signal formed by an original useful signal and this disturbing signal is implemented thanks to a method and device consisting of, respectively allowing an estimation of the disturbing signal to generate an estimated disturbing signal.
  • An estimation useful signal to generate an estimated useful signal and a filtering of the observation signal from the disturbing signal estimated and optimal filtering allow minimization of the error between the useful signal and the estimated useful signal.
  • the estimated useful signal converges to the original useful signal for a substantially zero error between the useful signal and the estimated useful signal.
  • the method and the device, objects of the invention find application in any context relating to the taking of sound, including hands-free mobile telephony, hands-free video conferencing, and more generally studio or audio operations.
  • the signal above disturbance consists at least of a signal of noise, which, due to the very definition of a signal noise, is considered to be significantly decorrelated from the original useful signal that we wish to recover following attenuation, or even elimination, of this noise signal.
  • object of the present invention is made from a signal of observation, noted y (t), available in step 100 of origin in FIG. 2a, this observation signal being deemed to be formed from the original useful signal to be recovered, noted s (t) and the disturbing signal, denoted p (t).
  • the disturbing signal in addition to the aforementioned noise signal, may have different contributions such as a signal echo, reverberation signal, or any other form of noise signal, as will be described later in the description.
  • a signal echo e.g., a signal echo
  • reverberation signal e.g., a signal echo
  • any other form of noise signal e.g., a substantially decorrelated noise signal from the useful signal, as mentioned previously.
  • this consists in carrying out an estimation at step 101 of the disturbing signal to generate a signal estimated disruptor, noted p and (t).
  • a signal estimated disruptor noted p and (t).
  • the signal is available estimated disturbance p and (t), but also of the observation signal y (t) previously mentioned.
  • the optimized treatment method consists in perform, in a step 102, from the observation signal abovementioned y (t), a rough estimate of the useful signal, the useful signal estimated, by convention, being deemed, in reason for the actual decorrelation of the original wanted signal and of the noise signal, consist of the difference between the signal of observation y (t) and the estimated disturbing signal p and (t).
  • a step 102 from the observation signal abovementioned y (t), a rough estimate of the useful signal, the useful signal estimated, by convention, being deemed, in reason for the actual decorrelation of the original wanted signal and of the noise signal, consist of the difference between the signal of observation y (t) and the estimated disturbing signal p and (t).
  • an estimated useful signal is obtained, obtained following the rough estimation step, this useful signal estimated approximately corresponding to the useful signal of origin s (t) and for this reason noted s andu.
  • the method of optimized processing, object of the present invention then consists in performing a filtering 103 of the signal observation y (t) from the estimated disturbing signal p and (t) and optimal filtering to generate a signal useful, noted su.
  • the optimal filtering 103 then makes it possible to perform a minimization, in a step 104, of the error between the useful signal estimated su and the useful signal su.
  • the whole process achieved by steps 103 and 104 through steps 101 and 102 then make it possible to obtain convergence, thanks to optimal filtering, the estimated useful signal s andu and useful signal su to the original useful signal s (t) for a substantially zero error between the useful signal su and the estimated useful signal s andu.
  • the estimated useful signal s andu or the useful signal su is then substantially equal to the useful signal original s (t) to the nearest filtering errors.
  • FIG. 2a shows the method of optimized processing of a disturbing signal, in accordance with the object of the present invention, in the time domain. It is pointed out in particular that the notions of estimating the disturbing signal, rough estimation of the useful signal and optimal filtering can be perfectly defined in the time domain.
  • the process, object of the present invention can also, in a way particularly advantageous, be implemented when, at aforementioned observation signal corresponds to a disturbing signal p (t) to which is added, in addition to the noise signal substantially decorrelated from the original useful signal s (t), a signal echo, noted z (t).
  • This echo signal corresponds, in particular in hands-free mobile phone situations for example, to a disturbing signal generated by a signal of observation, noted x (t), under conditions which will be explained in more detail later in the description.
  • the estimation of the disturbing signal in step 101 advantageously consists in carrying out a separate estimate of the contribution 101b of this signal from reception and contribution 101a of the noise signal to this disturbing signal.
  • the process applied can then be substantially identical to that explained in connection with FIG. 2a.
  • the useful signal su resulting from optimal filtering in step 103 converges to the value of the estimated useful signal su and, in consequently, towards the value of the original useful signal s (t).
  • This preferred embodiment is particularly advantageous due in particular to the fact that in the part of an implementation by digital techniques of filtering in the frequency domain, it is not necessary to implement an echo canceller unlike to the techniques that have been described in relation to the prior art previously in the description.
  • the processing method optimized, object of the present invention in the field frequency, may consist in performing in step 100 a frequency transform of the observation signal y (t) at using a Fourier transform, such as a transform fast, noted FFT in the usual way, to allow to generate a transformed signal Y (f), this signal being representative, in the frequency domain, of the signal observation.
  • a Fourier transform such as a transform fast, noted FFT in the usual way
  • the aforementioned step 100 consists in carrying out an estimation from the transformed signal Y (f) of a signal representative of the power spectral density of the observation signal, this signal being denoted ⁇ and yy (f).
  • step 100 we thus have not only the transformed signal Y (f) representative of the frequency transform of the observation signal y (t), but also the signal representative of the estimated power spectral density. of this observation signal, signal noted ⁇ and ⁇ (f).
  • the step 102 of estimation of the useful signal can then be carried out directly on the spectral density of estimated power, on the one hand, of the observation signal ⁇ and yy (f) and, on the other hand, of the signal representative of the estimated power spectral density of the disturbing signal obtained at the end of step 101, noted ⁇ and pp (f).
  • the step 102 of rough estimation of the useful signal then amounts to carrying out an a posteriori estimation of the power spectral density of the useful signal, which, for this reason is noted ⁇ and ss (f).
  • the signal representative of the estimated power spectral density of the aforementioned useful signal is then available.
  • the optimal filtering step 103 is carried out on the signal representative of the frequency transform of the observation signal Y (f) from signals representative of the estimated power spectral density of the disturbing signal ⁇ and pp (f) and of the signal representative of the estimated power spectral density of the useful signal, denoted ⁇ and ss (f ), available at the end of step 102 above.
  • the optimal filtering step 103 and the step of calculating an error and minimizing this error 104 can be carried out by means of the same global filtering step, noted for this reason 103 + 104 on the FIG.
  • the processing in the frequency domain in particular the digital processing allowing, thanks to the implementation of a single optimal filter, the optimization of the useful signal, the error signal between the useful signal and the useful signal estimated, or more exactly between the estimated power spectral densities of these signals, being directly available due to the optimal filtering performed.
  • the global filtering is represented in dotted lines as the meeting of steps 103 and 104 in FIG. 2c.
  • the process which is the subject of the present invention consists in performing a frequency transform of the observation signal, in step 100a, transformed denoted FFT, to generate the representative transformed signal in the frequency domain of the observation signal Y (f) as well as a frequency transform of the reception signal, in step 100b, to generate a transformed signal representative of the reception signal and denoted X (f).
  • an estimation step is carried out in steps 100a and 100b, this estimation step consisting in obtaining, from each transformed signal Y (f) and X (f) previously cited, to obtain a signal representative of the estimated power spectral density of the observation signal, noted for this reason ⁇ and yy (f), respectively of the reception signal, noted for this reason ⁇ and xx (f).
  • the density estimate power spectral of the observation signal, of the signal reception, the echo signal can be implemented at recursive filtering based on a forgetting factor, as will be described later in the description.
  • the estimation of the power spectral density of the disturbing signal carried out in step 101 consists in performing the step of estimating the power spectral density of the disturbing signal ⁇ and pp (f) on the signal representative of the spectral density.
  • power of the observation signal ⁇ and yy (f) available at the end of step 100a respectively on the signal representative of the power spectral density of the reception signal ⁇ and xx (f) available at the end of step 100b.
  • the density estimated power spectral resulting from the disturbing signal is deemed to consist of the sum of the estimated power spectral densities ⁇ and ppy (f) and ⁇ and ppx (f).
  • step 102 as represented in FIG. 2d also consists in carrying out an estimation of the spectral density of the useful signal ⁇ and ss (f) then deemed to be equal. unlike the estimated spectral densities of the observation signal ⁇ and yy (f) and the disturbing signal ⁇ and pp (f).
  • the signals of estimated spectral density of the useful signal ⁇ and ss (f) available in step 102 and of the disturbing signal ⁇ and pp (f) then make it possible to ensuring the optimal filtering in step 103 and, more generally, the global filtering 103 + 104 on the signal Y (f) representative in the frequency domain of the observation signal.
  • the minimization criterion can consist in minimizing the mean square error of estimation according to the relation (1): E [(su- s u) 2 ]
  • the above relation (1) can be used, either for processing in the time domain, i.e. for frequency domain treatment.
  • the estimated power spectral density of the useful signal ⁇ and ss (f) is not known a priori.
  • the optimized signal processing process disruptive in accordance with the object of the present invention, thus reduces to the implementation of a single filtering optimal, which allows to reduce overall all the components constituting the disturbing signal.
  • the signal disruptive may consist of a plurality of components provided there is sufficient decorrelation between the useful signal and the disturbing signal, i.e. each components constituting the latter. This assumption is widely verified in various applications linked by example of hands-free telephony in vehicles cars, or hands-free video conferencing, and, more generally, to all types of applications in which a plurality of components of a signal disruptive can be highlighted.
  • the estimated power spectral density of the disturbing signal ⁇ and pp (f) is then taken equal to the sum of the spectral densities of estimated power ⁇ and i pp (f) of each component of rank i of this disturbing signal.
  • the signal representative of the estimated power spectral density of the disturbing signal checks the relation (6): In this relation, P represents the number of components of the disturbing signal.
  • observation signal y (t) available is of course sampled at a sampling frequency adequate, successive samples being subdivided in sample blocks.
  • m denoting in fact the rank of the current block subjected to the treatment.
  • the technique of building up sample blocks is a classic technique, successive blocks samples that may be subject to some recovery typically equal to 50% in number of constituent samples of each block.
  • treatment with blocks is deemed to be carried out in the most general manner when the disturbing signal takes into account, not only the contribution of a noise signal, but also that generated by a reception signal x (t).
  • step 100a in addition to the subdivision of the observation signal into successive blocks of rank m, each block of samples being denoted Bm (t) is of course subjected to a frequency transformation FFT allowing d '' obtain blocks of samples in the frequency domain denoted Bm (f).
  • Step 100a also consists in carrying out an estimation of the power spectral density of the observation signal on the current block, the signal of the estimated power spectral density of the observation signal being noted ⁇ and yy (f, m) where m naturally denotes the index relating to the current block.
  • step 100a in fact, not only is the signal representative of the estimated power spectral density of the aforementioned observation signal ⁇ and yy (f, m), but also the representative block Bm (f) of the observation signal for the current block of rank m considered.
  • step 100b for which, by analogy with FIG. 2d, a corresponding processing is applied to the reception signal x (t), this processing then consisting of a subdivision into corresponding blocks of rank m, each block being denoted B'm (t), each aforementioned block being subjected to a frequency transformation, denoted FFT, this operation making it possible to obtain blocks representative of the blocks of samples in the frequency space and denoted for this reason B'm (f).
  • Step 100b shown in FIG. 2e also includes an operation of estimating the power spectral density of the reception signal on the current block B'm (f). At the end of step 100b in FIG. 2e, there is each current block B'm (f) representative of the sample block in the frequency domain and a signal representative of the estimated power spectral density of the reception signal for the aforementioned current block, this signal being noted ⁇ and xx (f, m).
  • the optimized processing method in accordance with the object of the present invention, then consists, in step 101, in carrying out an estimation of the power spectral density of each component of the signal disruptor previously cited ⁇ and i pp (f, m).
  • the signal representative of the power spectral density of each component of the disturbing signal ⁇ and i pp (f, m) is in fact constituted at least by the signal representative of the estimated power spectral density ⁇ and ppy ( f, m) representative of the contribution of the noise signal to the disturbing signal and by the signal representative of the estimated power spectral density of the contribution of the reception signal to this disturbing signal ⁇ and ppx (f, m).
  • the estimation of the power spectral density of each component of the disturbing signal ⁇ and i pp (f, m) is thus carried out from the reception signal and, more particularly, from the estimated power spectral density of the reception signal ⁇ and xx (f, m) and of the current block B'm (f), of the estimation of the power spectral density of the observation signal on the current block Bm (f) of the observation signal of the same rank m.
  • step 101 there is in fact, for the current block of rank m of the observation signal and of the reception signal, the estimated power spectral density of the observation signal on this block current noted ⁇ and yy (f, m) and, of course, an estimate of the power spectral density of the disturbing signal ⁇ and pp (f, m), which of course checks the previous relation (6).
  • the power spectral density of the useful signal is then estimated on the current block by a so-called posterior estimation.
  • the signal representative of the estimated power spectral density of the useful signal then checks the relation (7):
  • the posterior estimation operation 102a is then followed by a step 102b of a priori estimation of the amplitude of the spectrum of the useful signal on the current block.
  • AT ss (f, m) T (f, m).
  • the signal Y (f, m) can be obtained from the current block Bm (t) and application of a simple short-term Fourier transform on this block current to obtain the signal Y (f, m).
  • step 102b is then followed by the estimation of the power spectral density of the useful signal in step 102c shown in FIG. 2e.
  • Step 102c of estimating the power spectral density of the useful signal is carried out thanks to the implementation of a step 102d making it possible to generate, for each current block Bm (f), a weighting parameter ⁇ (m ) allowing a suitable weight to be assigned between the current estimate made from the filtering applied to the previous block of rank m-1 and the contribution for the current frame of the estimated power spectral density of the useful signal, which is of course represented by the signal ⁇ and ss-post (f, m).
  • step 102 there is of course the signal representative of the estimated power spectral density of the useful signal, noted ⁇ and ss (f, m).
  • the optimal filtering process can then be controlled for the current block on the signal Y (f, m) thanks to the global filtering previously described in relation to FIG. 2d in steps 103 and 104.
  • the disturbing signal is considered to be consisting of a noise and an echo generated by a signal reception.
  • the observation signal is noted y (t) and is considered supplied by an M microphone
  • the reception signal denoted x (t) corresponds to that of the signal delivered to a loudspeaker HP in the context of mobile radiotelephony hands free for example.
  • the loudspeaker and the microphone M being necessarily close to each other, the contribution to the signal disturbing the reception signal cannot in any case be neglected, while of course other components such as engine noise from the vehicle, traffic noise generated by traffic neighbor for example constitute as many components and contributions to the disturbing signal.
  • the observation signal y (t) delivered by the microphone M is subjected by means of a module, denoted T 1 (f, m), T 1 (f) , to digital sampling at an appropriate frequency, to a subdivision by blocks and of course to a frequency transform, denoted FFT in FIG. 3a.
  • the module T 1 (f, m) then delivers the signal Y (f, m) representative in the frequency domain of the observation signal on the block of rank m considered.
  • reception signal via a module T 2 (f, m), T 2 (f), which makes it possible to deliver the representative signal in the frequency domain X (f, m) and the blocks B'm (f) representative of the reception signal for the block of rank m considered.
  • the modules T 1 (f, m) and T 2 (f, m) are modules of the conventional type, identical, synchronized by the same clock signal, not shown. As such, these modules will not be described in detail since they correspond to modules normally used in the corresponding technical field and, as such, perfectly known to those skilled in the art.
  • the optimized processing device, object of the present invention comprises a module 1.1 m for estimating the power spectral density of the observation signal delivering, at from this observation signal, or, more precisely, from the signal representative in the frequency domain of this observation signal, that is to say either the signal Y (f), or the signal Y (f, m), a digital signal representative of the estimated power spectral density of the observation signal and for this reason noted, for the same reason, ⁇ and yy (f), respectively ⁇ and yy (f, m) on the current block m considered.
  • the device according to the invention comprises a module 2.2 m for estimating the power spectral density of the disturbing signal receiving the reception signal, or, more precisely, the signal representative in the frequency domain of this reception signal, that is to say either the signal X (f, m), or the signal X (f).
  • the module 2 for estimating the power spectral density of the disturbing signal also receives the digital signal representative of the estimated power spectral density of the observation signal, that is to say the signal ⁇ and yy (f), respectively ⁇ and yy (f, m). It therefore delivers a digital signal representative of the estimated power spectral density of the disturbing signal, designated by ⁇ and pp (f).
  • the module 2.2 m in fact delivers all the signals representative of the estimated spectral power density of the components of the disturbing signal designated by ⁇ and i pp (f), respectively ⁇ and i pp (f, m).
  • a 3.3 m module for estimating the power spectral density of the useful signal which receives the digital signal representative of the estimated power spectral density of the observation signal ⁇ and yy (f), respectively ⁇ and yy (f, m) delivered by the module 1.1 m as well as the digital signal representative of the estimated power spectral density of the disturbing signal ⁇ and pp (f), respectively ⁇ and pp (f, m) or the components of the latter, as previously mentioned.
  • the 3.3 m module for estimating the spectral power density of the useful signal delivers by a process inspired by the general principle of spectral subtraction a digital signal, noted ⁇ and ss (f), respectively ⁇ and ss (f, m ) representative of the estimated power spectral density of the aforementioned useful signal.
  • the device for optimized processing of a disturbing signal object of the present invention, as shown in FIG. 3a, comprises a global filtering module, noted 4.4 m , making it possible to ensure optimal filtering of the representative signal in the frequency domain of the observation signal, that is to say the signal Y (f) respectively Y (f, m) delivered by the module T 1 (f, m), T 1 (f).
  • the 4.4 m filter module advantageously comprises a calculation module, denoted 4a, 4a m , of the coefficients of an optimal filter receiving the digital signal representative of the spectral density of estimated power of the disturbing signal ⁇ and pp (f), respectively ⁇ and pp (f, m), as well as the digital signal representative of the estimated power spectral density of the useful signal ⁇ and ss (f), respectively ⁇ and ss ( f, m).
  • the module 4a, 4a m shown in FIG. 3a delivers a digital filtering adaptation signal, denoted af , representative of an optimal filtering frequency response, verifying the relation (4) previously given in the description.
  • the estimated power spectral density of the disturbing signal corresponds to the sum of the spectral densities of the components of the disturbing signal according to relation (6) previously given in the description.
  • a module 4b, 4b m receives the signal representative of the frequency response, that is to say the signal af delivered by the module 4a, 4a m , to deliver , from the representative signal in the frequency domain of the observation signal, the useful signal su.
  • the optimal filter module 4b, 4b m can consist, for example, of a Wiener filter module.
  • the signal delivered by this filter module 4b, 4b m is then received by a reverse frequency transform module, for this reason noted FFT -1 , and by block synthesis, bearing the reference 5.5 m , which delivers, from of the optimal filtering signal, the useful signal proper su (t) reconstituted in the time domain.
  • FIG. 3a A more detailed description of a preferred embodiment of the 3 m module shown in FIG. 3a for estimating the power spectral density of the useful signal corresponding to the mode of implementation of the method, object of the present invention, as shown in FIG. 2e, will now be given in conjunction with FIG. 3b for processing by blocks of successive rank m.
  • the device which is the subject of the present invention comprises, in addition to the module T 1 (f, m) delivering a succession of successive current blocks of rank m, the module of estimation of the power spectral density of the observation signal on the current block ⁇ and yy (f, m), module 1 m , and the module of estimation of the power spectral density of each component of the disturbing signal ⁇ and 1 pp (f, m), module 2 m , the module for block estimation of the spectral power density of the useful signal, module 3 m , which advantageously comprises, as shown in FIG.
  • a module 30 m for estimation a posteriori of the power spectral density of the useful signal on the current block, noted ⁇ and ss-post (f, m) verifying the relation (7) previously mentioned in the description.
  • the 3 m module also includes a 31 m module for a priori estimation of the amplitude of the spectrum of the useful signal on the current block, verifying the relation (9) previously mentioned in the description.
  • the 31 m module receives, on the one hand, the signal ⁇ and ss-post (f, m) delivered by the module 30 m as well, on the other hand, the signal Y (f, m) delivered by the block T 1 (f, m), as well as a signal representative of the frequency response of the optimal filtering for the block preceding the current block, ie T (f, m-1) delivered for example by the block 4a m of FIG. 3a .
  • the block 31 m then delivers an a priori estimate of the amplitude of the spectrum of the useful signal denoted A ss (f, m).
  • a module for calculating the power spectral density of the useful signal, for the current block, module 32 m which receives the a priori estimation signal of the amplitude of the spectrum of the useful signal spectrum A ss (f , m) delivered by the module 31 m as well as a signal representative of a weighting coefficient or parameter ⁇ (m) from a module 33 m shown in FIG. 3b.
  • the parameter ⁇ (m) makes it possible to assign a suitable weight between the estimate made at the previous block of rank m-1 and the contribution for the current frame of the power spectral density of the useful signal, as mentioned previously in the description .
  • the parameter ⁇ (m) can be adjusted according to the characteristics of the useful signals and of the estimated noise.
  • the module 32 m then delivers the signal representative of the estimated power spectral density of the useful signal, verifying the relation (10) previously mentioned in the description.
  • an estimate of the power spectral density of single noise can be obtained in particular in the absence of an echo signal and useful signal.
  • this estimate may involve a estimation of the transfer function of the acoustic channel between the reception signal and the observation signal.
  • the device in such a case comprises, associated with the module 1.1 m for estimating the power spectral density of the observation signal, an additional module for estimating the power spectral density of the noise affecting this observation signal.
  • the module 2.2 m for estimating the power spectral density of the disturbing signal constitutes in fact a module for estimating the power spectral density of the acoustic echo, which delivers a signal representative of the estimated power spectral density of the acoustic echo, noted ⁇ and zz (f, m).
  • the module for calculating the coefficients of the optimal filter 4a, 4a m directly receives the signal representative of the estimated power spectral density of the acoustic echo ⁇ and zz (f, m) , the signal representative of the estimated power spectral density of the noise, denoted ⁇ and bb (f, m) and, of course, the signal representative of the estimated power spectral density of the observation signal, denoted ⁇ and yy (f , m).
  • the estimation module 1a, 1a m of the spectral density of the noise signal may advantageously include, as shown in FIG. 3d, a module for detecting the absence of useful signal and the absence of echo signal in the observation signal, and a first-order recursive filter having a factor of forgetting ⁇ bb , this forgetting factor consisting of a real coefficient between the value 0 and 1.
  • b (f, m) designates the frequency transform, Fourier transform, of the observation signal established over a current time segment of the observation signal in the absence of vocal activity , that is to say speech of one or the other of the two speakers in communication.
  • the estimation module 1 am in its version relating to block processing, described in a nonlimiting manner, includes the voice activity detection module 10 am receiving for example the signal Y (f, m) delivered by the module T 1 (f, m), a switch controlled 11 am by the voice activity detector module 10 am , a square elevation module 12 am , a multiplier circuit 13 am receiving the signal delivered by the square elevation module 12 am and the value 1- ⁇ bb .
  • a summer 14 am receives the signal delivered by the module 12 am , delivers the signal representative of the estimated power spectral density of the noise signal ⁇ and bb (f, m) and receives by a feedback loop the signal representative of the density estimated power spectral of the noise signal ⁇ and bb (f, m-1) relating to the block preceding the current block via a 15 am delay module, memory for example, and a weighting multiplier module 16 am receiving the value ⁇ bb .
  • the block B m (f) delivered by the module T 1 (f, m) corresponds to the frequency transform b (f, m) of the noise signal.
  • the module for estimating the power spectral density of the observation signal in particular the 1.1 m module, it is indicated that this can include, as shown in FIG. 3e, a filter first-order recursive, having a forgetting factor ⁇ yy consisting of a real coefficient between 0 and 1.
  • 2 In this relation, Y (f), respectively Y (f, m), designates the signal representative in the frequency domain of the observation signal, i.e. the frequency transform of this observation signal on the block current for example.
  • the recursive filter represented in FIG. 3e comprises elements similar to those represented in FIG. 3d, the notations am being modified in m respectively, the value ⁇ yy being adapted accordingly.
  • Figures 4a to 4e make it possible to evaluate the performances obtained thanks to the implementation of the process for processing an optimized disturbing signal and using of a device, in accordance with the object of the present invention, as shown for example in Figure 3c.
  • the x-axis is graduated in seconds and the ordinate axis in value amplitude in PCM digital coding, 16-bit coding corresponding to a maximum value of 32,768.
  • the application context related to radiotelephony hands-free in a motor vehicle is related to radiotelephony hands-free.
  • the signal sampling frequency was at a value of 8 kHz, the digital coding of the samples thus obtained being based on the PCM format, ie 16 bits linear.
  • the signal broadcast on the speaker, receive signal, and microphone signal i.e. the observation signal, have been recorded synchronously, the vehicle engine being stopped.
  • noise and local speech recorded separately in a same vehicle were artificially summoned to the signal echo.
  • the original echo signal, picked up by the microphone M, is shown in Figure 4a.
  • the noisy observation signal obtained as well as previously mentioned, is shown in Figure 4b, when the local voice, that is to say the speaker of the vehicle, was artificially disturbed by a noise signal and an echo signal corresponding to a human voice.
  • the signal represented by slots under the above records represents the voice activity detection in reception, i.e. on the reception signal received by the speaker HP.
  • the test observation signal represented in figure 4b thus comprises periods of noise alone, periods echo alone in the noise, but also periods of double talk, periods during which the two speakers in correspondence speak at the same time.
  • the signal from test corresponds to a typical case in a mobile radio context hands free.
  • Average echo signal ratio (dB) 9.00 Signal to maximum echo ratio (dB) 38.61 Signal to minimum echo ratio (dB) -23.66 Standard deviation of signal to echo ratio (dB) 5.31 Average signal-to-noise ratio (dB) 6.17 Maximum signal-to-noise ratio (dB) 19.18 Minimum signal-to-noise ratio (dB) -27.38 Signal-to-noise ratio standard deviation (dB) 5.21
  • FIG. 4c represents the useful signal obtained in output of the device, the signal su of FIG. 3c.
  • the echo attenuation is evaluated by an energy measurement, known as ERLE, for Echo Return Loss Enhancement, this measurement being evaluated on blocks of 256 samples in the absence of recovery.
  • ERLE Echo Return Loss Enhancement
  • noise attenuation is assessed on blocks of 256 samples without overlap.
  • Figures 4d and 4e show that the process and the optimized treatment device, object of the present invention, reduce power average of the acoustic echo picked up by the microphone M, of around 15 dB during the single echo periods and around 10 dB during periods of double talk.
  • this reduction is around 18 dB during the noise period alone.
  • the optimized overall processing automatically adapts to the observation signal delivered by the microphone M. Indeed, we can then observe a 15 dB reduction in noise power during periods echo alone and 8 dB during periods of double talk.
  • the optimized treatment method and device disturbing signals, objects of the present invention appear very advantageous insofar as they allow to reduce the distortions introduced on the signal useful local speaking.
  • reducing the attenuation to the echo signal and noise signal during periods of vocal activity in transmission does not introduce undesirable effects on the signal transmitted to the correspondent distant because the echo signal and the noise signal remaining at the end of treatment are then subjectively masked by the local speech signal.
  • the method and the device, objects of the present invention are particularly well suited to radiotelephony hands-free mobile in motor vehicles. Indeed, while some European countries have already taken measures to ban the use of a handset classic cell phone while driving a motor vehicle, we should expect a generalization such measures. Analysis of hands-free telephony in vehicles helped to highlight the two main factors discomfort to the driver, corresponding not only to the simultaneous communication, but also ambient noise level, whereas for the correspondent of the latter, the most important genes are caused by the presence of noise and an acoustic echo, induced by the acoustic coupling existing between transducers.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Noise Elimination (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Telephone Function (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Description

L'invention concerne un procédé et un dispositif de traitement optimisé d'un signal perturbateur lors d'une prise de son.The invention relates to a method and a device for optimized processing of a disturbing signal during a sound recording.

Avec l'avènement conjoint de l'ère des échanges d'informations, informations audio et/ou vidéofréquence, les techniciens de recherche et développement de moyens d'accès à ces informations sont le plus souvent confrontés, dans la plupart des domaines d'application et d'utilisation de ces informations, au problème général de l'estimation d'un signal utile, porteur de cette information, à partir d'un ou de plusieurs signaux d'observation, composés de ce signal utile dégradé du fait de la présence de signaux perturbateurs.With the joint advent of the era of trade information, audio and / or video information, technicians of research and development of means of access to this information are most often confronted, in the most areas of application and use of these information, to the general problem of estimating a useful signal, bearer of this information, from one or of several observation signals, composed of this signal useful degraded due to the presence of disturbing signals.

Dans le domaine plus spécifique de la prise de son, ces signaux correspondant à des signaux audiofréquence, ce problème est le plus souvent résolu par la mise en fonctionnement concomitant, co-fonctionnement, de plusieurs dispositifs de traitement de ce signal d'observation, chacun de ces dispositifs étant optimisé localement de façon à réduire, de manière significative, au niveau d'un de ces dispositifs, l'influence d'une composante particulière de ces signaux perturbateurs ou d'au moins un de ces signaux perturbateurs.In the more specific area of sound recording, these signals corresponding to audio frequency signals, this problem is most often resolved by putting it into operation concomitant, co-operation, of several devices processing of this observation signal, each of these devices being optimized locally so as to reduce, significantly, at one of these devices, the influence of a particular component of these signals disruptive or at least one of these interfering signals.

Dans ces conditions, il apparaít des problèmes d'interaction entre ces différents dispositifs, ce qui, bien entendu, rend délicate l'optimisation des différents traitements appliqués. La modification, pour optimisation, des paramètres de contrôle d'un dispositif particulier nécessite, en général, la modification mutuelle de ceux des autres dispositifs utilisés.Under these conditions, problems appear interaction between these different devices, which, well heard, makes it difficult to optimize the different applied treatments. Modification, for optimization, control parameters for a particular device generally requires mutual modification of those of other devices used.

En outre, la mise en co-fonctionnement de ces différents dispositifs conduit à une complexité de réalisation non optimisée et généralement à un coût élevé.In addition, the co-operation of these different devices leads to a complexity of implementation not optimized and generally at high cost.

Différents exemples de solution classique connus de l'état de la technique seront donnés ci-après en liaison avec les figures 1a à 1d. D'une manière générale, le signal d'observation y(t) peut être considéré comme la somme du signal utile d'origine s(t) et d'un signal perturbateur p(t) selon la relation : y(t) = s(t) + p(t). Le signal perturbateur lui-même peut être considéré comme la somme de N composantes élémentaires et vérifiant la relation :

Figure 00020001
Various examples of conventional solution known from the state of the art will be given below in conjunction with FIGS. 1a to 1d. In general, the observation signal y (t) can be considered as the sum of the original useful signal s (t) and a disturbing signal p (t) according to the relation: y (t) = s (t) + p (t). The disturbing signal itself can be considered as the sum of N elementary components and verifying the relation:
Figure 00020001

Ainsi qu'illustré sur la figure la, une solution courante proposée pour résoudre un tel problème peut consister à mettre en co-fonctionnement un nombre N de dispositifs, chacun d'entre eux étant optimisé et dédié à la réduction, voire la suppression locale d'une composante donnée pk(t) du signal perturbateur.As illustrated in FIG. 1a, a common solution proposed for solving such a problem may consist in co-operating a number N of devices, each of them being optimized and dedicated to the reduction or even the local elimination of 'a given component p k (t) of the disturbing signal.

Une telle approche conduit à minimiser successivement une erreur locale d'estimation liée à chaque composante du signal perturbateur. Chacune de ces minimisations successives revient ainsi à mettre en oeuvre localement un traitement Tk(t) adapté à la composante pk(t) du signal perturbateur correspondante.Such an approach leads to successively minimizing a local estimation error linked to each component of the disturbing signal. Each of these successive minimizations thus amounts to locally implementing a processing T k (t) adapted to the component p k (t) of the corresponding disturbing signal.

Le principe général de traitement, connu en tant que tel et représenté en figure la, est en particulier utilisé lors de la prise de son mains libres dans le contexte de radiotéléphonie mobile, ainsi que dans le contexte de la visioconférence.The general principle of treatment, known as as shown in figure la, is in particular used when taking his hands free in the context of mobile radio as well as in the context of the videoconferencing.

Dans le cadre d'applications liées à la radiotéléphonie mains-libres pour les mobiles, le signal perturbateur p(t) peut être considéré comme composé d'un bruit d'observation b(t), bruit de roulement du véhicule, bruits aérodynamiques tels que le vent, l'écoulement de l'air, ainsi que d'un signal d'écho acoustique z(t) provenant du couplage acoustique entre le haut-parleur et le microphone de prise de son.In the context of radiotelephone applications hands-free for mobiles, the disturbing signal p (t) can be considered as composed of an observation noise b (t), vehicle rolling noise, aerodynamic noise such as wind, air flow, as well as an acoustic echo signal z (t) from the coupling acoustic between speaker and plug microphone of his.

Dans le but de minimiser l'influence de ces deux composantes du signal perturbateur et de transmettre au correspondant distant un signal de meilleure qualité, les travaux et recherches actuels ont proposé une mise en cascade d'un système de réduction de bruit et d'un système de contrôle de l'écho acoustique. Une telle association de systèmes est représentée en figure 1b. Le principe général des solutions ainsi proposées consiste à placer un dispositif de réduction du bruit filtre RB en aval, ainsi que représenté en figure 1b, ou en amont du dispositif d'annulation acoustique, filtre Ht. Pour une description plus détaillée de ce type de dispositif, on pourra utilement se reporter aux articles les plus récents, publiés par :

  • B.AYAD, G.FAUCON et R.LE BOUQUIN JEANNES, "Optimization of a Noise reduction preprocessing in an acoustic echo and noise controller", IEEE International Conference on Acoustics, Speech, and Signal Processing Conference, pp. 953-956, Atlanta, USA, May 7-10, 1996 ;
  • Y.GUELOU, A.BENAMAR et P.SCALART, "Analysis of two structures for combined acoustic echo cancellation and noise reduction", IEEE International Conference on Acoustics, Speech, and Signal Processing Conference, pp. 637-640, Atlanta, USA, May 7-10, 1996 ;
  • R.MARTIN, P.VARY, "Combined acoustic echo control and noise reduction for hands-free telephony - State of the Art and perspectives", proceedings of the Eighth European Signal Procesing Conference, pp. 1127-1130, Trieste, Italy, 10-13 September, 1996.
In order to minimize the influence of these two components of the disturbing signal and to transmit a better quality signal to the distant correspondent, current research and work has proposed cascading a noise reduction system and a acoustic echo control system. Such a combination of systems is shown in Figure 1b. The general principle of the solutions thus proposed consists in placing a filter noise reduction device RB downstream, as shown in FIG. 1b, or upstream of the acoustic cancellation device, filter H t . For a more detailed description of this type of device, one can usefully refer to the most recent articles, published by:
  • B.AYAD, G.FAUCON and R.LE BOUQUIN JEANNES, " Optimization of a Noise reduction preprocessing in an acoustic echo and noise controller ", IEEE International Conference on Acoustics, Speech, and Signal Processing Conference, pp. 953-956, Atlanta, USA, May 7-10, 1996;
  • Y. GUUELOU, A. BENAMAR and P. SCALART, "Analysis of two structures for combined acoustic echo cancellation and noise reduction ", IEEE International Conference on Acoustics, Speech, and Signal Processing Conference, pp. 637-640, Atlanta, USA, May 7-10, 1996;
  • R.MARTIN, P.VARY, " Combined acoustic echo control and noise reduction for hands-free telephony - State of the Art and perspecti ves", proceedings of the Eighth European Signal Procesing Conference, pp. 1127-1130, Trieste, Italy, 10-13 September, 1996.

Dans le cadre d'applications liées à la visioconférence, le signal perturbateur p(t) peut être considéré comme composé, non seulement d'un bruit d'observation b(t) et d'un signal d'écho acoustique z(t), mais également d'un signal r(t) engendré par l'effet de réverbération de la salle où est effectuée la prise de son.In the context of videoconferencing applications, the disturbing signal p (t) can be considered as composed, not only of an observation noise b (t) and a acoustic echo signal z (t), but also of a signal r (t) generated by the reverberation effect of the room where sound recording is performed.

Les solutions proposées, dans un tel contexte, peuvent être classées en deux types principaux, suivant que l'on considère comme essentiellement nuisibles le signal d'écho et le bruit ou bien le bruit et la réverbération.The solutions proposed, in such a context, can be classified into two main types, depending on whether the signal is considered to be essentially harmful echo and noise, or noise and reverberation.

Dans les deux cas précités, les solutions retenues correspondent à une mise en cascade de traitements élémentaires, chacun d'eux étant adapté à une composante particulière du signal perturbateur.In the two aforementioned cases, the solutions adopted correspond to a cascade of elementary treatments, each of them being adapted to a particular component of the disturbing signal.

Selon le premier type de ces solutions, ainsi que représenté en figure 1c, deux traitements élémentaires sont mis en oeuvre : un traitement d'annulation d'écho et un traitement dont l'objet est de réduire l'influence du bruit, filtre RB, sur le signal utile.
Dans le cas plus particulier de la figure 1c, dans lequel on dispose en outre de deux microphones pour réaliser le système de prise de son, une recopie du filtre RB est appliquée au signal diffusé sur le haut-parleur, afin de réduire l'influence des variations non-linéaires de ce filtre sur le processus d'identification du signal d'écho. Pour une description plus détaillée des processus de traitement du bruit et de l'écho, on pourra utilement se reporter à l'article publié par :

  • R.MARTIN et P.VARY
    "Combined acoustic echo cancellation, dereverberation and noise reduction : a two microphone approach",
    Annales des télécommunications, Tome 49, n° 7-8, pp. 429-438, 1994.
According to the first type of these solutions, as shown in FIG. 1c, two elementary treatments are implemented: an echo cancellation processing and a processing whose object is to reduce the influence of noise, RB filter, on the useful signal.
In the more specific case of FIG. 1c, in which there are also two microphones for implementing the sound pickup system, a copy of the RB filter is applied to the signal broadcast on the loudspeaker, in order to reduce the influence non-linear variations of this filter on the process of identifying the echo signal. For a more detailed description of the noise and echo processing, one can usefully refer to the article published by:
  • R.MARTIN and P.VARY
    " Combined acoustic echo cancellation, dereverberation and noise reduction: a two microphone approach ",
    Annales des telecommunications, Tome 49, n ° 7-8, pp. 429-438, 1994.

Selon le deuxième type de ces solutions, ainsi que représenté en figure 1d, la prise de son peut être réalisée à partir d'un nombre important de microphones de façon à réaliser une antenne acoustique ayant pour objet de focaliser le lobe principal de l'antenne sur le locuteur et de privilégier, ainsi, la zone d'espace où se trouve effectivement le locuteur pour réaliser une opération de réduction du bruit et de déréverbération. L'antenne acoustique comporte, de manière classique, un nombre de filtres de bandes F1 à FN et un sommateur, réalisant un traitement d'antenne. Un autre traitement de post-filtrage est appliqué en sortie d'antenne et consiste à réduire la réverbération subsistante. Pour une description plus détaillée de ce type de solution, on pourra utilement se reporter aux articles publiés par :

  • C.MARRO, Y.MAHIEUX et K.U.SIMMER,
    "Performance on adaptive dereverberation techniques using directivity controlled arrays", Proceedings of the Eighth European Signal Processing Conference, pp. 1127-1130, Trieste, Italy, 10-13 September, 1996 ;
  • K.U.SIMMER, S.FISHER et A.WASILJEFF,
    "Suppression of coherent and incoherent noise using a microphone array", Annales des télécommunications, Tome 49, n° 7-8, pp. 439-446, 1994.
According to the second type of these solutions, as shown in FIG. 1d, sound recording can be carried out from a large number of microphones so as to produce an acoustic antenna having the object of focusing the main lobe of the antenna on the speaker and thus privilege the area of space where the speaker is actually located to carry out an operation of noise reduction and reverberation. The acoustic antenna conventionally includes a number of band filters F 1 to F N and a summator, performing antenna processing. Another post-filtering treatment is applied at the antenna output and consists in reducing the remaining reverberation. For a more detailed description of this type of solution, one can usefully refer to the articles published by:
  • C. MARRO, Y. MAHIEUX and KUSIMMER,
    " Performance on adaptive dereverberation techniques using directivity controlled arrays ", Proceedings of the Eighth European Signal Processing Conference, pp. 1127-1130, Trieste, Italy, 10-13 September, 1996;
  • KUSIMMER, S.FISHER and A.WASILJEFF,
    " Suppression of coherent and incoherent noise using a microphone array ", Annals of telecommunications, Tome 49, n ° 7-8, pp. 439-446, 1994.

Dans toutes les solutions retenues précitées, la mise en cascade de ces traitement élémentaires, chacun d'eux étant adapté à l'une seule des composantes du signal perturbateur, conduit à l'obtention d'une solution sous-optimale au problème général de la réjection du signal perturbateur et induit, en outre, un coût de réalisation important.
En effet, chacun de ces traitements minimisant une erreur locale, car relative à une composante élémentaire ou locale du signal perturbateur, leur association ne conduit en général pas au minimum global de la solution optimale.
In all the above-mentioned solutions, the cascading of these elementary processing, each of them being adapted to only one of the components of the disturbing signal, leads to obtaining a sub-optimal solution to the general problem of rejection of the disturbing signal and induces, in addition, a significant production cost.
Indeed, each of these processing operations minimizing a local error, because relating to an elementary or local component of the disturbing signal, their association generally does not lead to the global minimum of the optimal solution.

En outre, la mise en oeuvre pratique de chacun de ces traitements élémentaires ne constitue qu'une approximation d'un traitement idéal, des distorsions sur le signal utile étant introduites pour chaque traitement, du point de vue des autres traitements, ce qui en définitive peut conduire à une entrée du signal utile transmis fortement dégradée par rapport au signal utile d'origine.In addition, the practical implementation of each of these elementary treatments are only an approximation ideal processing, signal distortions useful being introduced for each treatment, from the point of view of other treatments, which ultimately can lead to an input of the useful signal transmitted strongly degraded compared to the original useful signal.

Enfin, la mise en cascade de ces traitements élémentaires nécessite d'étudier la position optimale et l'interaction des différents traitements élémentaires, les uns par rapport aux autres, afin d'obtenir la meilleure configuration. Il est toutefois à noter que les conclusions d'une telle étude doivent être remises en question en fonction du choix des processus et algorithmes utilisés pour conduire les différents traitements élémentaires. Une telle contrainte est décrite dans l'article publié par Y.GUELOU, A.BENAMAR et P.SCALART, 1996, précédemment cité, dans le cas de la téléphonie mobile mains-libres. Le paramétrage, en vue de leur réglage, des processus et algorithmes mis en oeuvre apparaít alors délicat, la modification d'un paramètre donné nécessitant généralement une modification corrélative d'au moins certains paramètres des autres traitements élémentaires.Finally, cascading these treatments elementary requires studying the optimal position and the interaction of different elementary treatments, relative to each other, in order to get the best configuration. It should however be noted that the conclusions of such a study should be questioned depending on the choice of processes and algorithms used to conduct the various elementary treatments. Such a constraint is described in the article published by Y.GUELOU, A.BENAMAR and P.SCALART, 1996, previously cited, in the case hands-free mobile telephony. Parameterization, in view of their adjustment, of the processes and algorithms implemented then appears delicate, the modification of a given parameter generally requiring a consequential modification of at least minus certain parameters of the other elementary treatments.

Le document EP-A-0 767 569 décrit un système de traitement de l'écho acoustique par une technique de filtrage adaptif. Une particularité de ce système réside dans le fait d'utilisation de paramètres de contrôle de filtrage, pas d'adaptation et facteur d'oubli, variables au cours du temps et s'adaptant automatiquement à l'environment acoustique.EP-A-0 767 569 describes an echo processing system acoustics by an adaptive filtering technique. A special feature of this system lies in the use of filter control parameters, not adaptation and forgetting factor, variable over time and adapting automatically to the acoustic environment.

Une optimisation a posteriori de ces traitements peut, le cas échéant, être envisagée. Un tel mode opératoire implique inévitablement, d'une part, un échange permanent d'informations entre ces traitements élémentaires et, d'autre part, l'application de contraintes concertées sur les paramètres de réglage de ces derniers. Une telle optimisation a posteriori de tels systèmes a montré les limites de cette approche en raison des résultats finalement obtenus.A posteriori optimization of these treatments may, where appropriate, be considered. Such a procedure inevitably implies, on the one hand, a permanent exchange information between these elementary treatments and, on the other hand, the application of concerted constraints on the adjustment parameters of these. Such a posterior optimization of such systems has shown the limitations of this approach because of the results ultimately obtained.

La présente invention a pour objet de remédier aux manquements et inconvénients des procédés, processus et systèmes de l'art antérieur précédemment décrits.The object of the present invention is to remedy the shortcomings and disadvantages of processes, processes and prior art systems previously described.

Un tel objet est atteint par la mise en oeuvre d'un processus d'optimisation a priori du traitement du signal perturbateur affectant tout signal d'observation, ce processus étant totalement distinct, soit des processus de l'art antérieur décrits précédemment dans la description, soit même de toute optimisation a posteriori des processus précités.Such an object is achieved by the implementation of a a priori optimization process of signal processing disruptive affecting any observation signal, this being completely separate, i.e. the prior art described previously in the description, or even any posterior optimization of the processes supra.

Le processus d'optimisation a priori du traitement d'un signal perturbateur lors d'une prise de son, à partir d'un signal d'observation formé d'un signal utile d'origine et de ce signal perturbateur est mis en oeuvre grâce à un procédé et à un dispositif consistant à, respectivement permettant d'effectuer une estimation du signal perturbateur pour engendrer un signal perturbateur estimé. Une estimation du signal utile pour engendrer un signal utile estimé et un filtrage du signal d'observation à partir du signal perturbateur estimé et d'un filtrage optimal permettent d'effectuer une minimisation de l'erreur entre le signal utile et le signal utile estimé. Le signal utile estimé converge vers le signal utile d'origine pour une erreur sensiblement nulle entre le signal utile et le signal utile estimé.The process of a priori optimization of treatment a disturbing signal during a sound recording, from an observation signal formed by an original useful signal and this disturbing signal is implemented thanks to a method and device consisting of, respectively allowing an estimation of the disturbing signal to generate an estimated disturbing signal. An estimation useful signal to generate an estimated useful signal and a filtering of the observation signal from the disturbing signal estimated and optimal filtering allow minimization of the error between the useful signal and the estimated useful signal. The estimated useful signal converges to the original useful signal for a substantially zero error between the useful signal and the estimated useful signal.

Le procédé et le dispositif, objets de l'invention, trouvent application à tout contexte relatif à la prise de son, notamment la téléphonie mobile mains libres, la visioconférence mains libres, et plus généralement les opérations en studio ou en régie audio.The method and the device, objects of the invention, find application in any context relating to the taking of sound, including hands-free mobile telephony, hands-free video conferencing, and more generally studio or audio operations.

Ils seront mieux compris à la lecture de la description et à l'observation des dessins ci-après dans lesquels, outre les figures 1a à 1d relatives à l'art antérieur,

  • la figure 2a représente, à titre d'exemple non limitatif, un schéma bloc illustratif de la mise en oeuvre du procédé, objet de la présente invention, dans le domaine temporel ;
  • la figure 2b représente, à titre d'exemple non limitatif, un schéma bloc illustratif de la mise en oeuvre du procédé, objet de la présente invention, dans le domaine temporel, dans le cas plus particulier de l'existence d'un signal de réception générateur d'un signal d'écho apportant une contribution spécifique au signal perturbateur ;
  • la figure 2c représente, à titre d'exemple non limitatif, dans une situation semblable à celle de la figure 2a, un schéma bloc illustratif de la mise en oeuvre du procédé, objet de la présente invention, dans le domaine fréquentiel ;
  • la figure 2d représente, à titre d'exemple non limitatif, un schéma bloc illustratif de la mise en oeuvre du procédé, objet de la présente invention, dans une situation semblable à celle de la figure 2b, dans le domaine fréquentiel, dans le cas particulier d'un signal de réception générateur d'un signal d'écho apportant une contribution spécifique au signal perturbateur ;
  • la figure 2e représente, à titre d'exemple non limitatif, un schéma bloc illustratif d'une mise en oeuvre préférentielle par un traitement par blocs successifs du signal d'observation, dans une situation semblable à celle de la figure 2d, dans le cas de l'existence d'un signal de réception générateur d'un signal d'écho apportant une contribution spécifique au signal perturbateur ;
  • la figure 3a représente, sous forme de schémas blocs, le schéma synoptique d'un dispositif permettant, dans le domaine fréquentiel, le traitement général, respectivement le traitement par blocs successifs, du signal d'observation, dans le cas général de l'existence d'un signal de réception, générateur d'un signal d'écho apportant une contribution spécifique au signal perturbateur ;
  • la figure 3b représente un détail de réalisation avantageux d'un module d'estimation de la densité spectrale de puissance du signal utile plus particulièrement mis en oeuvre dans le dispositif représenté en figure 3a, lorsque, en particulier, le traitement par bloc est mis en oeuvre ;
  • la figure 3c représente une variante de réalisation du dispositif représenté en figures 3a ou 3b, dans laquelle un module d'estimation de la densité spectrale de l'écho d'un signal de réception et un module d'estimation de la densité spectrale du signal de bruit, dans le contexte d'une application à la radiotéléphonie mobile mains libres, sont introduits ;
  • les figures 3d et 3e représentent, à titre d'exemple non limitatif, un module d'estimation de la densité spectrale de puissance du signal de bruit et du signal d'observation, par filtrage récursif à partir d'un facteur d'oubli ;
  • les figures 4a à 4e représentent différents chronogrammes de signaux, relevés en des points de test remarquables de la figure 3c et permettant d'évaluer les performances du procédé et du dispositif de traitement optimisé d'un signal perturbateur, objet de la présente invention.
They will be better understood on reading the description and on observing the drawings below in which, in addition to FIGS. 1a to 1d relating to the prior art,
  • FIG. 2a represents, by way of nonlimiting example, an illustrative block diagram of the implementation of the method, object of the present invention, in the time domain;
  • FIG. 2b represents, by way of nonlimiting example, an illustrative block diagram of the implementation of the method, object of the present invention, in the time domain, in the more specific case of the existence of a signal reception generating an echo signal making a specific contribution to the disturbing signal;
  • FIG. 2c represents, by way of nonlimiting example, in a situation similar to that of FIG. 2a, a block diagram illustrating the implementation of the method, object of the present invention, in the frequency domain;
  • FIG. 2d represents, by way of nonlimiting example, an illustrative block diagram of the implementation of the method, object of the present invention, in a situation similar to that of FIG. 2b, in the frequency domain, in the case particular of a reception signal generating an echo signal making a specific contribution to the disturbing signal;
  • FIG. 2e represents, by way of nonlimiting example, an illustrative block diagram of a preferential implementation by a processing by successive blocks of the observation signal, in a situation similar to that of FIG. 2d, in the case the existence of a reception signal generating an echo signal making a specific contribution to the disturbing signal;
  • FIG. 3a represents, in the form of block diagrams, the block diagram of a device allowing, in the frequency domain, the general processing, respectively the processing by successive blocks, of the observation signal, in the general case of existence a reception signal, generating an echo signal making a specific contribution to the disturbing signal;
  • FIG. 3b represents an advantageous embodiment detail of a module for estimating the power spectral density of the useful signal more particularly implemented in the device represented in FIG. 3a, when, in particular, the block processing is implemented artwork ;
  • FIG. 3c represents an alternative embodiment of the device represented in FIGS. 3a or 3b, in which a module for estimating the spectral density of the echo of a reception signal and a module for estimating the spectral density of the signal noise, in the context of an application to hands-free mobile radio, are introduced;
  • Figures 3d and 3e show, by way of nonlimiting example, a module for estimating the power spectral density of the noise signal and the observation signal, by recursive filtering from a forgetting factor;
  • FIGS. 4a to 4e represent different timing diagrams of signals, recorded at remarkable test points in FIG. 3c and making it possible to evaluate the performance of the method and of the device for optimized processing of a disturbing signal, object of the present invention.

Le procédé de traitement optimisé d'un signal perturbateur lors d'une prise de son, conforme à l'objet de la présente invention, sera maintenant décrit en liaison avec les figures 2a à 2d.The optimized signal processing method disruptive during a sound recording, in accordance with the object of the present invention will now be described in connection with Figures 2a to 2d.

D'une manière générale, on indique que le signal perturbateur précité consiste au moins en un signal de bruit, lequel, en raison même de la définition d'un signal de bruit, est considéré comme sensiblement décorrélé du signal utile d'origine que l'on souhaite récupérer suite à atténuation, voire suppression, de ce signal de bruit.Generally, it indicates that the signal above disturbance consists at least of a signal of noise, which, due to the very definition of a signal noise, is considered to be significantly decorrelated from the original useful signal that we wish to recover following attenuation, or even elimination, of this noise signal.

D'une première part, on indique que le procédé de traitement optimisé du signal perturbateur, objet de la présente invention, est effectué à partir d'un signal d'observation, noté y(t), disponible en une étape 100 d'origine sur la figure 2a, ce signal d'observation étant réputé formé du signal utile d'origine à récupérer, noté s(t) et du signal perturbateur, noté p(t).Firstly, it is indicated that the process of optimized processing of the disturbing signal, object of the present invention is made from a signal of observation, noted y (t), available in step 100 of origin in FIG. 2a, this observation signal being deemed to be formed from the original useful signal to be recovered, noted s (t) and the disturbing signal, denoted p (t).

D'une manière plus spécifique, on indique que le signal perturbateur, outre le signal de bruit précité, peut comporter différentes contributions telles qu'un signal d'écho, un signal de réverbération ou toute autre forme de signal de bruit, ainsi qu'il sera décrit ultérieurement dans la description. Dans le cadre de la figure 2a, on se limite à l'existence d'un signal de bruit sensiblement décorrélé du signal utile, ainsi que mentionné précédemment.More specifically, it indicates that the disturbing signal, in addition to the aforementioned noise signal, may have different contributions such as a signal echo, reverberation signal, or any other form of noise signal, as will be described later in the description. In the context of Figure 2a, we limit ourselves the existence of a substantially decorrelated noise signal from the useful signal, as mentioned previously.

Conformément au procédé, objet de la présente invention, celui-ci consiste à effectuer une estimation à l'étape 101 du signal perturbateur pour engendrer un signal perturbateur estimé, noté p and(t). Bien entendu, en fin de l'étape 101 précitée, on dispose, non seulement du signal perturbateur estimé p and(t), mais également du signal d'observation y(t) précédemment mentionné.In accordance with the process which is the subject of this invention, this consists in carrying out an estimation at step 101 of the disturbing signal to generate a signal estimated disruptor, noted p and (t). Of course, at the end of the aforementioned step 101, not only the signal is available estimated disturbance p and (t), but also of the observation signal y (t) previously mentioned.

Suite à l'obtention du signal perturbateur estimé p and(t) à l'étape 101, le procédé de traitement optimisé, conforme à l'objet de la présente invention, consiste à effectuer, en une étape 102, à partir du signal d'observation précité y(t), une estimation grossière du signal utile, le signal utile estimé, par convention, étant réputé, en raison de la décorrélation même du signal utile d'origine et du signal bruit, consister en la différence entre le signal d'observation y(t) et le signal perturbateur estimé p and(t). En fin d'étape 102, on dispose d'un signal utile estimé, obtenu suite à l'étape d'estimation grossière, ce signal utile estimé correspondant approximativement au signal utile d'origine s(t) et pour cette raison noté s andu.Following the obtaining of the estimated disturbing signal p and (t) in step 101, the optimized treatment method, in accordance with the object of the present invention, consists in perform, in a step 102, from the observation signal abovementioned y (t), a rough estimate of the useful signal, the useful signal estimated, by convention, being deemed, in reason for the actual decorrelation of the original wanted signal and of the noise signal, consist of the difference between the signal of observation y (t) and the estimated disturbing signal p and (t). In end of step 102, an estimated useful signal is obtained, obtained following the rough estimation step, this useful signal estimated approximately corresponding to the useful signal of origin s (t) and for this reason noted s andu.

Suite aux étapes 101 et 102 précitées, le procédé de traitement optimisé, objet de la présente invention, consiste ensuite à effectuer un filtrage 103 du signal d'observation y(t) à partir du signal perturbateur estimé p and(t) et d'un filtrage optimal pour engendrer un signal utile, noté su.Following steps 101 and 102 above, the method of optimized processing, object of the present invention, then consists in performing a filtering 103 of the signal observation y (t) from the estimated disturbing signal p and (t) and optimal filtering to generate a signal useful, noted su.

Ainsi que représenté en outre sur la figure 2a, le filtrage optimal 103 permet alors d'effectuer une minimisation, en une étape 104, de l'erreur entre le signal utile estimé su et le signal utile su. L'ensemble du processus réalisé grâce aux étapes 103 et 104 par l'intermédiaire des étapes 101 et 102 permet alors d'obtenir une convergence, grâce au filtrage optimal, du signal utile estimé s andu et du signal utile su vers le signal utile d'origine s(t) pour une erreur sensiblement nulle entre le signal utile su et le signal utile estimé s andu. Le signal utile estimé s andu ou le signal utile su est alors sensiblement égal au signal utile d'origine s(t) aux erreurs de filtrage près.As further shown in Figure 2a, the optimal filtering 103 then makes it possible to perform a minimization, in a step 104, of the error between the useful signal estimated su and the useful signal su. The whole process achieved by steps 103 and 104 through steps 101 and 102 then make it possible to obtain convergence, thanks to optimal filtering, the estimated useful signal s andu and useful signal su to the original useful signal s (t) for a substantially zero error between the useful signal su and the estimated useful signal s andu. The estimated useful signal s andu or the useful signal su is then substantially equal to the useful signal original s (t) to the nearest filtering errors.

Sur la figure 2a, on a représenté le procédé de traitement optimisé d'un signal perturbateur, conforme à l'objet de la présente invention, dans le domaine temporel. On indique en particulier que les notions d'estimation du signal perturbateur, d'estimation grossière du signal utile et de filtrage optimal peuvent être parfaitement définies dans le domaine temporel.FIG. 2a shows the method of optimized processing of a disturbing signal, in accordance with the object of the present invention, in the time domain. It is pointed out in particular that the notions of estimating the disturbing signal, rough estimation of the useful signal and optimal filtering can be perfectly defined in the time domain.

Toutefois, alors que dans le cas de la figure 2a, le signal d'observation y(t) est réputé ne comporter qu'un signal perturbateur p(t) formé par un seul signal de bruit sensiblement décorrélé du signal utile, le procédé, objet de la présente invention, peut également, d'une manière particulièrement avantageuse, être mis en oeuvre lorsque, au signal d'observation précité correspond un signal perturbateur p(t) auquel s'ajoute, outre le signal de bruit sensiblement décorrélé du signal utile d'origine s(t), un signal d'écho, noté z(t). Ce signal d'écho correspond, en particulier dans des situations de téléphonie mobile mains libres par exemple, à un signal perturbateur engendré par un signal d'observation, noté x(t), dans des conditions qui seront explicitées de manière plus détaillée ultérieurement dans la description.However, while in the case of Figure 2a, the observation signal y (t) is deemed to contain only one disturbing signal p (t) formed by a single noise signal significantly decorrelated from the useful signal, the process, object of the present invention can also, in a way particularly advantageous, be implemented when, at aforementioned observation signal corresponds to a disturbing signal p (t) to which is added, in addition to the noise signal substantially decorrelated from the original useful signal s (t), a signal echo, noted z (t). This echo signal corresponds, in particular in hands-free mobile phone situations for example, to a disturbing signal generated by a signal of observation, noted x (t), under conditions which will be explained in more detail later in the description.

Dans ces conditions, ainsi que représenté en figure 2b, et toujours dans le cadre d'un traitement optimisé dans le domaine temporel, conforme à l'objet de la présente invention, on indique que l'estimation du signal perturbateur à l'étape 101 consiste avantageusement à effectuer une estimation séparée de la contribution 101b de ce signal de réception et de la contribution 101a du signal de bruit à ce signal perturbateur.Under these conditions, as shown in figure 2b, and always within the framework of an optimized treatment in the time domain, consistent with the subject of this invention, it is indicated that the estimation of the disturbing signal in step 101 advantageously consists in carrying out a separate estimate of the contribution 101b of this signal from reception and contribution 101a of the noise signal to this disturbing signal.

Sur la figure 2b, on retrouve les mêmes notations que dans le cas de la figure 2a, le signal perturbateur estimé étant toujours noté p and(t) et consistant alors, non seulement en la contribution du signal de bruit décorrélé du signal utile, de la même manière que dans le cas de la figure 2a, mais également en la contribution à ce signal perturbateur du signal de réception noté x(t).In Figure 2b, we find the same notations that in the case of FIG. 2a, the disturbing signal estimated being always noted p and (t) and consisting then, not only in the contribution of the decorrelated noise signal of the useful signal, in the same way as in the case of figure 2a, but also in the contribution to this signal disturbance of the reception signal noted x (t).

En raison de la décorrélation entre le signal de réception et le signal de bruit, selon un aspect particulièrement avantageux du procédé, objet de la présente invention, le processus appliqué peut alors être sensiblement identique à celui explicité en liaison avec la figure 2a.Due to the decorrelation between the signal reception and noise signal, particularly in one aspect advantageous of the process, object of the present invention, the process applied can then be substantially identical to that explained in connection with FIG. 2a.

Pour cette même raison, on indique que le signal perturbateur estimé p and(t) ainsi que le signal utile su jouent, dans le processus de filtrage optimal 103 et dans le processus d'estimation grossière 102, respectivement dans le processus de calcul d'erreur et de minimisation de cette erreur 104, le même rôle que dans le cas de la figure 2a.For the same reason, it is indicated that the signal estimated disturbance p and (t) as well as the useful signal su play, in the optimal filtering process 103 and in the rough estimation process 102, respectively in the error calculation process and minimization of this error 104, the same role as in the case of FIG. 2a.

Dans ces conditions, et pour les mêmes raisons, le signal utile su issu du filtrage optimal à l'étape 103 converge vers la valeur du signal utile estimé su et, en conséquence, vers la valeur du signal utile d'origine s(t).Under these conditions, and for the same reasons, the useful signal su resulting from optimal filtering in step 103 converges to the value of the estimated useful signal su and, in consequently, towards the value of the original useful signal s (t).

Un mode de réalisation préférentiel du procédé de traitement optimisé d'un signal perturbateur dans le domaine fréquentiel correspondant au cas où le signal perturbateur p(t) est simplement constitué par un signal de bruit décorrélé du signal utile s(t), respectivement dans le cas où, au contraire, ce signal perturbateur est constitué, non seulement par la contribution d'un signal de bruit décorrélé du signal utile, mais également par la contribution d'un signal de réception x(t) tel qu'un signal d'écho, un signal de réverbération ou analogue engendré en fait par le signal d'observation y(t), sera donné en liaison avec les figures 2c, respectivement 2d.A preferred embodiment of the optimized processing of a disturbing signal in the field frequency corresponding to the case where the disturbing signal p (t) is simply constituted by a noise signal decorrelated from the useful signal s (t), respectively in the case where, on the contrary, this disturbing signal is constituted, not only by the contribution of a decorrelated noise signal of the useful signal, but also by the contribution of a reception signal x (t) such as an echo signal, a signal of reverberation or the like generated by the signal observation y (t), will be given in conjunction with the figures 2c, respectively 2d.

Ce mode de réalisation préférentiel est particulièrement avantageux en raison du fait notamment que, dans le cadre d'une mise en oeuvre par les techniques numériques de filtrage dans le domaine fréquentiel, il n'est pas nécessaire de mettre en oeuvre un annuleur d'écho contrairement aux techniques qui ont pu être décrites en relation avec l'art antérieur précédemment dans la description.This preferred embodiment is particularly advantageous due in particular to the fact that in the part of an implementation by digital techniques of filtering in the frequency domain, it is not necessary to implement an echo canceller unlike to the techniques that have been described in relation to the prior art previously in the description.

En liaison avec la figure 2c, et dans le cas où le signal perturbateur p(t) est formé simplement d'un signal de bruit décorrélé du signal utile, le procédé de traitement optimisé, objet de la présente invention, dans le domaine fréquentiel, peut consister à effectuer à l'étape 100 une transformée fréquentielle du signal d'observation y(t) au moyen d'une transformée de Fourier, telle qu'une transformée rapide, notée FFT de façon usuelle, afin de permettre d'engendrer un signal transformé Y(f), ce signal étant représentatif, dans le domaine fréquentiel, du signal d'observation.In connection with FIG. 2c, and in the case where the disturbing signal p (t) is formed simply by a signal of decorrelated noise of the useful signal, the processing method optimized, object of the present invention, in the field frequency, may consist in performing in step 100 a frequency transform of the observation signal y (t) at using a Fourier transform, such as a transform fast, noted FFT in the usual way, to allow to generate a transformed signal Y (f), this signal being representative, in the frequency domain, of the signal observation.

En outre, l'étape 100 précitée consiste à effectuer une estimation à partir du signal transformé Y(f) d'un signal représentatif de la densité spectrale de puissance du signal d'observation, ce signal étant noté γ andyy(f).In addition, the aforementioned step 100 consists in carrying out an estimation from the transformed signal Y (f) of a signal representative of the power spectral density of the observation signal, this signal being denoted γ and yy (f).

A l'issue de l'étape 100, on dispose ainsi, non seulement du signal transformé Y(f) représentatif de la transformée fréquentielle du signal d'observation y(t), mais également du signal représentatif de la densité spectrale de puissance estimée de ce signal d'observation, signal noté γ andγγ(f).At the end of step 100, we thus have not only the transformed signal Y (f) representative of the frequency transform of the observation signal y (t), but also the signal representative of the estimated power spectral density. of this observation signal, signal noted γ and γγ (f).

Selon un aspect particulièrement avantageux de la mise en oeuvre du procédé de traitement optimisé d'un signal perturbateur, objet de la présente invention, on indique que l'étape 102 d'estimation du signal utile peut alors être effectuée directement sur la densité spectrale de puissance estimée, d'une part, du signal d'observation γ andyy(f) et, d'autre part, du signal représentatif de la densité spectrale de puissance estimée du signal perturbateur obtenu à la fin de l'étape 101, noté γ andpp(f). Dans un tel cas, et conformément à un aspect remarquable du procédé selon l'invention, l'étape 102 d'estimation grossière du signal utile revient alors à effectuer une estimation a posteriori de la densité spectrale de puissance du signal utile, laquelle, pour cette raison, est notée γ andss(f). En fin d'étape 102, on dispose alors du signal représentatif de la densité spectrale de puissance estimée du signal utile précité.According to a particularly advantageous aspect of the implementation of the optimized processing method of a disturbing signal, object of the present invention, it is indicated that the step 102 of estimation of the useful signal can then be carried out directly on the spectral density of estimated power, on the one hand, of the observation signal γ and yy (f) and, on the other hand, of the signal representative of the estimated power spectral density of the disturbing signal obtained at the end of step 101, noted γ and pp (f). In such a case, and in accordance with a remarkable aspect of the method according to the invention, the step 102 of rough estimation of the useful signal then amounts to carrying out an a posteriori estimation of the power spectral density of the useful signal, which, for this reason is noted γ and ss (f). At the end of step 102, the signal representative of the estimated power spectral density of the aforementioned useful signal is then available.

Selon un autre aspect particulièrement avantageux du procédé, objet de la présente invention, lorsque le traitement est effectué dans le domaine fréquentiel, ainsi que représenté en figure 2c, l'étape de filtrage optimal 103 est réalisée sur le signal représentatif de la transformée fréquentielle du signal d'observation Y(f) à partir des signaux représentatifs de la densité spectrale de puissance estimée du signal perturbateur γ andpp(f) et du signal représentatif de la densité spectrale de puissance estimée du signal utile, notée γ andss(f), disponible en fin d'étape 102 précitée. Dans ce cas, l'étape de filtrage optimal 103 et l'étape de calcul d'erreur et de minimisation de cette erreur 104 peuvent être réalisées au moyen d'une même étape de filtrage global, notée pour cette raison 103+104 sur la figure 2c, le traitement dans le domaine fréquentiel, en particulier le traitement numérique permettant, grâce à la mise en oeuvre d'un seul filtre optimal, l'optimisation du signal utile, le signal d'erreur entre le signal utile et le signal utile estimé, ou plus exactement entre les densités spectrales de puissance estimée de ces signaux, étant directement disponible du fait du filtrage optimal réalisé. Pour cette raison, le filtrage global est représenté en pointillés comme la réunion des étapes 103 et 104 sur la figure 2c.According to another particularly advantageous aspect of the method, object of the present invention, when the processing is carried out in the frequency domain, as shown in FIG. 2c, the optimal filtering step 103 is carried out on the signal representative of the frequency transform of the observation signal Y (f) from signals representative of the estimated power spectral density of the disturbing signal γ and pp (f) and of the signal representative of the estimated power spectral density of the useful signal, denoted γ and ss (f ), available at the end of step 102 above. In this case, the optimal filtering step 103 and the step of calculating an error and minimizing this error 104 can be carried out by means of the same global filtering step, noted for this reason 103 + 104 on the FIG. 2c, the processing in the frequency domain, in particular the digital processing allowing, thanks to the implementation of a single optimal filter, the optimization of the useful signal, the error signal between the useful signal and the useful signal estimated, or more exactly between the estimated power spectral densities of these signals, being directly available due to the optimal filtering performed. For this reason, the global filtering is represented in dotted lines as the meeting of steps 103 and 104 in FIG. 2c.

Bien entendu, dans le cas où le signal perturbateur p(t) consiste, non seulement en la contribution d'un signal de bruit, ainsi que décrit relativement à la figure 2c, mais également en la contribution d'un signal de réception, et, de manière analogue au mode de traitement correspondant représenté en figure 2b, le procédé, objet de la présente invention, pour un traitement dans le domaine fréquentiel, peut bien entendu être mis en oeuvre avec les mêmes avantages que dans le cas de la figure 2c dans le cas de la présence d'un signal de réception, ainsi que représenté en figure 2d.Of course, if the disturbing signal p (t) consists, not only in the contribution of a signal noise, as described in relation to Figure 2c, but also in the contribution of a reception signal, and, analogously to the corresponding processing mode shown in Figure 2b, the process, subject of this invention, for treatment in the frequency domain, can of course be implemented with the same advantages that in the case of Figure 2c in the case of the presence of a reception signal, as shown in figure 2d.

Dans ce cas, le procédé, objet de la présente invention, consiste à effectuer une transformée fréquentielle du signal d'observation, à l'étape 100a, transformée notée FFT, pour engendrer le signal transformé représentatif dans le domaine fréquentiel du signal d'observation Y(f) ainsi qu'une transformée fréquentielle du signal de réception, à l'étape 100b, pour engendrer un signal transformé représentatif du signal de réception et noté X(f).In this case, the process which is the subject of the present invention, consists in performing a frequency transform of the observation signal, in step 100a, transformed denoted FFT, to generate the representative transformed signal in the frequency domain of the observation signal Y (f) as well as a frequency transform of the reception signal, in step 100b, to generate a transformed signal representative of the reception signal and denoted X (f).

De manière analogue au processus décrit en figure 2c, une étape d'estimation est effectuée aux étapes 100a et 100b, cette étape d'estimation consistant, à partir de chaque signal transformé Y(f) et X(f) précédemment cités, à obtenir un signal représentatif de la densité spectrale de puissance estimée du signal d'observation, noté pour cette raison γ andyy(f), respectivement du signal de réception, noté pour cette raison γ andxx(f).Analogously to the process described in FIG. 2c, an estimation step is carried out in steps 100a and 100b, this estimation step consisting in obtaining, from each transformed signal Y (f) and X (f) previously cited, to obtain a signal representative of the estimated power spectral density of the observation signal, noted for this reason γ and yy (f), respectively of the reception signal, noted for this reason γ and xx (f).

D'une manière générale, l'estimation de la densité spectrale de puissance du signal d'observation, du signal de réception, du signal d'écho peut être mise en oeuvre au moyen d'un filtrage récursif à partir d'un facteur d'oubli, ainsi qu'il sera décrit ultérieurement dans la description.In general, the density estimate power spectral of the observation signal, of the signal reception, the echo signal can be implemented at recursive filtering based on a forgetting factor, as will be described later in the description.

L'estimation de la densité spectrale de puissance du signal perturbateur effectuée à l'étape 101 consiste à effectuer l'étape d'estimation de la densité spectrale de puissance du signal perturbateur γ andpp(f) sur le signal représentatif de la densité spectrale de puissance du signal d'observation γ andyy(f) disponible en fin d'étape 100a, respectivement sur le signal représentatif de la densité spectrale de puissance du signal de réception γ andxx(f) disponible en fin d'étape 100b. On obtient ainsi, en fin d'étapes 101a et 101b, c'est-à-dire finalement en fin d'étape 101, des signaux représentatifs de la densité spectrale de puissance estimée du signal de bruit, signal noté γ andppy(f), respectivement du signal d'écho engendré par le signal de réception noté pour cette raison γ andppx(f).The estimation of the power spectral density of the disturbing signal carried out in step 101 consists in performing the step of estimating the power spectral density of the disturbing signal γ and pp (f) on the signal representative of the spectral density. power of the observation signal γ and yy (f) available at the end of step 100a, respectively on the signal representative of the power spectral density of the reception signal γ and xx (f) available at the end of step 100b. We thus obtain, at the end of steps 101a and 101b, that is to say finally at the end of step 101, signals representative of the estimated power spectral density of the noise signal, signal noted γ and ppy (f ), respectively of the echo signal generated by the reception signal noted for this reason γ and ppx (f).

En raison du même principe d'absence de corrélation entre la contribution du bruit au signal perturbateur et le signal utile et la contribution du bruit au signal perturbateur et la contribution du signal de réception à ce même signal perturbateur et ce même signal utile, la densité spectrale de puissance estimée résultante du signal perturbateur, notée de ce fait γ andpp(f), est réputée consister en la somme des densités spectrales de puissance estimées γ andppy(f) et γ andppx(f).Due to the same principle of no correlation between the contribution of noise to the disturbing signal and the useful signal and the contribution of noise to the disturbing signal and the contribution of the reception signal to this same disturbing signal and this same useful signal, the density estimated power spectral resulting from the disturbing signal, denoted by this fact γ and pp (f), is deemed to consist of the sum of the estimated power spectral densities γ and ppy (f) and γ and ppx (f).

En raison de l'unicité de notation utilisée pour la description des figures 2d et 2c, l'étape 102 telle que représentée en figure 2d consiste également à effectuer une estimation de la densité spectrale du signal utile γ andss(f) réputée alors égale à la différence des densités spectrales estimées du signal d'observation γ andyy(f) et du signal perturbateur γ andpp(f).Due to the unique notation used for the description of FIGS. 2d and 2c, step 102 as represented in FIG. 2d also consists in carrying out an estimation of the spectral density of the useful signal γ and ss (f) then deemed to be equal. unlike the estimated spectral densities of the observation signal γ and yy (f) and the disturbing signal γ and pp (f).

Bien entendu, et de même que dans le cas de la figure 2c, les signaux de densité spectrale estimée du signal utile γ andss(f) disponible à l'étape 102 et du signal perturbateur γ andpp(f) permettent alors d'assurer le filtrage optimal à l'étape 103 et, de manière plus générale, le filtrage global 103+104 sur le signal Y(f) représentatif dans le domaine fréquentiel du signal d'observation.Of course, and as in the case of FIG. 2c, the signals of estimated spectral density of the useful signal γ and ss (f) available in step 102 and of the disturbing signal γ and pp (f) then make it possible to ensuring the optimal filtering in step 103 and, more generally, the global filtering 103 + 104 on the signal Y (f) representative in the frequency domain of the observation signal.

En ce qui concerne le critère de minimisation de l'erreur entre le signal utile et le signal utile estimé, on indique que le critère de minimisation peut consister en une minimisation de l'erreur quadratique moyenne d'estimation selon la relation (1) : E[(su-su)2] With regard to the criterion for minimizing the error between the useful signal and the estimated useful signal, it is indicated that the minimization criterion can consist in minimizing the mean square error of estimation according to the relation (1): E [(su- s u) 2 ]

La relation (1) précitée peut être utilisée, soit pour le traitement dans le domaine temporel, soit pour le traitement dans le domaine fréquentiel.The above relation (1) can be used, either for processing in the time domain, i.e. for frequency domain treatment.

Une justification de l'ensemble du procédé de traitement optimisé, objet de la présente invention, sera maintenant donnée au plan théorique pour un traitement dans le domaine fréquentiel.A justification of the entire process optimized processing, object of the present invention, will now given at the theoretical level for treatment in the frequency domain.

La minimisation de l'erreur précitée entre le signal utile et le signal utile estimé conduit, pour le domaine fréquentiel, à la mise en oeuvre d'un filtrage du signal d'observation sous sa forme de signal représentatif du signal d'observation dans le domaine fréquentiel Y(f), selon la relation (2) : S(f) = T(f)Y(f) = su. The minimization of the aforementioned error between the useful signal and the estimated useful signal leads, for the frequency domain, to the implementation of a filtering of the observation signal in its form of signal representative of the observation signal in the frequency domain Y (f), according to relation (2): S (f) = T (f) Y (f) = su.

Dans cette relation, T(f) représente la réponse en fréquence d'un filtrage optimal dont l'expression est donnée par la relation (3) : T(f) = γ ys(f) γ yy(f) . Dans cette relation,

γ andys(f)
désigne l'interspectre entre le signal d'observation, c'est-à-dire le signal représentatif du signal d'observation dans le domaine fréquentiel et le signal utile, et
γ andyy(f)
désigne la densité spectrale de puissance estimée, ci-après désignée par dsp, du signal d'observation.
In this relation, T (f) represents the frequency response of an optimal filtering whose expression is given by equation (3): T (f) = γ ys (F) γ yy (F) . In this relationship,
γ and ys (f)
designates the interspectrum between the observation signal, that is to say the signal representative of the observation signal in the frequency domain and the useful signal, and
γ and yy (f)
denotes the estimated power spectral density, hereinafter referred to as dsp, of the observation signal.

Compte tenu des hypothèses réalistes précédemment citées de décorrélation effective entre le signal utile et le signal perturbateur constitué de bruit et d'écho, la réponse en fréquence du filtrage optimal vérifie la relation (4) : T(f) = γ ss(f) γ ss(f) + γ pp(f) Dans cette relation :

γ andss(f)
désigne la densité spectrale de puissance estimée du signal utile,
γ andpp(f)
désigne la densité spectrale de puissance estimée du signal perturbateur.
Taking into account the previously mentioned realistic hypotheses of effective decorrelation between the useful signal and the disturbing signal consisting of noise and echo, the frequency response of the optimal filtering verifies the relation (4): T (f) = γ ss (F) γ ss (f) + γ pp (F) In this relationship:
γ and ss (f)
denotes the estimated power spectral density of the useful signal,
γ and pp (f)
denotes the estimated power spectral density of the disturbing signal.

D'un point de vue pratique, la densité spectrale de puissance estimée du signal utile γ andss(f) n'est pas connue a priori. Ce signal peut par exemple être estimé compte tenu des hypothèses précédentes de décorrélation entre le signal utile et le signal perturbateur en utilisant le processus de soustraction spectrale précédemment cité, vérifiant la relation (5) : γ ss(f) = γ yy(f) -γ pp(f). From a practical point of view, the estimated power spectral density of the useful signal γ and ss (f) is not known a priori. This signal can for example be estimated taking into account the preceding hypotheses of decorrelation between the useful signal and the disturbing signal by using the process of spectral subtraction previously quoted, verifying the relation (5): γ ss (f) = γ yy (f) - γ pp (F).

Le processus de traitement optimisé du signal perturbateur, conforme à l'objet de la présente invention, se réduit ainsi à la mise en oeuvre d'un seul filtrage optimal, ce qui permet de réduire de manière globale l'ensemble des composantes constituant le signal perturbateur. En effet, on comprend en particulier que le signal perturbateur peut être constitué d'une pluralité de composantes pourvu que la décorrélation soit suffisante entre le signal utile et le signal perturbateur, c'est-à-dire chacune des composantes constituant ce dernier. Cette hypothèse est largement vérifiée dans les applications diverses liées par exemple à la téléphonie mains libres dans des véhicules automobiles, ou encore à la vidéo-conférence mains libres, et, de manière plus générale, à tout type d'applications dans lesquelles une pluralité de composantes d'un signal perturbateur peut être mise en évidence.The optimized signal processing process disruptive, in accordance with the object of the present invention, thus reduces to the implementation of a single filtering optimal, which allows to reduce overall all the components constituting the disturbing signal. Indeed, we understand in particular that the signal disruptive may consist of a plurality of components provided there is sufficient decorrelation between the useful signal and the disturbing signal, i.e. each components constituting the latter. This assumption is widely verified in various applications linked by example of hands-free telephony in vehicles cars, or hands-free video conferencing, and, more generally, to all types of applications in which a plurality of components of a signal disruptive can be highlighted.

Dans un tel cas, pour un signal perturbateur consistant en une pluralité de composantes de ce signal perturbateur, la densité spectrale de puissance estimée du signal perturbateur γ andpp(f) est alors prise égale à la somme des densités spectrales de puissance estimée γ andi pp(f) de chaque composante de rang i de ce signal perturbateur. Dans ce cas, le signal représentatif de la densité spectrale de puissance estimée du signal perturbateur vérifie la relation (6) :

Figure 00180001
Dans cette relation, P représente le nombre de composantes du signal perturbateur.In such a case, for a disturbing signal consisting of a plurality of components of this disturbing signal, the estimated power spectral density of the disturbing signal γ and pp (f) is then taken equal to the sum of the spectral densities of estimated power γ and i pp (f) of each component of rank i of this disturbing signal. In this case, the signal representative of the estimated power spectral density of the disturbing signal checks the relation (6):
Figure 00180001
In this relation, P represents the number of components of the disturbing signal.

Un mode de réalisation préférentiel du procédé de traitement optimisé, objet de la présente invention, sera maintenant décrit en liaison avec la figure 2e dans le cas où un traitement par blocs du signal d'observation est réalisé.A preferred embodiment of the optimized processing, object of the present invention, will now described in connection with FIG. 2e in the case where block processing of the observation signal is realized.

Dans le cadre d'un tel traitement, on comprend en particulier que le signal d'observation y(t) dont on dispose est bien entendu échantillonné à une fréquence d'échantillonnage adéquate, les échantillons successifs étant subdivisés en blocs d'échantillons. A chaque bloc d'échantillons est affecté un rang m successif, m désignant en fait le rang du bloc courant soumis au traitement. On comprend en particulier que la technique de constitution des blocs d'échantillons est une technique classique, les blocs successifs d'échantillons pouvant être soumis à un certain recouvrement typiquement égal à 50% en nombre d'échantillons constitutifs de chaque bloc.In the context of such treatment, it is understood that particular that the observation signal y (t) available is of course sampled at a sampling frequency adequate, successive samples being subdivided in sample blocks. At each block of samples is assigned a successive rank m, m denoting in fact the rank of the current block subjected to the treatment. We understand in particular that the technique of building up sample blocks is a classic technique, successive blocks samples that may be subject to some recovery typically equal to 50% in number of constituent samples of each block.

Dans le cadre de la figure 2e, le traitement par blocs est réputé effectué de la manière la plus générale lorsque le signal perturbateur prend en compte, non seulement la contribution d'un signal de bruit, mais également celle engendrée par un signal de réception x(t).In the context of Figure 2e, treatment with blocks is deemed to be carried out in the most general manner when the disturbing signal takes into account, not only the contribution of a noise signal, but also that generated by a reception signal x (t).

Ainsi que représenté en figure 2e, à l'étape 100a, outre la subdivision du signal d'observation en blocs successifs de rang m, chaque bloc d'échantillons étant noté Bm(t) est bien entendu soumis à une transformation fréquentielle FFT permettant d'obtenir des blocs d'échantillons dans le domaine fréquentiel notés Bm(f). L'étape 100a consiste en outre à effectuer une estimation de la densité spectrale de puissance du signal d'observation sur le bloc courant, le signal de densité spectrale de puissance estimée du signal d'observation étant noté γ andyy(f,m) où m désigne bien entendu l'indice relatif au bloc courant.As shown in FIG. 2e, in step 100a, in addition to the subdivision of the observation signal into successive blocks of rank m, each block of samples being denoted Bm (t) is of course subjected to a frequency transformation FFT allowing d '' obtain blocks of samples in the frequency domain denoted Bm (f). Step 100a also consists in carrying out an estimation of the power spectral density of the observation signal on the current block, the signal of the estimated power spectral density of the observation signal being noted γ and yy (f, m) where m naturally denotes the index relating to the current block.

A la fin de l'étape 100a, on dispose en fait, non seulement du signal représentatif de la densité spectrale de puissance estimée du signal d'observation précité γ andyy(f,m), mais également du bloc Bm(f) représentatif du signal d'observation pour le bloc courant de rang m considéré.At the end of step 100a, in fact, not only is the signal representative of the estimated power spectral density of the aforementioned observation signal γ and yy (f, m), but also the representative block Bm (f) of the observation signal for the current block of rank m considered.

Il en est de même à l'étape 100b pour laquelle, par analogie avec la figure 2d, un traitement correspondant est appliqué sur le signal de réception x(t), ce traitement consistant alors en une subdivision en blocs correspondants de rang m, chaque bloc étant noté B'm(t), chaque bloc précité étant soumis à une transformation fréquentielle, notée FFT, cette opération permettant d'obtenir des blocs représentatifs des blocs d'échantillons dans l'espace fréquentiel et notés pour cette raison B'm(f). L'étape 100b représentée en figure 2e comporte également une opération d'estimation de la densité spectrale de puissance du signal de réception sur le bloc courant B'm(f). En fin d'étape 100b de la figure 2e, on dispose de chaque bloc courant B'm(f) représentatif du bloc d'échantillons dans le domaine fréquentiel et d'un signal représentatif de la densité spectrale de puissance estimée du signal de réception pour le bloc courant précité, ce signal étant noté γ andxx(f,m).It is the same in step 100b for which, by analogy with FIG. 2d, a corresponding processing is applied to the reception signal x (t), this processing then consisting of a subdivision into corresponding blocks of rank m, each block being denoted B'm (t), each aforementioned block being subjected to a frequency transformation, denoted FFT, this operation making it possible to obtain blocks representative of the blocks of samples in the frequency space and denoted for this reason B'm (f). Step 100b shown in FIG. 2e also includes an operation of estimating the power spectral density of the reception signal on the current block B'm (f). At the end of step 100b in FIG. 2e, there is each current block B'm (f) representative of the sample block in the frequency domain and a signal representative of the estimated power spectral density of the reception signal for the aforementioned current block, this signal being noted γ and xx (f, m).

Ainsi que représenté en outre sur la figure 2e, le procédé de traitement optimisé, conforme à l'objet de la présente invention, consiste ensuite, à l'étape 101, à effectuer une estimation de la densité spectrale de puissance de chaque composante du signal perturbateur précédemment cité γ andi pp(f,m). On comprend par exemple que le signal représentatif de la densité spectrale de puissance de chaque composante du signal perturbateur γ andi pp(f,m) est en fait constitué au moins par le signal représentatif de la densité spectrale de puissance estimée γ andppy(f,m) représentatif de la contribution du signal de bruit au signal perturbateur et par le signal représentatif de la densité spectrale de puissance estimée de la contribution du signal de réception à ce signal perturbateur γ andppx(f,m).As also shown in FIG. 2e, the optimized processing method, in accordance with the object of the present invention, then consists, in step 101, in carrying out an estimation of the power spectral density of each component of the signal disruptor previously cited γ and i pp (f, m). It is understood, for example, that the signal representative of the power spectral density of each component of the disturbing signal γ and i pp (f, m) is in fact constituted at least by the signal representative of the estimated power spectral density γ and ppy ( f, m) representative of the contribution of the noise signal to the disturbing signal and by the signal representative of the estimated power spectral density of the contribution of the reception signal to this disturbing signal γ and ppx (f, m).

L'estimation de la densité spectrale de puissance de chaque composante du signal perturbateur γ andi pp(f,m) est effectuée ainsi à partir du signal de réception et, de manière plus particulière, à partir de la densité spectrale de puissance estimée du signal de réception γ andxx(f,m) et du bloc courant B'm(f), de l'estimation de la densité spectrale de puissance du signal d'observation sur le bloc courant Bm(f) du signal d'observation de même rang m.The estimation of the power spectral density of each component of the disturbing signal γ and i pp (f, m) is thus carried out from the reception signal and, more particularly, from the estimated power spectral density of the reception signal γ and xx (f, m) and of the current block B'm (f), of the estimation of the power spectral density of the observation signal on the current block Bm (f) of the observation signal of the same rank m.

En fin d'étape 101, sur la figure 2e, on dispose en fait, pour le bloc courant de rang m du signal d'observation et du signal de réception, de la densité spectrale de puissance estimée du signal d'observation sur ce bloc courant noté γ andyy(f,m) et, bien entendu, d'une estimation de la densité spectrale de puissance du signal perturbateur γ andpp(f,m), laquelle vérifie bien entendu la relation (6) précédente.At the end of step 101, in FIG. 2e, there is in fact, for the current block of rank m of the observation signal and of the reception signal, the estimated power spectral density of the observation signal on this block current noted γ and yy (f, m) and, of course, an estimate of the power spectral density of the disturbing signal γ and pp (f, m), which of course checks the previous relation (6).

Ainsi que représenté sur la figure 2e, la densité spectrale de puissance du signal utile est alors estimée sur le bloc courant par une estimation dite a posteriori. Le signal représentatif de la densité spectrale de puissance estimée du signal utile vérifie alors la relation (7) :

Figure 00210001
As shown in FIG. 2e, the power spectral density of the useful signal is then estimated on the current block by a so-called posterior estimation. The signal representative of the estimated power spectral density of the useful signal then checks the relation (7):
Figure 00210001

On rappelle que la notion d'estimation a posteriori recouvre la notion d'estimation de la densité spectrale de puissance du signal utile en l'absence de toute connaissance de ce dernier. Cette opération porte la référence 102a sur la figure 2e.Remember that the notion of a posteriori estimate covers the notion of spectral density estimation of useful signal strength in the absence of any knowledge of the last. This operation bears the reference 102a on Figure 2e.

L'opération d'estimation a posteriori 102a est alors suivie d'une étape 102b d'estimation a priori de l'amplitude du spectre du signal utile sur le bloc courant. D'une manière générale, on indique que l'amplitude du spectre du signal utile sur le bloc courant vérifie la relation générale (8) : Ass(f,m) = T(f,m) . Y(f,m). The posterior estimation operation 102a is then followed by a step 102b of a priori estimation of the amplitude of the spectrum of the useful signal on the current block. In general, we indicate that the amplitude of the spectrum of the useful signal on the current block satisfies the general relation (8): AT ss (f, m) = T (f, m). Y (f, m).

Dans cette relation :

T(f,m)
désigne la réponse en fréquence du filtrage optimal pour le bloc courant ;
Y(f,m)
désigne la transformée de fréquentielle à court terme, c'est-à-dire la transformée de Fourier, sur le bloc courant du signal d'observation.
In this relationship:
T (f, m)
designates the frequency response of the optimal filtering for the current block;
Y (f, m)
denotes the short-term frequency transform, that is to say the Fourier transform, on the current block of the observation signal.

On indique en particulier que le signal Y(f,m) peut être obtenu à partir du bloc courant Bm(t) et application d'une simple transformée de Fourier à court terme sur ce bloc courant pour obtenir le signal Y(f,m).It is indicated in particular that the signal Y (f, m) can be obtained from the current block Bm (t) and application of a simple short-term Fourier transform on this block current to obtain the signal Y (f, m).

Afin de réaliser une estimation a priori de l'amplitude du spectre du signal utile, on indique que cette opération, réalisée à l'étape 102b, consiste à prendre pour valeur le signal correspondant au filtrage du bloc courant du signal d'observation par la mémorisation de la valeur de la réponse en fréquence du filtrage optimal calculée sur le bloc précédent, c'est-à-dire T(f,m-1), selon la relation (9) : Ass(f,m) = T(f,m-1).Y(f,m). On comprend ainsi que l'étape d'estimation 102b peut se résumer en une mémorisation de la valeur de la réponse en fréquence du filtrage optimal calculée sur le bloc précédent.In order to carry out an a priori estimate of the amplitude of the spectrum of the useful signal, it is indicated that this operation, carried out in step 102b, consists in taking as value the signal corresponding to the filtering of the current block of the observation signal by the memorization of the value of the frequency response of the optimal filtering calculated on the preceding block, that is to say T (f, m-1), according to the relation (9): AT ss (f, m) = T (f, m-1) .Y (f, m). It is thus understood that the estimation step 102b can be summed up by storing the value of the frequency response of the optimal filtering calculated on the previous block.

L'étape 102b précitée est alors suivie de l'estimation de la densité spectrale de puissance du signal utile à l'étape 102c représentée sur la figure 2e. A l'étape 102c précitée, la densité spectrale de puissance estimée du signal utile est établie de façon à vérifier la relation (10) ci-après : γ ss(f,m) = β(m)|Ass(f,m)|2 + (1-β(m))γ ss-post(f,m). The aforementioned step 102b is then followed by the estimation of the power spectral density of the useful signal in step 102c shown in FIG. 2e. In the aforementioned step 102c, the estimated power spectral density of the useful signal is established so as to verify the relation (10) below: γ ss (f, m) = β (m) | A ss (F, m) | 2 + (1-β (m)) γ ss-post (F, m).

L'étape 102c d'estimation de la densité spectrale de puissance du signal utile est réalisée grâce à la mise en oeuvre d'une étape 102d permettant d'engendrer, pour chaque bloc courant Bm(f), un paramètre de pondération β(m) permettant d'affecter un poids adapté entre l'estimation courante réalisée à partir du filtrage appliqué au bloc précédent de rang m-1 et la contribution pour la trame courante de la densité spectrale de puissance estimée du signal utile, laquelle est bien entendu représentée par le signal γ andss-post(f,m).Step 102c of estimating the power spectral density of the useful signal is carried out thanks to the implementation of a step 102d making it possible to generate, for each current block Bm (f), a weighting parameter β (m ) allowing a suitable weight to be assigned between the current estimate made from the filtering applied to the previous block of rank m-1 and the contribution for the current frame of the estimated power spectral density of the useful signal, which is of course represented by the signal γ and ss-post (f, m).

En fin d'étape 102, on dispose bien entendu du signal représentatif de la densité spectrale de puissance estimée du signal utile, noté γ andss(f,m). Le processus de filtrage optimal peut alors être piloté pour le bloc courant sur le signal Y(f,m) grâce au filtrage global précédemment décrit en relation avec la figure 2d aux étapes 103 et 104. Bien entendu, le passage au bloc suivant est réalisé par l'incrémentation m = m+1 représentée sur la figure 2e.At the end of step 102, there is of course the signal representative of the estimated power spectral density of the useful signal, noted γ and ss (f, m). The optimal filtering process can then be controlled for the current block on the signal Y (f, m) thanks to the global filtering previously described in relation to FIG. 2d in steps 103 and 104. Of course, the transition to the next block is carried out by the increment m = m + 1 shown in Figure 2e.

Une description plus détaillée d'un mode de réalisation non limitatif d'un dispositif de traitement optimisé d'un signal perturbateur lors d'une prise de son à partir d'un signal d'observation, ce signal étant formé d'un signal utile et de ce signal perturbateur, sera maintenant décrite en liaison avec les figures 3a et 3b.A more detailed description of an embodiment non-limiting of an optimized treatment device a disturbing signal when taking sound from an observation signal, this signal being formed by a signal useful and this disturbing signal will now be described in conjunction with Figures 3a and 3b.

De manière plus spécifique et en raison des avantages majeurs précédemment mentionnés dans la description en ce qui concerne le traitement fréquentiel, le dispositif, objet de la présente invention, représenté en figure 3a, sera décrit pour un tel traitement.More specifically and because of the benefits major previously mentioned in the description in concerning the frequency treatment, the device, object of the present invention, represented in FIG. 3a, will be described for such treatment.

En outre, le signal perturbateur est considéré comme constitué d'un bruit et d'un écho engendré par un signal de réception. De la même manière que dans le cas des figures 2c et 2d, le signal d'observation est noté y(t) et est considéré fourni par un microphone M, et le signal de réception noté x(t) correspond à celui du signal délivré à un haut-parleur HP dans le contexte de la radiotéléphonie mobile mains libres par exemple. On comprend ainsi que dans l'habitacle du véhicule, le haut-parleur HP et le microphone M étant nécessairement à proximité l'un de l'autre, la contribution au signal perturbateur du signal de réception ne peut en aucun cas être négligée, alors que bien entendu d'autres composantes telles que le bruit du moteur du véhicule, les bruits de roulement engendrés par la circulation voisine par exemple constituent autant de composantes et de contributions au signal perturbateur.In addition, the disturbing signal is considered to be consisting of a noise and an echo generated by a signal reception. In the same way as in the case of FIGS. 2c and 2d, the observation signal is noted y (t) and is considered supplied by an M microphone, and the reception signal denoted x (t) corresponds to that of the signal delivered to a loudspeaker HP in the context of mobile radiotelephony hands free for example. We understand that in the passenger compartment, the loudspeaker and the microphone M being necessarily close to each other, the contribution to the signal disturbing the reception signal cannot in any case be neglected, while of course other components such as engine noise from the vehicle, traffic noise generated by traffic neighbor for example constitute as many components and contributions to the disturbing signal.

La description de la figure 3a et de la figure 3b est donnée dans le cas du principe général d'un traitement global ainsi que dans le cas d'un traitement semblable réalisé sous forme de traitement par blocs, les références des éléments constitutifs du dispositif de traitement optimisé, objet de la présente invention, dans le cas du traitement par blocs, correspondant à celles attribuées pour le traitement général, affectées toutefois d'un indice m correspondant à la désignation de rang du bloc courant considéré, ainsi que décrit précédemment en liaison avec la figure 2d et 2e.Description of Figure 3a and Figure 3b is given in the case of the general principle of treatment overall as well as in the case of a similar treatment performed in the form of block processing, the references constituent elements of the treatment device optimized, object of the present invention, in the case of block processing, corresponding to those allocated for general treatment, however with an index m corresponding to the row designation of the current block considered, as previously described in connection with the Figure 2d and 2e.

Ainsi qu'on l'a représenté sur la figure 3a, le signal d'observation y(t) délivré par le microphone M est soumis au moyen d'un module, noté T1(f,m), T1(f), à un échantillonnage numérique à une fréquence appropriée, à une subdivision par blocs et bien entendu à une transformée fréquentielle, notée FFT sur la figure 3a. Le module T1(f,m) délivre alors le signal Y(f,m) représentatif dans le domaine fréquentiel du signal d'observation sur le bloc de rang m considéré.As shown in FIG. 3a, the observation signal y (t) delivered by the microphone M is subjected by means of a module, denoted T 1 (f, m), T 1 (f) , to digital sampling at an appropriate frequency, to a subdivision by blocks and of course to a frequency transform, denoted FFT in FIG. 3a. The module T 1 (f, m) then delivers the signal Y (f, m) representative in the frequency domain of the observation signal on the block of rank m considered.

Il en est de même pour ce qui concerne le signal de réception par l'intermédiaire d'un module T2(f,m), T2(f), lequel permet de délivrer le signal représentatif dans le domaine fréquentiel X(f,m) et les blocs B'm(f) représentatifs du signal de réception pour le bloc de rang m considéré.The same applies to the reception signal via a module T 2 (f, m), T 2 (f), which makes it possible to deliver the representative signal in the frequency domain X (f, m) and the blocks B'm (f) representative of the reception signal for the block of rank m considered.

Les modules T1(f,m) et T2(f,m) sont des modules de type classique, identiques, synchronisés par un même signal d'horloge, non représenté. A ce titre, ces modules ne seront pas décrits en détail car ils correspondent à des modules normalement utilisés dans le domaine technique correspondant et, à ce titre, parfaitement connus de l'homme de l'art.The modules T 1 (f, m) and T 2 (f, m) are modules of the conventional type, identical, synchronized by the same clock signal, not shown. As such, these modules will not be described in detail since they correspond to modules normally used in the corresponding technical field and, as such, perfectly known to those skilled in the art.

Ainsi qu'on l'observera en outre sur la figure 3a, le dispositif de traitement optimisé, objet de la présente invention, comporte un module 1,1m d'estimation de la densité spectrale de puissance du signal d'observation délivrant, à partir de ce signal d'observation, ou, de manière plus précise, à partir du signal représentatif dans le domaine fréquentiel de ce signal d'observation, c'est-à-dire soit le signal Y(f), soit le signal Y(f,m), un signal numérique représentatif de la densité spectrale de puissance estimée du signal d'observation et à ce titre noté, pour la même raison, γ andyy(f), respectivement γ andyy(f,m) sur le bloc courant m considéré.As will be further observed in FIG. 3a, the optimized processing device, object of the present invention, comprises a module 1.1 m for estimating the power spectral density of the observation signal delivering, at from this observation signal, or, more precisely, from the signal representative in the frequency domain of this observation signal, that is to say either the signal Y (f), or the signal Y (f, m), a digital signal representative of the estimated power spectral density of the observation signal and for this reason noted, for the same reason, γ and yy (f), respectively γ and yy (f, m) on the current block m considered.

En outre, le dispositif selon l'invention, tel que représenté en figure 3a, comprend un module 2,2m d'estimation de la densité spectrale de puissance du signal perturbateur recevant le signal de réception, ou, de manière plus précise, le signal représentatif dans le domaine fréquentiel de ce signal de réception, c'est-à-dire soit le signal X(f,m), soit le signal X(f). Le module 2 d'estimation de la densité spectrale de puissance du signal perturbateur reçoit également le signal numérique représentatif de la densité spectrale de puissance estimée du signal d'observation, c'est-à-dire le signal γ andyy(f), respectivement γ andyy(f,m) . Il délivre en conséquence un signal numérique représentatif de la densité spectrale de puissance estimée du signal perturbateur, désigné par γ andpp(f). Dans un mode de réalisation particulier non limitatif, on indique que le module 2,2m délivre en fait l'ensemble des signaux représentatifs de la densité spectrale de puissance estimée des composantes du signal perturbateur désignés par γ andi pp(f), respectivement γ andi pp(f,m). In addition, the device according to the invention, as shown in FIG. 3a, comprises a module 2.2 m for estimating the power spectral density of the disturbing signal receiving the reception signal, or, more precisely, the signal representative in the frequency domain of this reception signal, that is to say either the signal X (f, m), or the signal X (f). The module 2 for estimating the power spectral density of the disturbing signal also receives the digital signal representative of the estimated power spectral density of the observation signal, that is to say the signal γ and yy (f), respectively γ and yy (f, m). It therefore delivers a digital signal representative of the estimated power spectral density of the disturbing signal, designated by γ and pp (f). In a particular nonlimiting embodiment, it is indicated that the module 2.2 m in fact delivers all the signals representative of the estimated spectral power density of the components of the disturbing signal designated by γ and i pp (f), respectively γ and i pp (f, m).

Un module 3,3m d'estimation de la densité spectrale de puissance du signal utile est également prévu, lequel reçoit le signal numérique représentatif de la densité spectrale de puissance estimée du signal d'observation γ andyy(f), respectivement γ andyy(f,m) délivré par le module 1,1m ainsi que le signal numérique représentatif de la densité spectrale de puissance estimée du signal perturbateur γ andpp(f), respectivement γ andpp(f,m) ou les composantes de ce dernier, ainsi que mentionné précédemment. Le module 3,3m d'estimation de la densité spectrale de puissance du signal utile délivre par un processus inspiré du principe général de la soustraction spectrale un signal numérique, noté γ andss(f), respectivement γ andss(f,m) représentatif de la densité spectrale de puissance estimée du signal utile précité.A 3.3 m module for estimating the power spectral density of the useful signal is also provided, which receives the digital signal representative of the estimated power spectral density of the observation signal γ and yy (f), respectively γ and yy (f, m) delivered by the module 1.1 m as well as the digital signal representative of the estimated power spectral density of the disturbing signal γ and pp (f), respectively γ and pp (f, m) or the components of the latter, as previously mentioned. The 3.3 m module for estimating the spectral power density of the useful signal delivers by a process inspired by the general principle of spectral subtraction a digital signal, noted γ and ss (f), respectively γ and ss (f, m ) representative of the estimated power spectral density of the aforementioned useful signal.

Enfin, le dispositif de traitement optimisé d'un signal perturbateur, objet de la présente invention, tel que représenté en figure 3a, comprend un module de filtrage global, noté 4,4m, permettant d'assurer un filtrage optimal du signal représentatif dans le domaine fréquentiel du signal d'observation, c'est-à-dire le signal Y(f) respectivement Y(f,m) délivré par le module T1(f,m), T1(f).Finally, the device for optimized processing of a disturbing signal, object of the present invention, as shown in FIG. 3a, comprises a global filtering module, noted 4.4 m , making it possible to ensure optimal filtering of the representative signal in the frequency domain of the observation signal, that is to say the signal Y (f) respectively Y (f, m) delivered by the module T 1 (f, m), T 1 (f).

Ainsi que représenté de manière plus spécifique sur la figure 3a, le module de filtrage 4,4m comprend avantageusement un module de calcul, noté 4a,4am, des coefficients d'un filtre optimal recevant le signal numérique représentatif de la densité spectrale de puissance estimée du signal perturbateur γ andpp(f), respectivement γ andpp(f,m), ainsi que le signal numérique représentatif de la densité spectrale de puissance estimée du signal utile γ andss(f), respectivement γ andss(f,m). Le module 4a,4am représenté en figure 3a délivre un signal numérique d'adaptation de filtrage, noté af, représentatif d'une réponse en fréquence de filtrage optimal, vérifiant la relation (4) précédemment donnée dans la description. On comprend bien sûr que dans cette relation, la densité spectrale de puissance estimée du signal perturbateur correspond à la somme des densités spectrales des composantes du signal perturbateur selon la relation (6) précédemment donnée dans la description.As shown more specifically in FIG. 3a, the 4.4 m filter module advantageously comprises a calculation module, denoted 4a, 4a m , of the coefficients of an optimal filter receiving the digital signal representative of the spectral density of estimated power of the disturbing signal γ and pp (f), respectively γ and pp (f, m), as well as the digital signal representative of the estimated power spectral density of the useful signal γ and ss (f), respectively γ and ss ( f, m). The module 4a, 4a m shown in FIG. 3a delivers a digital filtering adaptation signal, denoted af , representative of an optimal filtering frequency response, verifying the relation (4) previously given in the description. It will of course be understood that in this relation, the estimated power spectral density of the disturbing signal corresponds to the sum of the spectral densities of the components of the disturbing signal according to relation (6) previously given in the description.

Enfin, constitutif du module de filtrage global 4,4m, un module 4b,4bm reçoit le signal représentatif de la réponse en fréquence, c'est-à-dire le signal af délivré par le module 4a,4am, pour délivrer, à partir du signal représentatif dans le domaine fréquentiel du signal d'observation, le signal utile su. On comprend en particulier que le module de filtrage optimal 4b,4bm peut consister par exemple en un module de filtrage de Wiener. Le signal délivré par ce module de filtrage 4b,4bm est alors reçu par un module de transformée fréquentielle inverse, pour cette raison noté FFT-1, et de synthèse par bloc, portant la référence 5,5m, lequel délivre, à partir du signal de filtrage optimal, le signal utile proprement dit su(t) reconstitué dans le domaine temporel.Finally, constituting the global filter module 4.4 m , a module 4b, 4b m receives the signal representative of the frequency response, that is to say the signal af delivered by the module 4a, 4a m , to deliver , from the representative signal in the frequency domain of the observation signal, the useful signal su. It is understood in particular that the optimal filter module 4b, 4b m can consist, for example, of a Wiener filter module. The signal delivered by this filter module 4b, 4b m is then received by a reverse frequency transform module, for this reason noted FFT -1 , and by block synthesis, bearing the reference 5.5 m , which delivers, from of the optimal filtering signal, the useful signal proper su (t) reconstituted in the time domain.

Une description plus détaillée d'un mode de réalisation préférentiel du module 3m représenté en figure 3a d'estimation de la densité spectrale de puissance du signal utile correspondant au mode de mise en oeuvre du procédé, objet de la présente invention, tel que représenté en figure 2e, sera maintenant donnée en liaison avec la figure 3b pour un traitement par blocs de rang successifs m.A more detailed description of a preferred embodiment of the 3 m module shown in FIG. 3a for estimating the power spectral density of the useful signal corresponding to the mode of implementation of the method, object of the present invention, as shown in FIG. 2e, will now be given in conjunction with FIG. 3b for processing by blocks of successive rank m.

Bien entendu, et conformément à la description donnée en liaison avec la figure 3a, le dispositif objet de la présente invention comprend, outre le module T1(f,m) délivrant une succession de blocs courants successifs de rang m, le module d'estimation de la densité spectrale de puissance du signal d'observation sur le bloc courant γ andyy(f,m), module 1m, et le module d'estimation de la densité spectrale de puissance de chaque composante du signal perturbateur γ and1 pp(f,m), module 2m, le module d'estimation par blocs de la densité spectrale de puissance du signal utile, module 3m, lequel comporte avantageusement, ainsi que représenté en figure 3b, un module 30m d'estimation a posteriori de la densité spectrale de puissance du signal utile sur le bloc courant, noté γ andss-post(f,m) vérifiant la relation (7) précédemment mentionnée dans la description. En outre, le module 3m comporte également un module 31m d'estimation a priori de l'amplitude du spectre du signal utile sur le bloc courant, vérifiant la relation (9) précédemment mentionnée dans la description. Le module 31m reçoit, d'une part, le signal γ andss-post(f,m) délivré par le module 30m ainsi que, d'autre part, le signal Y(f,m) délivré par le bloc T1(f,m), ainsi qu'un signal représentatif de la réponse en fréquence du filtrage optimal pour le bloc précédant le bloc courant, soit T(f,m-1) délivré par exemple par le bloc 4am de la figure 3a.Of course, and in accordance with the description given in connection with FIG. 3a, the device which is the subject of the present invention comprises, in addition to the module T 1 (f, m) delivering a succession of successive current blocks of rank m, the module of estimation of the power spectral density of the observation signal on the current block γ and yy (f, m), module 1 m , and the module of estimation of the power spectral density of each component of the disturbing signal γ and 1 pp (f, m), module 2 m , the module for block estimation of the spectral power density of the useful signal, module 3 m , which advantageously comprises, as shown in FIG. 3b, a module 30 m for estimation a posteriori of the power spectral density of the useful signal on the current block, noted γ and ss-post (f, m) verifying the relation (7) previously mentioned in the description. In addition, the 3 m module also includes a 31 m module for a priori estimation of the amplitude of the spectrum of the useful signal on the current block, verifying the relation (9) previously mentioned in the description. The 31 m module receives, on the one hand, the signal γ and ss-post (f, m) delivered by the module 30 m as well, on the other hand, the signal Y (f, m) delivered by the block T 1 (f, m), as well as a signal representative of the frequency response of the optimal filtering for the block preceding the current block, ie T (f, m-1) delivered for example by the block 4a m of FIG. 3a .

Le bloc 31m délivre alors une estimation a priori de l'amplitude du spectre du signal utile notée Ass(f,m).The block 31 m then delivers an a priori estimate of the amplitude of the spectrum of the useful signal denoted A ss (f, m).

Enfin, un module de calcul de la densité spectrale de puissance du signal utile, pour le bloc courant, module 32m, est prévu, lequel reçoit le signal d'estimation a priori de l'amplitude du spectre du signal utile Ass(f,m) délivré par le module 31m ainsi qu'un signal représentatif d'un coefficient ou paramètre de pondération β(m) à partir d'un module 33m représenté sur la figure 3b. Le paramètre β(m) permet d'affecter un poids adapté entre l'estimation faite au bloc précédent de rang m-1 et la contribution pour la trame courante de la densité spectrale de puissance du signal utile, ainsi que mentionné précédemment dans la description. Le paramètre β(m) peut être ajusté suivant les caractéristiques des signaux utiles et du bruit estimé. Le module 32m délivre alors le signal représentatif de la densité spectrale de puissance estimée du signal utile, vérifiant la relation (10) précédemment mentionnée dans la description.Finally, a module for calculating the power spectral density of the useful signal, for the current block, module 32 m , is provided, which receives the a priori estimation signal of the amplitude of the spectrum of the useful signal spectrum A ss (f , m) delivered by the module 31 m as well as a signal representative of a weighting coefficient or parameter β (m) from a module 33 m shown in FIG. 3b. The parameter β (m) makes it possible to assign a suitable weight between the estimate made at the previous block of rank m-1 and the contribution for the current frame of the power spectral density of the useful signal, as mentioned previously in the description . The parameter β (m) can be adjusted according to the characteristics of the useful signals and of the estimated noise. The module 32 m then delivers the signal representative of the estimated power spectral density of the useful signal, verifying the relation (10) previously mentioned in the description.

Le mode de réalisation du dispositif de traitement optimisé d'un signal perturbateur, objet de la présente invention, tel que représenté en figures 3a et 3b, n'est pas limitatif.The embodiment of the processing device optimized of a disturbing signal, object of this invention, as shown in Figures 3a and 3b, is not limiting.

On comprend en particulier qu'en liaison avec le contexte de la figure 2d par exemple, pour un signal perturbateur formé par un signal d'écho de ce signal de réception et d'un signal de bruit, lorsque le signal de bruit est sensiblement décorrélé du signal d'écho et que le module d'estimation de la densité spectrale de puissance du signal d'écho 2,2m délivre alors un signal numérique représentatif de la densité spectrale de puissance estimée du signal d'écho, noté γ andzz(f), respectivement γ andzz(f,m), le dispositif, objet de la présente invention, est modifié selon la figure 3c où toutefois les mêmes références représentent les mêmes éléments que dans le cas de la figure 3a.It is understood in particular that in connection with the context of FIG. 2d for example, for a disturbing signal formed by an echo signal of this reception signal and of a noise signal, when the noise signal is substantially decorrelated of the echo signal and the module for estimating the power spectral density of the 2.2 m echo signal then delivers a digital signal representative of the estimated power spectral density of the echo signal, denoted γ and zz (f), respectively γ and zz (f, m), the device, object of the present invention, is modified according to FIG. 3c where however the same references represent the same elements as in the case of FIG. 3a.

Dans une telle hypothèse et compte tenu de l'hypothèse réaliste de décorrélation entre les composantes du signal perturbateur, c'est-à-dire entre le signal de bruit et l'écho acoustique, la relation (4) précédemment mentionnée dans la description devient la relation (11) : T(f) = γ ss(f) γ ss(f) + γ bb(f) + γ zz(f) Cette relation représente la réponse en fréquence du filtre global compte tenu de l'estimation de la densité spectrale de puissance du signal utile, du signal de bruit et du signal d'écho, notées γ andss(f), respectivement γ andbb(f,m), γ andzz(f,m), en référence à la figure 3c.In such a hypothesis and taking into account the realistic hypothesis of decorrelation between the components of the disturbing signal, that is to say between the noise signal and the acoustic echo, the relation (4) previously mentioned in the description becomes the relation (11): T (f) = γ ss (f) γ ss (f) + γ bb (f) + γ zz (F) This relation represents the frequency response of the global filter taking into account the estimation of the power spectral density of the useful signal, the noise signal and the echo signal, denoted γ and ss (f), respectively γ and bb ( f, m), γ and zz (f, m), with reference to Figure 3c.

De la même manière, et en raison des mêmes hypothèses réalistes de décorrélation entre les composantes du signal perturbateur, la relation (5) précédemment mentionnée dans la description est transformée en la relation (12) : γ ss(f) = γ yy(f) - γ bb(f) - γ zz(f). In the same way, and due to the same realistic hypotheses of decorrelation between the components of the disturbing signal, the relation (5) previously mentioned in the description is transformed into the relation (12): γ ss (f) = γ yy (f) - γ bb (f) - γ zz (F).

Dans un mode de réalisation avantageux du dispositif de traitement optimisé d'un signal perturbateur, objet de la présente invention, et dans le contexte plus spécifique de la téléphonie mobile mains libres, une estimation de la densité spectrale de puissance du seul bruit peut être obtenue en particulier en l'absence de signal d'écho et de signal utile.In an advantageous embodiment of the device optimized processing of a disturbing signal, subject of the present invention, and in the more specific context of hands-free mobile telephony, an estimate of the power spectral density of single noise can be obtained in particular in the absence of an echo signal and useful signal.

De la même manière, il est possible d'estimer la densité spectrale de puissance du signal d'écho à partir du signal représentatif dans le domaine fréquentiel du signal de réception et du signal d'observation. A titre d'exemple non limitatif, cette estimation peut mettre en jeu une estimation de la fonction de transfert du canal acoustique entre le signal de réception et le signal d'observation.In the same way, it is possible to estimate the power spectral density of the echo signal from the representative signal in the frequency domain of the signal reception and observation signal. For exemple nonlimiting, this estimate may involve a estimation of the transfer function of the acoustic channel between the reception signal and the observation signal.

Compte tenu des remarques précédentes, ainsi que représenté en figure 3c, le dispositif dans un tel cas comprend, associé au module 1,1m d'estimation de la densité spectrale de puissance du signal d'observation, un module supplémentaire d'estimation de la densité spectrale de puissance du bruit affectant ce signal d'observation.Taking into account the preceding remarks, as shown in FIG. 3c, the device in such a case comprises, associated with the module 1.1 m for estimating the power spectral density of the observation signal, an additional module for estimating the power spectral density of the noise affecting this observation signal.

Dans ce cas, en outre, ainsi que représenté sur la figure 3c, le module 2,2m d'estimation de la densité spectrale de puissance du signal perturbateur constitue en fait un module d'estimation de la densité spectrale de puissance de l'écho acoustique, lequel délivre un signal représentatif de la densité spectrale de puissance estimée de l'écho acoustique, noté γ andzz(f,m).In this case, moreover, as shown in FIG. 3c, the module 2.2 m for estimating the power spectral density of the disturbing signal constitutes in fact a module for estimating the power spectral density of the acoustic echo, which delivers a signal representative of the estimated power spectral density of the acoustic echo, noted γ and zz (f, m).

Dans ces conditions, ainsi que représenté en figure 3c, le module de calcul des coefficients du filtre optimal 4a,4am, reçoit directement le signal représentatif de la densité spectrale de puissance estimée de l'écho acoustique γ andzz(f,m), le signal représentatif de la densité spectrale de puissance estimée du bruit, noté γ andbb(f,m) et, bien entendu, le signal représentatif de la densité spectrale de puissance estimée du signal d'observation, noté γ andyy(f,m).Under these conditions, as shown in FIG. 3c, the module for calculating the coefficients of the optimal filter 4a, 4a m , directly receives the signal representative of the estimated power spectral density of the acoustic echo γ and zz (f, m) , the signal representative of the estimated power spectral density of the noise, denoted γ and bb (f, m) and, of course, the signal representative of the estimated power spectral density of the observation signal, denoted γ and yy (f , m).

Dans ces conditions, et compte tenu de la disponibilité au niveau du module 4a,4am des signaux précités, c'est-à-dire :

  • du signal représentatif de la densité spectrale de puissance estimée γ andyy(f), respectivement γ andyy(f,m), délivré par le module 1,1m,
  • du signal représentatif de la densité spectrale de puissance estimée du bruit γ andbb(f), respectivement γ andbb(f,m),
  • du signal représentatif de la densité spectrale de puissance γ andzz(f), respectivement γ andzz(f,m) délivré par le module 2,2m,
le module 3,3m d'estimation de la densité spectrale de puissance du signal utile γ andss(f), respectivement γ andss(f,m) n'est plus indispensable, le signal représentatif de la densité spectrale de puissance estimée du signal utile étant alors donné directement par la relation (12). La réponse en fréquence du filtre optimal, module 4b,4bm est alors donnée par la relation (11) par l'intermédiaire du signal af précédemment mentionné dans la description.Under these conditions, and taking into account the availability at the level of module 4a, 4a m of the aforementioned signals, that is to say:
  • the signal representative of the estimated power spectral density γ and yy (f), respectively γ and yy (f, m), delivered by the module 1.1 m ,
  • of the signal representative of the estimated power spectral density of the noise γ and bb (f), respectively γ and bb (f, m),
  • the signal representative of the power spectral density γ and zz (f), respectively γ and zz (f, m) delivered by the module 2.2 m ,
the 3.3 m module for estimating the power spectral density of the useful signal γ and ss (f), respectively γ and ss (f, m) is no longer essential, the signal representative of the estimated power spectral density of the useful signal then being given directly by the relation (12). The frequency response of the optimal filter, module 4b, 4b m is then given by equation (11) via the signal af previously mentioned in the description.

Dans un mode de réalisation spécifique du dispositif de traitement optimisé d'un signal perturbateur, objet de la présente invention, tel que représenté en figure 3c, on indique que le module d'estimation 1a,1am de la densité spectrale du signal de bruit peut comprendre avantageusement, ainsi que représenté en figure 3d, un module de détection de l'absence de signal utile et d'absence de signal d'écho dans le signal d'observation, et un filtre récursif du premier ordre présentant un facteur d'oubli λbb, ce facteur d'oubli étant constitué par un coefficient réel compris entre la valeur 0 et 1. Dans un tel cas, le filtre récursif délivre le signal numérique représentatif de la densité spectrale de puissance estimée du signal de bruit γ andbb(f), respectivement γ andbb(f,m) vérifiant la relation (13) : γ bb(f,m) = λbb. γ bb(f,m-1) + (1-λbb) (|b(f,m)|2). In a specific embodiment of the device for optimizing the processing of a disturbing signal, object of the present invention, as shown in FIG. 3c, it is indicated that the estimation module 1a, 1a m of the spectral density of the noise signal may advantageously include, as shown in FIG. 3d, a module for detecting the absence of useful signal and the absence of echo signal in the observation signal, and a first-order recursive filter having a factor of forgetting λ bb , this forgetting factor consisting of a real coefficient between the value 0 and 1. In such a case, the recursive filter delivers the digital signal representative of the estimated power spectral density of the noise signal γ and bb (f), respectively γ and bb (f, m) verifying the relation (13): γ bb (f, m) = λ bb . γ bb (f, m-1) + (1-λ bb ) (| b (f, m) | 2 ).

Dans la relation (13) précitée, on indique que b(f,m) désigne la transformée fréquentielle, transformée de Fourier, du signal d'observation établie sur un segment temporel courant du signal d'observation en l'absence d'activité vocale, c'est-à-dire de parole de l'un ou l'autre des deux locuteurs en communication. Ainsi qu'on l'observera sur la figure 3d, le module d'estimation 1am, dans sa version relative au traitement par blocs, décrite de manière non limitative, comprend le module de détection d'activité vocale 10am recevant par exemple le signal Y(f,m) délivré par le module T1(f,m), un interrupteur commandé 11am par le module détecteur d'activité vocale 10am, un module d'élévation au carré 12am, un circuit multiplicateur 13am recevant le signal délivré par le module d'élévation au carré 12am et la valeur 1-λbb. Un sommateur 14am reçoit le signal délivré par le module 12am, délivre le signal représentatif de la densité spectrale de puissance estimée du signal de bruit γ andbb(f,m) et reçoit par une boucle de réaction le signal représentatif de la densité spectrale de puissance estimée du signal de bruit γ andbb(f,m-1) relatif au bloc précédant le bloc courant par l'intermédiaire d'un module de retard 15am, mémoire par exemple, et d'un module multiplicateur pondérateur 16am recevant la valeur λbb. Sur détection d'absence d'activité vocale, le bloc Bm(f) délivré par le module T1(f,m) correspond à la transformée fréquentielle b(f,m) du signal de bruit.In the above-mentioned relation (13), it is indicated that b (f, m) designates the frequency transform, Fourier transform, of the observation signal established over a current time segment of the observation signal in the absence of vocal activity , that is to say speech of one or the other of the two speakers in communication. As will be observed in FIG. 3d, the estimation module 1 am , in its version relating to block processing, described in a nonlimiting manner, includes the voice activity detection module 10 am receiving for example the signal Y (f, m) delivered by the module T 1 (f, m), a switch controlled 11 am by the voice activity detector module 10 am , a square elevation module 12 am , a multiplier circuit 13 am receiving the signal delivered by the square elevation module 12 am and the value 1-λ bb . A summer 14 am receives the signal delivered by the module 12 am , delivers the signal representative of the estimated power spectral density of the noise signal γ and bb (f, m) and receives by a feedback loop the signal representative of the density estimated power spectral of the noise signal γ and bb (f, m-1) relating to the block preceding the current block via a 15 am delay module, memory for example, and a weighting multiplier module 16 am receiving the value λ bb . On detection of absence of voice activity, the block B m (f) delivered by the module T 1 (f, m) corresponds to the frequency transform b (f, m) of the noise signal.

Enfin, en ce qui concerne le module d'estimation de la densité spectrale de puissance du signal d'observation, en particulier le module 1,1m, on indique que celui-ci peut comprendre, ainsi que représenté en figure 3e, un filtre récursif du premier ordre, présentant un facteur d'oubli λyy constitué par un coefficient réel compris entre 0 et 1. Le filtre récursif précité délivre alors le signal numérique représentatif de la densité spectrale de puissance estimée du signal d'observation γ andyy(f), respectivement γ andyy(f,m), vérifiant la relation (14) : γ yy(f) = λyy.γ yy(f) + (1-λyy) . |Y(f)|2. Dans cette relation, Y(f), respectivement Y(f,m), désigne le signal représentatif dans le domaine fréquentiel du signal d'observation, c'est-à-dire la transformée fréquentielle de ce signal d'observation sur le bloc courant par exemple.Finally, with regard to the module for estimating the power spectral density of the observation signal, in particular the 1.1 m module, it is indicated that this can include, as shown in FIG. 3e, a filter first-order recursive, having a forgetting factor λ yy consisting of a real coefficient between 0 and 1. The above-mentioned recursive filter then delivers the digital signal representative of the estimated power spectral density of the observation signal γ and yy ( f), respectively γ and yy (f, m), verifying the relation (14): γ yy (f) = λ yy . γ yy (f) + (1-λ yy ). | Y (f) | 2 . In this relation, Y (f), respectively Y (f, m), designates the signal representative in the frequency domain of the observation signal, i.e. the frequency transform of this observation signal on the block current for example.

Le filtre récursif représenté en figure 3e comporte des éléments semblables à ceux représentés en figure 3d, les notations am étant modifiées en m respectivement, la valeur λyy étant adaptée en conséquence.The recursive filter represented in FIG. 3e comprises elements similar to those represented in FIG. 3d, the notations am being modified in m respectively, the value λ yy being adapted accordingly.

Les figures 4a à 4e permettent d'évaluer les performances obtenues grâce à la mise en oeuvre du procédé de traitement d'un signal perturbateur optimisé et au moyen d'un dispositif, conforme à l'objet de la présente invention, tel que représenté par exemple en figure 3c.Figures 4a to 4e make it possible to evaluate the performances obtained thanks to the implementation of the process for processing an optimized disturbing signal and using of a device, in accordance with the object of the present invention, as shown for example in Figure 3c.

Sur les figures 4a, 4b et 4c, l'axe des abscisses est gradué en secondes et l'axe des ordonnées en valeur d'amplitude en codage numérique PCM, un codage sur 16 bits correspondant à une valeur maximale de 32 768.In Figures 4a, 4b and 4c, the x-axis is graduated in seconds and the ordinate axis in value amplitude in PCM digital coding, 16-bit coding corresponding to a maximum value of 32,768.

Le contexte d'application concernait la radiotéléphonie mains libres dans un véhicule automobile.The application context related to radiotelephony hands-free in a motor vehicle.

La fréquence d'échantillonnage des signaux était à une valeur de 8 kHz, le codage numérique des échantillons ainsi obtenu étant basé sur le format PCM, soit 16 bits linéaire.The signal sampling frequency was at a value of 8 kHz, the digital coding of the samples thus obtained being based on the PCM format, ie 16 bits linear.

Au cours de ces essais, le signal diffusé sur le haut-parleur, signal de réception, et le signal microphonique, c'est-à-dire le signal d'observation, ont été enregistrés de façon synchrone, le moteur du véhicule étant arrêté.During these tests, the signal broadcast on the speaker, receive signal, and microphone signal, i.e. the observation signal, have been recorded synchronously, the vehicle engine being stopped.

Dans le cadre de cette évaluation, des signaux de bruit et de parole locale enregistrés séparément dans un même véhicule ont été sommés artificiellement au signal d'écho.As part of this evaluation, noise and local speech recorded separately in a same vehicle were artificially summoned to the signal echo.

Le signal d'écho original, capté par le microphone M, est représenté en figure 4a.The original echo signal, picked up by the microphone M, is shown in Figure 4a.

Le signal d'observation bruité, obtenu ainsi que précédemment mentionné, est représenté en figure 4b, lorsque la parole locale, c'est-à-dire du locuteur du véhicule, était perturbée artificiellement par un signal de bruit et un signal d'écho correspondant à une voix d'homme.The noisy observation signal, obtained as well as previously mentioned, is shown in Figure 4b, when the local voice, that is to say the speaker of the vehicle, was artificially disturbed by a noise signal and an echo signal corresponding to a human voice.

Sur les figures 4a et 4b, le signal représenté en créneaux sous les enregistrements précités représente la détection d'activité vocale en réception, c'est-à-dire sur le signal de réception reçu par le haut-parleur HP.In FIGS. 4a and 4b, the signal represented by slots under the above records represents the voice activity detection in reception, i.e. on the reception signal received by the speaker HP.

Le signal d'observation de test représenté en figure 4b comporte ainsi des périodes de bruit seules, des périodes d'écho seules dans le bruit, mais également des périodes de double-parole, périodes pendant lesquelles les deux locuteurs en correspondance parlent en même temps. Le signal de test correspond à un cas typique en contexte radio mobile mains libres.The test observation signal represented in figure 4b thus comprises periods of noise alone, periods echo alone in the noise, but also periods of double talk, periods during which the two speakers in correspondence speak at the same time. The signal from test corresponds to a typical case in a mobile radio context hands free.

Les caractéristiques du signal d'observation sont données dans le tableau ci-après : Rapport signal à écho moyen (dB) 9.00 Rapport signal à écho maximal (dB) 38.61 Rapport signal à écho minimal (dB) -23.66 Ecart type du rapport signal à écho (dB) 5.31 Rapport signal à bruit moyen (dB) 6.17 Rapport signal à bruit maximal (dB) 19.18 Rapport signal à bruit minimal (dB) -27.38 Ecart type du rapport signal à bruit (dB) 5.21 The characteristics of the observation signal are given in the table below: Average echo signal ratio (dB) 9.00 Signal to maximum echo ratio (dB) 38.61 Signal to minimum echo ratio (dB) -23.66 Standard deviation of signal to echo ratio (dB) 5.31 Average signal-to-noise ratio (dB) 6.17 Maximum signal-to-noise ratio (dB) 19.18 Minimum signal-to-noise ratio (dB) -27.38 Signal-to-noise ratio standard deviation (dB) 5.21

Au cours de ces essais, outre la fréquence d'échantillonnage précitée, les paramètres de traitement étaient les suivants :

  • longueur de la fenêtre d'analyse : 256 échantillons ;
  • type de fenêtre d'analyse : fenêtre de Hanning ;
  • recouvrement : 50%, soit 128 échantillons ;
  • nombre de points de la transformée de Fourier rapide FFT : 256 points ;
  • contrainte de convolution linéaire pour le filtrage réalisée par FFT inverse sur 512 points ;
  • méthode de synthèse du signal : OLA, pour désigner la méthode Overlapp Add.
During these tests, in addition to the aforementioned sampling frequency, the processing parameters were as follows:
  • length of the analysis window: 256 samples;
  • type of analysis window: Hanning window;
  • recovery: 50%, or 128 samples;
  • number of points of the fast Fourier transform FFT: 256 points;
  • linear convolution constraint for filtering performed by inverse FFT on 512 points;
  • signal synthesis method: OLA, to denote the Overlapp Add method .

La figure 4c représente le signal utile obtenu en sortie du dispositif, le signal su de la figure 3c. On constate une réduction effective de l'influence du signal perturbateur capté lors de la prise de son. Le bruit et le signal d'écho d'origine sont fortement atténués par l'application du traitement.FIG. 4c represents the useful signal obtained in output of the device, the signal su of FIG. 3c. We finds an effective reduction in signal influence disruptive sensed when taking sound. Noise and original echo signal are greatly attenuated by the application of treatment.

Afin d'évaluer la réduction apportée par le traitement sur le bruit et sur l'écho, on a représenté en figures 4d et 4e, d'une part, l'atténuation de l'écho en décibels, et, d'autre part, l'atténuation du bruit en décibels.In order to assess the reduction brought by the treatment on noise and on echo, we have represented in figures 4d and 4e, on the one hand, the attenuation of the echo in decibels, and, on the other hand, the attenuation of noise in decibels.

L'atténuation de l'écho est évaluée par une mesure énergétique, connue sous le nom de ERLE, pour Echo Return Loss Enhancement, cette mesure étant évaluée sur des blocs de 256 échantillons en l'absence de recouvrement.The echo attenuation is evaluated by an energy measurement, known as ERLE, for Echo Return Loss Enhancement, this measurement being evaluated on blocks of 256 samples in the absence of recovery.

De la même façon, l'atténuation du bruit est évaluée sur des blocs de 256 échantillons sans recouvrement.Likewise, noise attenuation is assessed on blocks of 256 samples without overlap.

L'analyse des figures 4d et 4e montre que le procédé et le dispositif de traitement optimisé, objet de la présente invention, permettent de réduire la puissance moyenne de l'écho acoustique capté par le microphone M, de l'ordre de 15 dB pendant les périodes d'écho seules et de l'ordre de 10 dB pendant les périodes de double-parole.The analysis of Figures 4d and 4e shows that the process and the optimized treatment device, object of the present invention, reduce power average of the acoustic echo picked up by the microphone M, of around 15 dB during the single echo periods and around 10 dB during periods of double talk.

En ce qui concerne la réduction de la puissance moyenne de bruit, cette réduction est de l'ordre de 18 dB pendant la période de bruit seule. Lors des périodes d'écho seules et de double-parole, le traitement global optimisé s'adapte automatiquement au signal d'observation délivré par le microphone M. En effet, on peut alors constater une réduction de puissance de bruit de 15 dB lors des périodes d'écho seules et de 8 dB lors des périodes de double-parole.Regarding power reduction average noise, this reduction is around 18 dB during the noise period alone. During echo periods single and double talk, the optimized overall processing automatically adapts to the observation signal delivered by the microphone M. Indeed, we can then observe a 15 dB reduction in noise power during periods echo alone and 8 dB during periods of double talk.

Le procédé et le dispositif de traitement optimisé de signaux perturbateurs, objets de la présente invention, apparaissent très avantageux dans la mesure où ils permettent de réduire les distorsions introduites sur le signal utile de parole local. En outre, la réduction de l'atténuation apportée au signal d'écho et au signal de bruit pendant les périodes d'activité vocale en émission n'introduit pas d'effets indésirables sur le signal transmis au correspondant distant, car le signal d'écho et le signal de bruit résiduel subsistant en sortie de traitement se trouvent alors subjectivement masqués par le signal de parole local.The optimized treatment method and device disturbing signals, objects of the present invention, appear very advantageous insofar as they allow to reduce the distortions introduced on the signal useful local speaking. In addition, reducing the attenuation to the echo signal and noise signal during periods of vocal activity in transmission does not introduce undesirable effects on the signal transmitted to the correspondent distant because the echo signal and the noise signal remaining at the end of treatment are then subjectively masked by the local speech signal.

Le procédé et le dispositif, objets de la présente invention, sont particulièrement bien adaptés à la radiotéléphonie mobile mains libres dans les véhicules automobiles. En effet, alors que certains pays européens ont déjà pris des mesures d'interdiction de l'utilisation d'un combiné téléphonique portable classique pendant la conduite d'un véhicule automobile, il faut s'attendre à une généralisation de telles mesures. L'analyse de la téléphonie mains libres dans les véhicules a permis de mettre en évidence les deux principaux facteurs de gêne pour le conducteur, correspondant non seulement à la conduite simultanée à la communication, mais encore au niveau de bruit ambiant, alors que pour le correspondant de ce dernier, les gênes les plus importantes sont engendrées par la présence du bruit et d'un écho acoustique, induit par le couplage acoustique existant entre transducteurs.The method and the device, objects of the present invention, are particularly well suited to radiotelephony hands-free mobile in motor vehicles. Indeed, while some European countries have already taken measures to ban the use of a handset classic cell phone while driving a motor vehicle, we should expect a generalization such measures. Analysis of hands-free telephony in vehicles helped to highlight the two main factors discomfort to the driver, corresponding not only to the simultaneous communication, but also ambient noise level, whereas for the correspondent of the latter, the most important genes are caused by the presence of noise and an acoustic echo, induced by the acoustic coupling existing between transducers.

Par la mise en oeuvre d'un traitement global du signal perturbateur, le procédé et le dispositif, objets de l'invention, tout en assurant une qualité suffisante de parole, permettent de s'affranchir de la mise en oeuvre d'un système adaptatif d'annulation d'écho acoustique, dont l'implantation s'avère particulièrement onéreuse et difficile à régler.By implementing a comprehensive treatment of disturbing signal, the method and the device, objects of the invention, while ensuring a sufficient quality of speech, allow to get rid of the implementation of a adaptive acoustic echo cancellation system, of which implantation is particularly expensive and difficult to settle.

Claims (12)

  1. Method of optimized processing of a disturbing signal consisting at least of a noise signal during a sound capture, on the basis of an observation signal formed of a starting useful signal and of this disturbing signal, characterized in that it consists in performing:
    an estimation of the disturbing signal so as to generate an estimated disturbing signal;
    an estimation of the useful signal so as to generate an estimated useful signal, by subtracting the estimated disturbing signal to the observation signal;
    a filtering of the said observation signal on the basis of the said estimated disturbing signal and of an optimal filtering so as to generate a useful signal, the said optimal filtering making it possible to minimize the error between the said useful signal and the said estimated useful signal, the said estimated useful signal converging towards the said starting useful signal for a substantially zero error between the said useful signal and the said estimated useful signal.
  2. Method according to Claim 1, characterized in that, when the sound capture is performed in the presence of a reception signal, the said estimation of the disturbing signal consists in performing a separate estimation of the contribution of this reception signal and of the contribution of the noise signal of the disturbing signal.
  3. Method according to one of Claims 1 or 2, characterized in that, for a processing of this disturbing signal in the frequency domain, the latter consists:
    in performing a frequency transform of the observation signal, respectively of the reception signal, so as to generate a transformed signal which is representative, in the frequency domain, of the observation signal, respectively of the reception signal;
    in estimating, on the basis of each transformed signal, a signal representative of the power spectral density of the observation signal, respectively of the reception signal;
    in applying the step for estimating the disturbing signal to the signal representative of the power spectral density of the observation signal, respectively to the signal representative of the power spectral density of the reception signal;
    in applying the said optimal filtering to the said transformed signal representative of the observation signal, so as to generate a transformed signal representative of the useful signal.
  4. Method according to Claim 3, characterized in that the said optimal filtering is carried out on the basis of a signal representative of the estimated power spectral density of the useful signal, derived via a spectral subtraction procedure and satisfying the relation: γ ss(f)=γ yy(f)-γ pp(f) in which:
    γ andyy(f) designates the estimated power spectral density of the observation signal;
    γ andpp(f) designates the estimated power spectral density of the said disturbing signal.
  5. Method according to Claim 3 or 4, characterized in that, for a disturbing signal consisting of a plurality of components of this disturbing signal, the estimated power spectral density of the disturbing signal γ andpp(f) is taken equal to the sum of the estimated power spectral densities γ andi pp(f) of each component of rank i of this disturbing signal and satisfies the relation:
    Figure 00550001
    where P represents the number of components of the disturbing signal.
  6. Method according to Claims 4 or 5, characterized in that, for a block processing operation in the frequency domain of the said observation signal, this signal being subdivided into blocks of successive samples, the said method, for every current block of rank m, with a view to deriving the said estimated power spectral density of the useful signal, consists in performing:
    an estimation of the power spectral density of the observation signal over the current block γ andyy(f,m);
    an estimation of the power spectral density of each component of the disturbing signal γ andi pp(f,m), on the basis of the said reception signal, of the current block of rank m of the observation signal and of the estimation of the power spectral density of the observation signal over the current block γ andyy(f,m);
    an a-posteriori estimation of the power spectral density of the useful signal over the current block, γ andss-post(f,m) satisfying the relation:
    Figure 00560001
    an a-priori estimation of the amplitude of the spectrum of the useful signal over the current block satisfying the relation:
    Ass (f,m)=T(f,m-1) . Y(f,m) where
    T(f,m-1)
    designates the frequency response of the said optimal filtering applied to the preceding block;
    Y(f,m)
    designates the short-term Fourier transform, over the current block, of the said observation signal,
    the said estimated power spectral density of the useful signal satisfying, for the current block, the relation: γ ss(f,m) = β(m)|Ass(f,m)|2 + (1-β(m))γ ss-post(f,m) in which relation β(m) designates, for the current block, a weighting parameter making it possible to assign a matched weight between the current estimation performed on the basis of the filtering applied to the preceding block, of rank m-1, and the contribution in respect of the current frame of the power spectral density of the useful signal.
  7. Device for optimized processing of a disturbing signal during a sound capture, on the basis of an observation signal, formed of a useful signal and of this disturbing signal, the said disturbing signal consisting of a noise and an echo generated by a reception signal, characterized in that, for a processing operation in the frequency domain of these signals, the said device comprises at least:
    means for estimating the power spectral density of the said observation signal which deliver, on the basis of the said observation signal, a digital signal representative of the estimated power spectral density of the said observation signal γ andyy(f);
    means for estimating the power spectral density of the said disturbing signal which receive the said reception signal and the said digital signal representative of the estimated power spectral density of the said observation signal γ andyy(f) and deliver a digital signal representative of the estimated power spectral density of the said disturbing signal γ andpp(f);
    means for estimating the power spectral density of the useful signal which receive the said digital signal representative of the estimated power spectral density of the said observation signal γ andyy(f) and the said digital signal representative of the estimated power spectral density of the said disturbing signal γ andpp(f) and deliver, via spectral subtraction, a digital signal representative of the estimated power spectral density of the useful signal γ andss(f);
    means for computing the coefficients of an optimal filter which receive the said digital signal representative of the estimated power spectral density of the said disturbing signal γ andpp(f) and the said digital signal representative of the estimated power spectral density of the useful signal γ andss(f) and deliver a filtering adaptation digital signal representative of a filtering frequency response of the form: T(f)= γ ss(f) γ ss(f)+γ pp(f) ;
    means for optimal filtering which receive the said observation signal and the said filtering adaptation digital signal and deliver the said estimated useful signal representative of the said useful signal.
  8. Device according to Claim 7, characterized in that, for a disturbing signal consisting of a plurality of components of the disturbing signal, the said means for estimating the power spectral density of the useful signal receive the said digital signal representative of the estimated power spectral density of the said observation signal γ andyy(f) and the said digital signal representative of the estimated power spectral density γ andi pp(f) of the various components of the disturbing signal and deliver a digital signal representative of the estimated power spectral density of the useful signal γ andss(f).
  9. Device according to Claim 8, characterized in that, for a block processing operation in the frequency domain of the said observation signal, the said device comprises:
    means for subdividing the said observation signal into successive blocks which receive this observation signal and deliver a succession of successive current blocks of rank m;
    means for estimating the power spectral density of the observation signal over the current block γ andyy(f,m);
    means for estimating the power spectral density of each component of the disturbing signal γ andi pp(f,m), on the basis of the said reception signal, of the current block of rank m of the observation signal and of the estimation of the power spectral density of the observation signal over the current block γ andyy(f,m);
    means of blockwise estimation of the power spectral density of the useful signal comprising:
    means of a-posteriori estimation of the power spectral density of the useful signal over the current b
    lock, γ andss-post(f,m) satisfying the relation:
    Figure 00590001
    means of a-priori estimation of the amplitude of the spectrum of the useful signal over the current block satisfying the relation:
    Ass(f,m)=T(f,m-1).Y(f,m) where
    T(f,m-1)
    designates the frequency response of the said optimal filtering applied to the preceding block;
    Y(f,m)
    designates the short-term Fourier transform, over the current block, of the said observation signal,
    the said estimated power spectral density of the useful signal satisfying, for the current block, the relation: γ ss(f,m)=β(m)|Ass(f,m)|2+(1-β(m))γ ss-post(f,m) in which relation β(m) designates, for the current block, a weighting parameter making it possible to assign a matched weight between the current estimation performed on the basis of the filtering applied to the preceding block, of rank m-1, and the contribution in respect of the current frame of the power spectral density of the useful signal.
  10. Device according to Claim 7, characterized in that, for a disturbing signal formed by an echo signal of this reception signal and of a noise signal, the said noise signal being substantially uncorrelated from the said echo signal and the said means for estimating the power spectral density of the echo signal delivering a digital signal representative of the estimated power spectral density of the echo signal γ andzz(f), this device moreover comprises means for estimating the power spectral density of the noise signal which deliver to the said means for computing the coefficients of an optimal filter a digital signal representative of the estimated power spectral density of the noise signal γ andbb(f), the said computing means delivering a filtering adaptation digital signal representative of a filtering frequency response of the form: T(f)= γ ss(f) γ ss(f)+γ bb(f)+γ zz(f) with γ ss(f)=γ yy(f)-γ bb(f)-γ zz(f).
  11. Device according to Claims 7, 9 and 10, characterized in that the said means for estimating the power spectral density of the noise signal comprise:
    a means for detecting the absence of a useful signal and the absence of an echo signal in the observation signal;
    a first-order recursive filter having a neglect factor λbb, a real coefficient lying between 0 and 1, the said recursive filter delivering the said digital signal representative of the estimated power spectral density of the noise signal γ andbb(f) of the form: γ bb(f,m)=λbb.γ bb(f,m-1)+(1-λbb)(|b(f,m)|2)
    where b(f,m) designates the Fourier transform of the observation signal, derived over a current time segment of the observation signal in the absence of voice activity.
  12. Device according to one of Claims 7 to 11, characterized in that the said means for estimating the power spectral density of the observation signal comprise:
    a first-order recursive filter having a neglect factor λyy, a real coefficient lying between 0 and 1, the said recursive filter delivering the said digital signal representative of the estimated power spectral density of the observation signal γ andyy(f) of the form:
    γ yy(f)=λyy.γ yy(f)+(1-λyy).|Y(f)|2 where Y(f) represents the Fourier transform of the current time segment of the said observation signal.
EP98401368A 1997-06-09 1998-06-08 Method and device for optimized processing of an interfering signal when recording sound Expired - Lifetime EP0884926B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9707106A FR2764469B1 (en) 1997-06-09 1997-06-09 METHOD AND DEVICE FOR OPTIMIZED PROCESSING OF A DISTURBANCE SIGNAL DURING SOUND RECEPTION
FR9707106 1997-06-09

Publications (2)

Publication Number Publication Date
EP0884926A1 EP0884926A1 (en) 1998-12-16
EP0884926B1 true EP0884926B1 (en) 2003-08-27

Family

ID=9507753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98401368A Expired - Lifetime EP0884926B1 (en) 1997-06-09 1998-06-08 Method and device for optimized processing of an interfering signal when recording sound

Country Status (5)

Country Link
US (1) US6122609A (en)
EP (1) EP0884926B1 (en)
JP (1) JP4409642B2 (en)
DE (1) DE69817461T2 (en)
FR (1) FR2764469B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542857B1 (en) * 1996-02-06 2003-04-01 The Regents Of The University Of California System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources
DE19831320A1 (en) * 1998-07-13 2000-01-27 Ericsson Telefon Ab L M Digital adaptive filter for communications system, e.g. hands free communications in vehicles, has power estimation unit recursively smoothing increasing and decreasing input power asymmetrically
US6721279B1 (en) 1999-02-02 2004-04-13 Pctel, Inc. Method and apparatus for adaptive PCM level estimation and constellation training
US6314394B1 (en) * 1999-05-27 2001-11-06 Lear Corporation Adaptive signal separation system and method
AU2002243458A1 (en) * 2001-01-04 2002-07-16 Audiophoric, Inc Apparatus, system and method for capturing sound
US20040157548A1 (en) * 2003-02-06 2004-08-12 Eyer Mark Kenneth Home network interface legacy device adapter
CN101031963B (en) * 2004-09-16 2010-09-15 法国电信 Method of processing a noisy sound signal and device for implementing said method
US8457614B2 (en) 2005-04-07 2013-06-04 Clearone Communications, Inc. Wireless multi-unit conference phone
EP1927192B1 (en) * 2005-09-20 2010-12-22 Telefonaktiebolaget LM Ericsson (publ) Method for measuring speech intelligibility
US20080117959A1 (en) * 2006-11-22 2008-05-22 Qualcomm Incorporated False alarm reduction in detection of a synchronization signal
ES2533626T3 (en) * 2007-03-02 2015-04-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and adaptations in a telecommunications network
RU2469497C2 (en) * 2008-02-14 2012-12-10 Долби Лэборетериз Лайсенсинг Корпорейшн Stereophonic expansion

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630305A (en) * 1985-07-01 1986-12-16 Motorola, Inc. Automatic gain selector for a noise suppression system
EP0288577B1 (en) * 1986-10-30 1992-06-03 Fujitsu Limited Echo canceller with short processing delay and decreased multiplication number and method for controlling an echo signal
IL84948A0 (en) * 1987-12-25 1988-06-30 D S P Group Israel Ltd Noise reduction system
FI97758C (en) * 1992-11-20 1997-02-10 Nokia Deutschland Gmbh Device for processing an audio signal
US5774846A (en) * 1994-12-19 1998-06-30 Matsushita Electric Industrial Co., Ltd. Speech coding apparatus, linear prediction coefficient analyzing apparatus and noise reducing apparatus
SE505156C2 (en) * 1995-01-30 1997-07-07 Ericsson Telefon Ab L M Procedure for noise suppression by spectral subtraction
US5706395A (en) * 1995-04-19 1998-01-06 Texas Instruments Incorporated Adaptive weiner filtering using a dynamic suppression factor
US5734715A (en) * 1995-09-13 1998-03-31 France Telecom Process and device for adaptive identification and adaptive echo canceller relating thereto
US5687243A (en) * 1995-09-29 1997-11-11 Motorola, Inc. Noise suppression apparatus and method
JPH09212196A (en) * 1996-01-31 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> Noise suppressor

Also Published As

Publication number Publication date
FR2764469A1 (en) 1998-12-11
DE69817461D1 (en) 2003-10-02
EP0884926A1 (en) 1998-12-16
JP4409642B2 (en) 2010-02-03
JPH1188238A (en) 1999-03-30
US6122609A (en) 2000-09-19
DE69817461T2 (en) 2004-06-24
FR2764469B1 (en) 2002-07-12

Similar Documents

Publication Publication Date Title
EP2530673B1 (en) Audio device with suppression of noise in a voice signal using a fractional delay filter
EP0710947B1 (en) Method and apparatus for noise suppression in a speech signal and corresponding system with echo cancellation
EP0932964B1 (en) Method and device for blind equalizing of transmission channel effects on a digital speech signal
EP2518724B1 (en) Microphone/headphone audio headset comprising a means for suppressing noise in a speech signal, in particular for a hands-free telephone system
EP2680262B1 (en) Method for suppressing noise in an acoustic signal for a multi-microphone audio device operating in a noisy environment
EP2538409B1 (en) Noise reduction method for multi-microphone audio equipment, in particular for a hands-free telephony system
EP0884926B1 (en) Method and device for optimized processing of an interfering signal when recording sound
EP0333581A1 (en) Echo cancelling device with filtration into frequency sub-bands
EP1401183B1 (en) Method and device for echo cancellation
EP0998166A1 (en) Device for audio processing,receiver and method for filtering the wanted signal and reproducing it in presence of ambient noise
FR2789823A1 (en) UNILATERAL SUB-BAND FILTERS
EP0818121B1 (en) Sound pick-up and reproduction system for a headset in a noisy environment
EP0692883B1 (en) Blind equalisation method, and its application to speech recognition
EP1277372B1 (en) Reception system for multisensor antenna
FR2946486A1 (en) METHOD FOR DETECTING A DOUBLE SPEECH SITUATION FOR HANDS-FREE TELEPHONE DEVICE
FR2739481A1 (en) NOISE ELIMINATION APPARATUS AND METHOD
WO2020049263A1 (en) Device for speech enhancement by implementation of a neural network in the time domain
EP0786920B1 (en) Transmission system of correlated signals
US10249286B1 (en) Adaptive beamforming using Kepstrum-based filters
EP1155497B1 (en) Antenna treatment method and system
WO2008037925A1 (en) Noise and distortion reduction in a forward-type structure
EP0824798B1 (en) Adaptive sub-band filtering
FR2635622A1 (en) DEVICE FOR INPUTTING SOUND SIGNALS WITH INTERFERENCE ELIMINATION
Goodwin Joe DiBiase, Michael Brandstein (Box D, Brown Univ., Providence, RI 02912), and Harvey F. Silverman (Brown University, Providence, RI 02912) A frequency-domain delay estimator has been used as the basis of a microphone-array talker location and beamforming system [M. S. Brandstein and HF Silverman, Techn. Rep. LEMS-116 (1993)]. While the estimator has advantages over previously employed correlation-based delay estimation methods [HF Silverman and SE Kirtman, Cornput. Speech Lang. 6, 129-152 (1990)], including
EP0841758A1 (en) Method of echo cancelling for a radio signal with constant envelope and associated devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990104

AKX Designation fees paid

Free format text: DE GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69817461

Country of ref document: DE

Date of ref document: 20031002

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080614

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090528 AND 20090603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110523

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110630

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69817461

Country of ref document: DE

Effective date: 20130101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120608