EP3979663A1 - Audio headset with noise-reduction - Google Patents

Audio headset with noise-reduction Download PDF

Info

Publication number
EP3979663A1
EP3979663A1 EP21200269.5A EP21200269A EP3979663A1 EP 3979663 A1 EP3979663 A1 EP 3979663A1 EP 21200269 A EP21200269 A EP 21200269A EP 3979663 A1 EP3979663 A1 EP 3979663A1
Authority
EP
European Patent Office
Prior art keywords
transfer function
noise
filter
microphone
secondary path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21200269.5A
Other languages
German (de)
French (fr)
Inventor
Vu Hoang Co Thuy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Devialet SA
Original Assignee
Devialet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Devialet SA filed Critical Devialet SA
Publication of EP3979663A1 publication Critical patent/EP3979663A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17827Desired external signals, e.g. pass-through audio such as music or speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically

Definitions

  • the noise reduction audio headset comprises at least one microphone placed either inside the cavity between the electro-acoustic transducer and the auditory canal, or outside this cavity. Ideally, such a headset has microphones placed in both positions.
  • the signals coming from the two microphones are processed by digital filters which may be the combination of one or more filters.
  • Headsets with an internal microphone generally have good performance in terms of noise reduction level, commonly of the order of 20 to 30 dB, but in a limited frequency range, typically 50 to 1000 Hz, due to the instability of the feedback loop formed by the internal microphone and its filter directly receiving the signals emitted by the electro-acoustic transducer. This instability can cause feedback and the filters therefore have a range of action deduced to avoid this phenomenon.
  • Headsets with an external microphone do not have this restriction in terms of instability in that there is only a very attenuated signal of the order of 50 dB coming from the electro-acoustic transducer picked up by the external microphone. , which does not create feedback. They generally provide attenuations of up to only 10 dB, since the microphone favors a direction for picking up external noise coming towards the ear.
  • Earmuffs with an external microphone can theoretically attenuate noises above 1 kHz, but the performance is highly dependent on the direction of the noise source, especially at higher frequencies.
  • the filters used at the output of the external or internal microphones are designed to seek to overcome the problems previously mentioned, namely feedback for the internal microphones and reduced performance due to the strong directivity of the measurements in the case of the external microphone.
  • the object of the invention is to propose a solution to this problem of feedback for interior microphones, and of the difficulty of constructing a high-performance filter taking into account the directivity for external microphones while allowing the satisfactory frequency ranges of the reducer to be widened. noise.
  • the method comprises the measurement of the transfer function of the processed secondary path is carried out on a complete headset but devoid of the or each anti-noise processing filter by excitation of the transducer by a sinusoidal function of variable frequency over the entire audio range and measurement of the signal obtained on an artificial ear.
  • FIG. 1 schematically illustrated is a noise reduction headset 10.
  • It comprises a cavity 12 for sound reproduction inside which is schematized an ear 14 of the wearer of the helmet.
  • this cavity comprises an electro-acoustic transducer 16 arranged facing the auditory canal of the ear.
  • This cavity 12 is formed for example by a shell covering most of the ear in the case of an external audio headset or takes the form of an anatomical box that can be introduced into the entrance to the auditory canal in the case of an in-ear headphone.
  • the transducer 16 is connected, for its excitation, to an amplifier 18, assumed to have unity gain, receiving a digital signal to be reproduced through a digital/analog converter 20.
  • the headphones have an input 22 for a musical signal to be reproduced connected to the input of the digital/analog converter 20 through an equalization filter 24.
  • the helmet 10 comprises an internal anti-noise treatment chain 30 comprising an internal microphone 31 arranged inside the cavity 12 facing the electro-acoustic transducer 16.
  • the external microphone 31 is capable of picking up the sound produced by the transducer 16 and the external noise at the level of the outer envelope of the cavity 12, denoted bext, filtered by the cavity 12 whose transfer function is denoted HPA.
  • the path formed between the transducer 16 and the user's eardrum is called the “secondary path” and its transfer function is denoted Ha.
  • the transfer function between the measurement point of the internal microphone 31 and the eardrum is denoted Hmici-t.
  • Hmici-t The transfer function between the transducer 16 and the measurement point of the microphone 31 is equal to Ha/Hmici-t.
  • Hmici-t the distance between the internal microphone 31 and the eardrum being very small, Hmici-t is substantially equal to 1. Consequently, it is considered in practice and in the rest of the document that the transfer function of the secondary path and the transfer function between the transducer 16 and the measurement point of the internal microphone 31 are both equal to Ha.
  • the microphone 31 is connected, in the chain 30, to an internal signal processing filter 34 capable of supplying an anti-noise signal, with the interposition of an analog/digital converter 32.
  • the output of the internal processing filter 34 is connected to the amplifier 18 through an adder 38 arranged upstream of the digital/analog converter 20. This adder ensures the addition of the equalized signals coming from the input 22 and the signals anti-noise from the internal processing chain 30.
  • the headset 10 includes an external noise-cancelling processing chain 40 including an external microphone 41 installed outside the cavity 12.
  • the external microphone 41 is capable of picking up the external noise bext affected by a transfer function Hbext.
  • Hbext is the transfer function between the external surface of the cavity 12 where the external noise bext applies and the external microphone 41, as illustrated in the figure 1 .
  • the external microphone 41 is connected through an analog/digital converter 42 to an external processing filter 44 whose output is connected to the adder 38.
  • the adder 38 thus ensures a routing to the amplifier 18, through the analog/digital converter 20, of the anti-noise signals produced at the output of the filters 34 and 44 and of the equalized musical signal to be reproduced from the input 22.
  • the filters and equalizers described here are digital filters implemented in a digital signal processor (DSP).
  • DSP digital signal processor
  • the helmet 10 comprises the two internal 30 and external 40 anti-noise treatment chains or either the internal 30 anti-noise treatment chain or the external 40 anti-noise treatment chain is eliminated and only one of the two associated microphones and filters is retained.
  • the transfer function of the processed secondary path is the transfer function of the secondary path affected by the transfer functions of the various components ensuring the processing up to the transducer 16, with the exception of the internal 34 or external 44 processing filter depending on the case.
  • it is in particular the transfer functions of the microphone 31 or 41 depending on the case, of the analog/digital converter 32 or 42 depending on the case and of the digital/analog converter 20.
  • the amplifier 18 is assumed to be unitary and if such n is not the case, its transfer function is also integrated into the transfer function of the secondary path processed.
  • the inverse of the transfer function of the processed secondary path is applied by a stabilization filter denoted respectively 34A and 44A for the filters 34 and 44.
  • These filters 34A, 34B have a stabilization transfer function denoted HFBcorr and HFFcorr respectively.
  • Each stabilization filter 34A, 44A is followed, at the output, respectively in the processing filter 34, 44, by a noise cancellation filter 34B, 44B whose transfer function is denoted respectively HFB2, HFF2.
  • the digital filters 34A, 44A and 34B, 44B used are for example infinite impulse response (IIR) filters or finite impulse response (FIR) filters.
  • HPA the transfer function s/bext in the absence of an active noise reduction device, in other words, it is the passive attenuation of the cavity, bext being the ambient noise on the external envelope of this cavity.
  • This HPA transfer function is generally close to a low-pass filter, which means that the structure forming the cavity mainly reduces high frequencies.
  • a stabilization filter 34A is then constructed, with a transfer function HFBcorr reproducing as faithfully as possible the transfer function PlantFB -1 .
  • the stabilization filter 34A is constructed so that its transfer function is substantially equal to the inverse of the transfer function of the secondary path, over the entire audio range, and in particular from 5 Hz to 50 Hz and from 1 kHz to 10 kHz, to within an error on the gain of 5 dB, advantageously of 1 dB, and with a phase shift of +45 to -45° on the corrected phase of the linear phase due to the pure delay resulting from the propagation in air and processor delay.
  • the filter is programmed and implemented in the digital signal processor (DSP). It is advantageously produced by a combination of several cascaded filters.
  • DSP digital signal processor
  • the action of the stabilization filter 34A is applied over the entire range of frequencies authorized by the sampling frequency (Fs) of the digital signal processor (DSP).
  • Fs sampling frequency
  • DSP digital signal processor
  • the second part of the filter 34 consisting of the noise cancellation filter 34B with transfer function HFB2, is designed so that stability is ensured for all frequencies, while applying the highest possible gain in the audio band and in particular greater than 20dB to provide maximum noise cancellation performance.
  • the filter 34B is advantageously formed of a proportional integral (PI) filter or of a stepped filter known under the terms of shelving filter in English.
  • phase of the denominator is only dependent on a pure delay, which is the sum of the time T FB of physical propagation of the acoustic wave and the time D FB of processing of the digital signal processor (DSP in English), and the phase of the noise cancellation filter HFB2 pushing back into the frequency band, a cancellation of the denominator, which is at the origin of the feedback. This is thus avoided, even if the anti-noise has a high gain over a wide frequency range.
  • the actual HFBcorr transfer function of the implemented stabilization filter 34A is shown as a dotted line. These two curves are very close as explained previously.
  • HFF HFFcorr * HFF2
  • PlantFF Gadce * gdac * Hmice * Ha
  • the filter 44A one proceeds first, on a complete helmet in the absence of the internal processing filter 44, to the measurement of the transfer function PlantFF of the secondary path processed by subjecting the transducer 16 to a variable frequency sweeping the audio range and measuring the signal obtained by an artificial ear 14
  • the stabilization filter 44A is constructed so that, as in the previous embodiment, its transfer function is substantially equal to the inverse of the transfer function of the secondary path, from 5 Hz to 50 Hz and from 1 kHz to 10 kHz, and advantageously over the entire audio range, to within an error on the gain of 5 dB, advantageously 1 dB, and with a phase shift of +45 to -45° on the phase without taking the phase into account linear due to the pure delay resulting from the propagation in the air and the delay due to the processor.
  • HFB HFBcorr * HFB 2

Abstract

Le casque (10) comporte :
- un transducteur (16) (12) ;
- une chaîne de traitement anti-bruit (30, 40) comportant :
- un microphone (31, 41) ;
- un filtre de traitement anti-bruit (34, 44) qui comporte en série :
- un filtre de stabilisation (34A, 44A) dont la fonction de transfert est égale sensiblement à l'inverse de la fonction de transfert du chemin secondaire traité, et
- un filtre d'annulation de bruit (34B, 44B) dont la fonction de transfert est une fonction de transfert d'annulation du bruit.

The helmet (10) comprises:
- a transducer (16) (12);
- an anti-noise processing chain (30, 40) comprising:
- a microphone (31, 41);
- an anti-noise processing filter (34, 44) which comprises in series:
- a stabilization filter (34A, 44A) whose transfer function is substantially equal to the inverse of the transfer function of the secondary path processed, and
- a noise cancellation filter (34B, 44B) whose transfer function is a noise cancellation transfer function.

Le chemin secondaire est formé entre le transducteur (16) et le tympan, et la fonction de transfert du chemin secondaire traité est la fonction de transfert du chemin secondaire affectée des fonctions de transfert des composants assurant le traitement, à l'exception du filtre de traitement (34, 44).

Figure imgaf001
The secondary path is formed between the transducer (16) and the eardrum, and the transfer function of the processed secondary path is the transfer function of the secondary path affected by the transfer functions of the components providing the processing, with the exception of the filter of treatment (34, 44).
Figure imgaf001

Description

La présente invention concerne un casque audio à réduction de bruit, du type comportant :

  • un transducteur électro-acoustique placé dans une cavité de restitution sonore ;
  • au moins une chaine de traitement anti-bruit comportant :
    • un microphone de capture du son ambiant ;
  • un filtre de traitement anti-bruit du signal issu du microphone pour produire un signal anti-bruit ;
  • des moyens d'application du signal anti-bruit pour l'excitation du transducteur électro-acoustique.
The present invention relates to noise reduction headphones, of the type comprising:
  • an electro-acoustic transducer placed in a sound reproduction cavity;
  • at least one anti-noise processing chain comprising:
    • an ambient sound pickup microphone;
  • an anti-noise processing filter of the signal coming from the microphone to produce an anti-noise signal;
  • means for applying the anti-noise signal for the excitation of the electro-acoustic transducer.

Le casque audio à réduction de bruit comporte au moins un microphone placé soit à l'intérieur de la cavité entre le transducteur électro-acoustique et le canal auditif, soit à l'extérieur de cette cavité. Idéalement, un tel casque comporte des microphones placés dans les deux positions.The noise reduction audio headset comprises at least one microphone placed either inside the cavity between the electro-acoustic transducer and the auditory canal, or outside this cavity. Ideally, such a headset has microphones placed in both positions.

Pour assurer la création d'un signal anti-bruit reproduit par le transducteur, les signaux issus des deux microphones sont traités par des filtres numériques qui peuvent être la combinaison d'un ou de plusieurs filtres.To ensure the creation of an anti-noise signal reproduced by the transducer, the signals coming from the two microphones are processed by digital filters which may be the combination of one or more filters.

Les casques à microphone interne présentent généralement des bonnes performances en terme de niveau de réduction du bruit, couramment de l'ordre de 20 à 30 dB, mais dans une gamme de fréquence limitée, typiquement de 50 à 1 000 Hz, du fait de l'instabilité de la boucle de contre-réaction formée par le microphone interne et son filtre recevant directement les signaux émis par le transducteur électro-acoustique. Cette instabilité peut provoquer un larsen et les filtres ont donc une plage d'action déduite pour éviter ce phénomène.Headsets with an internal microphone generally have good performance in terms of noise reduction level, commonly of the order of 20 to 30 dB, but in a limited frequency range, typically 50 to 1000 Hz, due to the instability of the feedback loop formed by the internal microphone and its filter directly receiving the signals emitted by the electro-acoustic transducer. This instability can cause feedback and the filters therefore have a range of action deduced to avoid this phenomenon.

Les casques à microphone externe n'ont pas cette restriction en termes d'instabilité en ce sens qu'il n'y a qu'un signal très atténué de l'ordre de 50 dB venant du transducteur électro-acoustique capté par le microphone externe, lequel ne crée pas de larsen. Ils fournissent généralement des atténuations jusqu'à seulement 10 dB, puisque le microphone privilégie une direction de captation du bruit externe venant vers l'oreille.Headsets with an external microphone do not have this restriction in terms of instability in that there is only a very attenuated signal of the order of 50 dB coming from the electro-acoustic transducer picked up by the external microphone. , which does not create feedback. They generally provide attenuations of up to only 10 dB, since the microphone favors a direction for picking up external noise coming towards the ear.

Les casques anti-bruit à microphone externe peuvent, de manière théorique, atténuer des bruits qui se situent sur une fréquence supérieure à 1 kHz, mais la performance est très dépendante de la direction de la source de bruit, en particulier pour les fréquences élevées.Earmuffs with an external microphone can theoretically attenuate noises above 1 kHz, but the performance is highly dependent on the direction of the noise source, especially at higher frequencies.

Les filtres utilisés en sortie des microphones externes ou internes sont conçus pour chercher à s'affranchir des problèmes précédemment évoqués, à savoir le larsen pour les microphones internes et les performances réduites dues à la forte directivité des mesures dans le cas du microphone externe.The filters used at the output of the external or internal microphones are designed to seek to overcome the problems previously mentioned, namely feedback for the internal microphones and reduced performance due to the strong directivity of the measurements in the case of the external microphone.

Ces filtres sont couramment définis de manière empirique pour moduler le gain en fonction de la fréquence.These filters are commonly set empirically to modulate gain as a function of frequency.

L'invention a pour but de proposer une solution à ce problème de larsen pour les microphones intérieurs, et de difficulté des construire un filtre performant compte tenu de la directivité pour les microphones externe tout en permettant d'élargir les plages de fréquence satisfaisant du réducteur de bruit.The object of the invention is to propose a solution to this problem of feedback for interior microphones, and of the difficulty of constructing a high-performance filter taking into account the directivity for external microphones while allowing the satisfactory frequency ranges of the reducer to be widened. noise.

A cet effet, l'invention a pour objet un casque audio à réduction de bruit du type précité, caractérisé en ce que, pour la ou chaque chaine de traitement anti-bruit, le filtre de traitement comporte en série :

  • un filtre de stabilisation dont la fonction de transfert est égale sensiblement à l'inverse de la fonction de transfert du chemin secondaire traité, et
  • un filtre d'annulation de bruit dont la fonction de transfert est une fonction de transfert d'annulation du bruit,
  • le chemin secondaire étant formé entre le transducteur électro-acoustique et le tympan de l'utilisateur, et
  • la fonction de transfert du chemin secondaire traité étant la fonction de transfert du chemin secondaire affecté des fonctions de transfert des différents composants assurant le traitement jusqu'au transducteur dans la chaine de traitement anti-bruit, à l'exception du filtre de traitement.
To this end, the subject of the invention is noise reduction headphones of the aforementioned type, characterized in that, for the or each anti-noise processing chain, the processing filter comprises in series:
  • a stabilization filter whose transfer function is substantially equal to the inverse of the transfer function of the secondary path processed, and
  • a noise cancellation filter whose transfer function is a noise cancellation transfer function,
  • the secondary path being formed between the electro-acoustic transducer and the user's eardrum, and
  • the transfer function of the processed secondary path being the transfer function of the secondary path affected by the transfer functions of the various components ensuring the processing up to the transducer in the anti-noise processing chain, with the exception of the processing filter.

Suivant des modes particuliers de réalisation, le casque audio à réduction de bruit comporte l'une ou plusieurs des caractéristiques suivantes :

  • le filtre de stabilisation est construit de sorte que sa fonction de transfert est sensiblement égale à l'inverse de la fonction de transfert du chemin secondaire traité, de 5 Hz à 50 Hz et de 1 kHz à 10 kHz, à une erreur près sur le gain de 5 dB et avec un déphasage de +45 à -45° sur la phase corrigée de la phase linéaire due au retard pur résultant de la propagation dans l'air et du retard dû au processeur ;
  • il comporte, une chaine de traitement anti-bruit interne ayant un microphone interne placé dans la cavité de restitution sonore ;
  • dans la chaine de traitement anti-bruit interne, la fonction de transfert d'annulation du bruit a un gain supérieur à 20 dB sur toute la gamme audio ;
  • dans la chaine de traitement anti-bruit interne, le filtre de stabilisation est un filtre proportionnel intégrale ou un filtre étagé ;
  • il comporte une chaine de traitement anti-bruit externe ayant un microphone externe placé hors de la cavité de restitution sonore ;
  • dans la chaine de traitement anti-bruit externe, la fonction de transfert d'annulation du bruit est sensiblement égale à l'opposé du quotient de la fonction de transfert correspondant à l'atténuation passive de la cavité par la fonction de transfert entre l'enveloppe externe de la cavité et le microphone externe.
According to particular embodiments, the noise reduction audio headset comprises one or more of the following characteristics:
  • the stabilization filter is constructed so that its transfer function is substantially equal to the inverse of the transfer function of the processed secondary path, from 5 Hz to 50 Hz and from 1 kHz to 10 kHz, to within an error on the gain of 5 dB and with a phase shift of +45 to -45° on the corrected phase of the linear phase due to the pure delay resulting from the propagation in the air and the delay due to the processor;
  • it comprises an internal anti-noise processing chain having an internal microphone placed in the sound reproduction cavity;
  • in the internal anti-noise processing chain, the noise cancellation transfer function has a gain greater than 20 dB over the entire audio range;
  • in the internal anti-noise processing chain, the stabilization filter is a proportional-integral filter or a stepped filter;
  • it comprises an external anti-noise processing chain having an external microphone placed outside the sound reproduction cavity;
  • in the external anti-noise processing chain, the noise cancellation transfer function is substantially equal to the opposite of the quotient of the transfer function corresponding to the passive attenuation of the cavity by the transfer function between the outer shell of the cavity and the external microphone.

L'invention a également pour objet un procédé de fabrication d'un casque audio à réduction de bruit comptant :

  • un transducteur électro-acoustique ;
  • au moins une chaine de traitement anti-bruit comportant :
  • un microphone de capture du son ambiant ;
  • un filtre de traitement anti-bruit du signal issu du microphone pour produire un signal anti-bruit ;
  • des moyens d'application du signal anti-bruit pour l'excitation du transducteur électro-acoustique
  • comportant, pour la ou chaque chaine de traitement anti-bruit, les étapes consistant à :
    • 1/ mesurer la fonction de transfert d'un chemin secondaire traité ;
    • le chemin secondaire étant formé entre le transducteur électro-acoustique et le tympan de l'utilisateur, et
    • la fonction de transfert du chemin secondaire traité étant la fonction de transfert du chemin secondaire affecté des fonctions de transfert des différents composants assurant le traitement jusqu'au transducteur dans la chaine de traitement anti-bruit à l'exception du filtre de traitement
    • 2/ inverser la fonction de transfert du chemin secondaire traité ;
    • 3/ créer un filtre de traitement ayant une fonction de transfert formée du produit de:
      • l'inverse de la fonction de transfert du chemin secondaire traité, et
      • une fonction de transfert d'annulation du bruit; et
    • 4/ construire un casque dont le filtre de traitement anti-bruit est le filtre de traitement créé.
The invention also relates to a method of manufacturing a noise reduction audio headset comprising:
  • an electro-acoustic transducer;
  • at least one anti-noise processing chain comprising:
  • an ambient sound pickup microphone;
  • an anti-noise processing filter of the signal coming from the microphone to produce an anti-noise signal;
  • means for applying the anti-noise signal for the excitation of the electro-acoustic transducer
  • comprising, for the or each anti-noise processing chain, the steps consisting in:
    • 1/ measure the transfer function of a processed secondary path;
    • the secondary path being formed between the electro-acoustic transducer and the user's eardrum, and
    • the transfer function of the processed secondary path being the transfer function of the secondary path affected by the transfer functions of the various components ensuring the processing up to the transducer in the anti-noise processing chain with the exception of the processing filter
    • 2/ invert the transfer function of the processed secondary path;
    • 3/ create a processing filter having a transfer function formed from the product of:
      • the inverse of the transfer function of the processed secondary path, and
      • a noise cancellation transfer function; and
    • 4/ build a headset whose anti-noise processing filter is the created processing filter.

Suivant des modes particuliers de mise en œuvre, le procédé comporte la mesure de la fonction de transfert du chemin secondaire traité est effectuée sur un casque complet mais dépourvu du ou de chaque filtre de traitement anti-bruit par excitation du transducteur par une fonction sinusoïdale de fréquence variable sur tout la gamme audio et mesure du signal obtenu sur une oreille artificielle.According to particular modes of implementation, the method comprises the measurement of the transfer function of the processed secondary path is carried out on a complete headset but devoid of the or each anti-noise processing filter by excitation of the transducer by a sinusoidal function of variable frequency over the entire audio range and measurement of the signal obtained on an artificial ear.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins sur lesquels :

  • [Fig. 1] La figure 1 est une vue schématique d'un casque audio à réduction de bruit selon l'invention ;
  • [Fig. 2] La figure 2 est une courbe illustrant, en fonction de la fréquence, les gains de l'inverse de la fonction de transfert du chemin secondaire traité, du filtre de stabilisation et de la combinaison de la fonction de transfert du chemin secondaire traité et du filtre de stabilisation ;
  • [Fig. 3] La figure 3 est une courbe illustrant les phases des mêmes quantités que la figure 2 en fonction de la fréquence.
The invention will be better understood on reading the following description, given solely by way of example and made with reference to the drawings in which:
  • [ Fig. 1 ] The figure 1 is a schematic view of a noise reduction audio headset according to the invention;
  • [ Fig. 2 ] The picture 2 is a curve illustrating, as a function of frequency, the gains of the inverse of the transfer function of the processed secondary path, of the stabilization filter and of the combination of the transfer function of the processed secondary path and of the stabilization filter;
  • [ Fig. 3 ] The picture 3 is a curve illustrating the phases of the same quantities as the figure 2 depending on the frequency.

Sur la figure 1 est illustré schématiquement un casque audio à réduction de bruit 10.On the figure 1 schematically illustrated is a noise reduction headset 10.

Il comporte une cavité 12 de restitution sonore à l'intérieur de laquelle est schématisée une oreille 14 du porteur du casque.It comprises a cavity 12 for sound reproduction inside which is schematized an ear 14 of the wearer of the helmet.

Comme connu en soi, cette cavité comporte un transducteur électro-acoustique 16 disposé en regard du conduit auditif de l'oreille. Cette cavité 12 est formée par exemple par une coquille recouvrant l'essentiel de l'oreille dans le cas d'un casque audio extérieur ou prend la forme d'un boîtier anatomique pouvant être introduit dans l'entrée du conduit auditif dans le cas d'un écouteur intra-auriculaire.As known per se, this cavity comprises an electro-acoustic transducer 16 arranged facing the auditory canal of the ear. This cavity 12 is formed for example by a shell covering most of the ear in the case of an external audio headset or takes the form of an anatomical box that can be introduced into the entrance to the auditory canal in the case of an in-ear headphone.

Le transducteur 16 est relié, pour son excitation, à un amplificateur 18, supposé de gain unitaire, recevant un signal numérique à reproduire au travers d'un convertisseur numérique/analogique 20.The transducer 16 is connected, for its excitation, to an amplifier 18, assumed to have unity gain, receiving a digital signal to be reproduced through a digital/analog converter 20.

Le casque comporte une entrée 22 pour un signal musical à reproduire reliée à l'entrée du convertisseur numérique/analogique 20 au travers d'un filtre d'égalisation 24.The headphones have an input 22 for a musical signal to be reproduced connected to the input of the digital/analog converter 20 through an equalization filter 24.

Afin d'assurer le traitement anti-bruit, le casque 10 comporte une chaîne de traitement anti-bruit interne 30 comportant un microphone interne 31 disposé à l'intérieur de la cavité 12 en regard du transducteur électro-acoustique 16.In order to ensure the anti-noise treatment, the helmet 10 comprises an internal anti-noise treatment chain 30 comprising an internal microphone 31 arranged inside the cavity 12 facing the electro-acoustic transducer 16.

Le microphone externe 31 est propre à capter le son produit par le transducteur 16 et le bruit externe au niveau de l'enveloppe extérieure de la cavité 12, noté bext, filtré par la cavité 12 dont la fonction de transfert est notée HPA.The external microphone 31 is capable of picking up the sound produced by the transducer 16 and the external noise at the level of the outer envelope of the cavity 12, denoted bext, filtered by the cavity 12 whose transfer function is denoted HPA.

Le chemin formé entre le transducteur 16 et le tympan de l'utilisateur est appelé « chemin secondaire » et sa fonction de transfert est notée Ha.The path formed between the transducer 16 and the user's eardrum is called the “secondary path” and its transfer function is denoted Ha.

La fonction de transfert entre le point de mesure du microphone interne 31 et le tympan est notée Hmici-t. Ainsi la fonction de transfert entre le transducteur 16 et le point de mesure du microphone 31 est égale à Ha/Hmici-t.The transfer function between the measurement point of the internal microphone 31 and the eardrum is denoted Hmici-t. Thus the transfer function between the transducer 16 and the measurement point of the microphone 31 is equal to Ha/Hmici-t.

Dans la pratique, la distance entre le microphone interne 31 et le tympan étant très petite, Hmici-t est sensiblement égal à 1. En conséquence, il est considéré dans la pratique et dans la suite du document que la fonction de transfert du chemin secondaire et la fonction de transfert entre le transducteur 16 et le point de mesure du microphone interne 31 sont toutes deux égales à Ha.In practice, the distance between the internal microphone 31 and the eardrum being very small, Hmici-t is substantially equal to 1. Consequently, it is considered in practice and in the rest of the document that the transfer function of the secondary path and the transfer function between the transducer 16 and the measurement point of the internal microphone 31 are both equal to Ha.

Le microphone 31 est relié, dans la chaine 30, à un filtre 34 de traitement interne du signal propre à fournir un signal anti-bruit, avec interposition d'un convertisseur analogique/numérique 32.The microphone 31 is connected, in the chain 30, to an internal signal processing filter 34 capable of supplying an anti-noise signal, with the interposition of an analog/digital converter 32.

La sortie du filtre de traitement interne 34 est reliée à l'amplificateur 18 au travers d'un sommateur 38 disposé en amont du convertisseur numérique/analogique 20. Ce sommateur assure l'addition des signaux égalisés issus de l'entrée 22 et les signaux anti-bruit issus de la chaine de traitement interne 30.The output of the internal processing filter 34 is connected to the amplifier 18 through an adder 38 arranged upstream of the digital/analog converter 20. This adder ensures the addition of the equalized signals coming from the input 22 and the signals anti-noise from the internal processing chain 30.

De même, le casque 10 comporte une chaîne de traitement anti-bruit externe 40 comportant un microphone externe 41 installé à l'extérieur de la cavité 12.Similarly, the headset 10 includes an external noise-cancelling processing chain 40 including an external microphone 41 installed outside the cavity 12.

Le microphone externe 41 est propre à capter le bruit externe bext affecté d'une fonction de transfert Hbext. Hbext est la fonction de transfert entre la surface externe de la cavité 12 où s'applique le bruit externe bext et le microphone externe 41, comme illustré sur la figure 1.The external microphone 41 is capable of picking up the external noise bext affected by a transfer function Hbext. Hbext is the transfer function between the external surface of the cavity 12 where the external noise bext applies and the external microphone 41, as illustrated in the figure 1 .

Dans la chaine de traitement externe 40, le microphone externe 41 est relié au travers d'un convertisseur analogique/numérique 42 à un filtre de traitement externe 44 dont la sortie est reliée au sommateur 38.In the external processing chain 40, the external microphone 41 is connected through an analog/digital converter 42 to an external processing filter 44 whose output is connected to the adder 38.

Le sommateur 38 assure ainsi un acheminement vers l'amplificateur 18, au travers du convertisseur analogique/numérique 20, des signaux anti-bruit produits en sortie des filtres 34 et 44 et du signal musical à reproduire égalisé issu de l'entrée 22.The adder 38 thus ensures a routing to the amplifier 18, through the analog/digital converter 20, of the anti-noise signals produced at the output of the filters 34 and 44 and of the equalized musical signal to be reproduced from the input 22.

Les filtres et égaliseurs décrits ici sont des filtres numériques mis en œuvre dans un processeur de signaux numériques (DSP en anglais).The filters and equalizers described here are digital filters implemented in a digital signal processor (DSP).

Suivant les modes particuliers de réalisation, le casque 10 comporte les deux chaines de traitement anti-bruit interne 30 et externe 40 ou soit la chaîne de traitement anti-bruit interne 30, soit la chaîne de traitement anti-bruit externe 40 est supprimée et seul l'un des deux micros et filtres associés est conservé.According to the particular embodiments, the helmet 10 comprises the two internal 30 and external 40 anti-noise treatment chains or either the internal 30 anti-noise treatment chain or the external 40 anti-noise treatment chain is eliminated and only one of the two associated microphones and filters is retained.

Quel que soit le mode de réalisation et selon l'invention, les filtres de traitement anti-bruit externe 34 et interne 44 quand ils existent ont une fonction de transfert formée chacune du produit de :

  • l'inverse de la fonction de transfert du chemin secondaire traité, et
  • une fonction de transfert d'annulation du bruit.
Whatever the embodiment and according to the invention, the external 34 and internal 44 anti-noise processing filters when they exist have a transfer function each formed of the product of:
  • the inverse of the transfer function of the processed secondary path, and
  • a noise cancellation transfer function.

La fonction de transfert du chemin secondaire traité est la fonction de transfert du chemin secondaire affecté des fonctions de transfert des différents composants assurant le traitement jusqu'au transducteur 16, à l'exception du filtre de traitement interne 34 ou externe 44 suivant le cas. Ici, il s'agit notamment des fonctions de transfert du microphone 31 ou 41 suivant le cas, du convertisseur analogique/numérique 32 ou 42 suivant le cas et du convertisseur numérique/analogique 20. L'amplificateur 18 est supposé unitaire et si tel n'est pas le cas, sa fonction de transfert est intégrée également dans la fonction de transfert du chemin secondaire traité.The transfer function of the processed secondary path is the transfer function of the secondary path affected by the transfer functions of the various components ensuring the processing up to the transducer 16, with the exception of the internal 34 or external 44 processing filter depending on the case. Here, it is in particular the transfer functions of the microphone 31 or 41 depending on the case, of the analog/digital converter 32 or 42 depending on the case and of the digital/analog converter 20. The amplifier 18 is assumed to be unitary and if such n is not the case, its transfer function is also integrated into the transfer function of the secondary path processed.

L'inverse de la fonction de transfert du chemin secondaire traité est appliquée par un filtre de stabilisation noté respectivement 34A et 44A pour les filtres 34 et 44. Ces filtres 34A, 34B ont une fonction de transfert de stabilisation notée HFBcorr et HFFcorr respectivement.The inverse of the transfer function of the processed secondary path is applied by a stabilization filter denoted respectively 34A and 44A for the filters 34 and 44. These filters 34A, 34B have a stabilization transfer function denoted HFBcorr and HFFcorr respectively.

Chaque filtre de stabilisation 34A, 44A est suivi, en sortie, respectivement dans le filtre de traitement 34, 44, par un filtre d'annulation du bruit 34B, 44B dont la fonction de transfert est notée respectivement HFB2, HFF2.Each stabilization filter 34A, 44A is followed, at the output, respectively in the processing filter 34, 44, by a noise cancellation filter 34B, 44B whose transfer function is denoted respectively HFB2, HFF2.

Les filtres numériques 34A, 44A et 34B, 44B utilisés sont par exemple des filtres à réponse impulsionnelle infinie (IIR) ou des filtres à réponse impulsionnelle finie (FIR).The digital filters 34A, 44A and 34B, 44B used are for example infinite impulse response (IIR) filters or finite impulse response (FIR) filters.

La construction et la nature des filtres 34 et 44 va maintenant être décrite.The construction and nature of filters 34 and 44 will now be described.

On note s, le bruit résiduel reçu par le tympan du porteur du casque, supposé correspondre au son capté par le microphone interne 31.We note s, the residual noise received by the eardrum of the helmet wearer, assumed to correspond to the sound picked up by the internal microphone 31.

On note HPA la fonction de transfert s/bext en l'absence de dispositif de réduction active de bruit, autrement dit, il s'agit de l'atténuation passive de la cavité, bext étant le bruit ambiant sur l'enveloppe externe de cette cavité.We note HPA the transfer function s/bext in the absence of an active noise reduction device, in other words, it is the passive attenuation of the cavity, bext being the ambient noise on the external envelope of this cavity.

Cette fonction de transfert HPA est généralement proche d'un filtre passe-bas, ce qui signifie que la structure formant la cavité réduit principalement les hautes fréquences.This HPA transfer function is generally close to a low-pass filter, which means that the structure forming the cavity mainly reduces high frequencies.

Le bruit résiduel s s'exprime, dans le domaine de Laplace, par l'expression suivante : s p = 1 / 1 PlantFB * HFB * exp pT FB * exp pD FB * HPA + PlantFF * HFF * exp pT FB * exp pD FF * Hbext * bext

Figure imgb0001
Où:

  • p : une variable complexe
  • HFB : fonction de transfert du filtre 34
  • HFF: fonction de transfert du filtre 44
  • HPA : fonction de transfert de l'atténuation passive de la structure du casque délimitant la cavité 12
  • Hbext : fonction de transfert entre la surface externe de la cavité 12 où s'applique le bruit externe bext et le microphone externe 41
  • PlantFB = Gadci*Gdac*Hmici*Ha est la fonction de transfert du chemin secondaire traité pris au travers de la chaine de traitement anti-bruit interne 30
  • PlantFF = Gadce*Gdac*Hmice*Ha est la fonction de transfert du chemin secondaire traité pris au travers de la chaine de traitement anti-bruit externe 40
  • Où :
    • Gadci et Gadce : gains des convertisseurs analogique/numérique 32 et 42 pour les microphones interne 31 et externe 41 respectivement
    • Gdac : gain de sortie du convertisseur numérique/analogique 20
    • Hmici : fonction de transfert du microphone interne 31
    • Hmice : fonction de transfert du microphone externe 41
    • Ha : fonction de transfert entre le transducteur 16 et le tympan supposé correspondre au point de mesure du microphone interne 31
    • Ha dépend des caractéristiques du transducteur, ainsi que de l'architecture acoustique autour de lui, et notamment des chambres en avant et en arrière du transducteur lorsqu'il s'agit d'un haut-parleur.
The residual noise s is expressed, in the Laplace domain, by the following expression: s p = 1 / 1 PlantFB * HFB * exp pT FB * exp pD FB * HPA + PlantFF * HFF * exp pT FB * exp pD FF * Hbext * bext
Figure imgb0001
Or:
  • p: a complex variable
  • HFB: filter transfer function 34
  • HFF: Filter 44 transfer function
  • HPA: passive attenuation transfer function of the helmet structure delimiting cavity 12
  • Hbext: transfer function between the external surface of the cavity 12 where the external noise bext is applied and the external microphone 41
  • PlantFB = Gadci*Gdac*Hmici*Ha is the transfer function of the processed secondary path taken through the internal anti-noise processing chain 30
  • PlantFF=Gadce*Gdac*Hmice*Ha is the transfer function of the processed secondary path taken through the external anti-noise processing chain 40
  • Or :
    • Gadci and Gadce: gains of the analog/digital converters 32 and 42 for the internal 31 and external 41 microphones respectively
    • Gdac: output gain of the digital/analog converter 20
    • Hmici: internal microphone transfer function 31
    • Hmice: external microphone transfer function 41
    • Ha: transfer function between the transducer 16 and the eardrum assumed to correspond to the measurement point of the internal microphone 31
    • Ha depends on the characteristics of the transducer, as well as on the acoustic architecture around it, and in particular on the chambers in front and behind the transducer when it is a loudspeaker.

Ha représente la fonction de transfert du chemin secondaire, c'est-à-dire la fonction de transfert entre le transducteur 16 et le point de positionnement du microphone interne 31 ou le tympan sans prise en compte des retards. Dans la modélisation, le temps de propagation de l'onde acoustique a été isolé dans un terme spécifique exp(-pTFB). Ainsi, la fonction de transfert complète Hareal s'exprime en tenant compte de ce retard par Hareal = Ha*exp(-pTFB).

  • TFB : temps de propagation de l'onde acoustique sur la distance dFB entre le transducteur 16 et le microphone interne 31, TFB = dFB / c, où c'est la vitesse du son (342 m/s)
  • DFB : délai de traitement entre l'entrée et la sortie du processeur de signaux numériques pour la chaine de traitement anti-bruit interne 30
  • DFF : délai de traitement entre l'entrée et la sortie du processeur de signaux numériques pour la chaine de traitement anti-bruit externe 40
Ha represents the transfer function of the secondary path, that is to say the transfer function between the transducer 16 and the positioning point of the internal microphone 31 or the eardrum without taking delays into account. In the modeling, the propagation time of the acoustic wave has been isolated in a specific term exp(-pT FB ). Thus, the complete transfer function Hareal is expressed taking this delay into account by Hareal = Ha*exp(-pT FB ).
  • T FB : propagation time of the acoustic wave over the distance d FB between the transducer 16 and the internal microphone 31, T FB = dFB / c, where it is the speed of sound (342 m/s)
  • D FB : processing delay between the input and the output of the digital signal processor for the internal anti-noise processing chain 30
  • D FF : processing delay between the input and the output of the digital signal processor for the external anti-noise processing chain 40

On considère maintenant un premier mode de réalisation dans lequel la chaîne de traitement anti-bruit externe 40 est supprimée.Consider now a first embodiment in which the external anti-noise processing chain 40 is eliminated.

Dans ce cas, le bruit résiduel s s'exprime au niveau du tympan sous la forme : s p = 1 / 1 PlantFB * HFB * exp pT FB * exp pD FB * HPA * bext

Figure imgb0002
In this case, the residual noise s is expressed at the level of the eardrum in the form: s p = 1 / 1 PlantFB * HFB * exp pT FB * exp pD FB * HPA * bext
Figure imgb0002

Il est mesuré et traité depuis le microphone interne 31 seul.It is measured and processed from the internal microphone 31 alone.

Comme le filtre 34 est formé de deux parties, à savoir un filtre d'annulation du bruit 34B ayant une fonction de transfert notée HFB2 et le filtre de stabilisation 34A de fonction de transfert HFBcorr, on a : HFB = HFBcorr * HFB2As the filter 34 is formed of two parts, namely a noise cancellation filter 34B having a transfer function denoted HFB2 and the stabilization filter 34A with a transfer function HFBcorr, we have: HFB = HFBcorr * HFB2

Selon l'invention, la fonction de transfert HFBcorr est prise sensiblement égale à l'inverse de la fonction de transfert du chemin secondaire traité PlantFB, ie : HFBcorr * PlantFB = 1

Figure imgb0003
According to the invention, the transfer function HFBcorr is taken substantially equal to the inverse of the transfer function of the processed secondary path PlantFB, i.e.: HFBcorr * PlantFB = 1
Figure imgb0003

Le filtre de stabilisation 34A est alors construit pour appliquer sensiblement cette fonction de transfert HFBcorr ∼= PlantFB-1.Stabilization filter 34A is then constructed to substantially apply this transfer function HFBcorr ∼=PlantFB -1 .

Pour construire le filtre 34A, on procède d'abord, sur un casque complet mais sans programmation du filtre de traitement interne 34 dans le processeur de signaux numériques (DSP en anglais), à la mesure de la fonction de transfert PlantFB du chemin secondaire traité par mise en œuvre d'une excitation du transducteur 16 par une fonction sinus de fréquence variable sur tout la gamme audio et mesure du signal obtenu par une oreille artificielle 14, ce qui permet de déterminer la valeur de Ha. Les valeurs des autres termes sont connues, celles-ci étant les fonctions de transfert de composants du commerce bénéficiant d'une documentation.To build the filter 34A, one proceeds first, on a complete helmet but without programming the internal processing filter 34 in the digital signal processor (DSP in English), to the measurement of the transfer function PlantFB of the secondary path processed by implementing an excitation of the transducer 16 by a sine function of variable frequency over the entire audio range and measurement of the signal obtained by an artificial ear 14, which makes it possible to determine the value of Ha. The values of the other terms are known, these being the commercially documented component transfer functions.

On calcul ensuite numériquement l'inverse PlantFB-1 de cette fonction de transfert.The inverse PlantFB -1 of this transfer function is then numerically calculated.

La fonction de transfert PlantFB n'intégrant pas les retards exp(-pTFB) et exp(-pDFB), celle-ci est inversible et son inverse étant causale peut être réalisé par un filtre dans un système temps réel. C'est pourquoi les retards ne sont pas pris en compte dans la fonction de transfert du chemin secondaire traité. Sans cela, les termes constituant des retards seraient inversibles mais ne permettraient pas la construction d'un filtre mettant en œuvre son inverse dans un système temps réel, ce filtre devant être alors anti-causal.Since the PlantFB transfer function does not integrate the delays exp(-pT FB ) and exp(-pD FB ), it is invertible and its inverse being causal can be achieved by a filter in a real-time system. This is why the delays are not taken into account in the transfer function of the processed secondary path. Without this, the terms constituting delays would be invertible but would not allow the construction of a filter implementing its inverse in a real-time system, this filter then having to be anti-causal.

On construit alors un filtre de stabilisation 34A, de fonction de transfert HFBcorr reproduisant aussi fidèlement que possible la fonction de transfert PlantFB-1.A stabilization filter 34A is then constructed, with a transfer function HFBcorr reproducing as faithfully as possible the transfer function PlantFB -1 .

Dans la pratique, le filtre de stabilisation 34A est construit de sorte que sa fonction de transfert est sensiblement égale à l'inverse de la fonction de transfert du chemin secondaire, sur toute la gamme audio, et notamment de 5 Hz à 50 Hz et de 1 kHz à 10 kHz, à une erreur près sur le gain de 5 dB, avantageusement de 1 dB, et avec un déphasage de +45 à -45° sur la phase corrigée de la phase linéaire due au retard pur résultant de la propagation dans l'air et du retard dû au processeur.In practice, the stabilization filter 34A is constructed so that its transfer function is substantially equal to the inverse of the transfer function of the secondary path, over the entire audio range, and in particular from 5 Hz to 50 Hz and from 1 kHz to 10 kHz, to within an error on the gain of 5 dB, advantageously of 1 dB, and with a phase shift of +45 to -45° on the corrected phase of the linear phase due to the pure delay resulting from the propagation in air and processor delay.

Le filtre est programmé et mis en œuvre dans le processeur de signaux numériques (DSP en anglais). Il est avantageusement réalisé par une combinaison de plusieurs filtres cascadés.The filter is programmed and implemented in the digital signal processor (DSP). It is advantageously produced by a combination of several cascaded filters.

L'action du filtre de stabilisation 34A s'applique sur toute la gamme de fréquences autorisée par la fréquence d'échantillonnage (Fs) du processeur de signaux numériques (DSP en anglais). A titre d'exemple, si Fs = 384 kHz, la gamme de correction du filtre 34A est de 0 Hz à 192 kHz.The action of the stabilization filter 34A is applied over the entire range of frequencies authorized by the sampling frequency (Fs) of the digital signal processor (DSP). By way of example, if Fs=384 kHz, the correction range of the filter 34A is from 0 Hz to 192 kHz.

La seconde partie du filtre 34, constituée du filtre d'annulation du bruit 34B de fonction de transfert HFB2, est conçue pour que la stabilité soit assurée pour toutes les fréquences, tout en appliquant un gain le plus élevé possible dans la bande audio et notamment supérieur à 20 dB pour fournir des performances d'annulation du bruit maximales. Le filtre 34B est formé avantageusement d'un filtre proportionnel intégral (PI) ou d'un filtre étagé connu sous les termes de shelving filter en anglais.The second part of the filter 34, consisting of the noise cancellation filter 34B with transfer function HFB2, is designed so that stability is ensured for all frequencies, while applying the highest possible gain in the audio band and in particular greater than 20dB to provide maximum noise cancellation performance. The filter 34B is advantageously formed of a proportional integral (PI) filter or of a stepped filter known under the terms of shelving filter in English.

Comme le bruit résiduel de la chaine de traitement anti-bruit interne 30 avec seulement le microphone interne 31 est : s p = 1 / 1 PlantFB * HFB * exp pT FB * exp pD FB * HPA * bext

Figure imgb0004
As the residual noise of the internal anti-noise processing chain 30 with only the internal microphone 31 is: s p = 1 / 1 PlantFB * HFB * exp pT FB * exp pD FB * HPA * bext
Figure imgb0004

En incorporant [Math 3] dans [Math 2], on obtient : s p = 1 / 1 HFB 2 * exp pT FB * exp pD FB * HPA * bext .

Figure imgb0005
By incorporating [Math 3] into [Math 2], we get: s p = 1 / 1 HFB 2 * exp pT FB * exp pD FB * HPA * bext .
Figure imgb0005

On comprend que la phase du dénominateur est seulement dépendant d'un pur retard, qui est la somme du temps TFB de propagation physique de l'onde acoustique et du temps DFB de traitement du processeur de signaux numériques (DSP en anglais), et de la phase du filtre d'annulation de bruit HFB2 repoussant dans la bande de fréquences, une annulation du dénominateur, ce qui est à l'origine du larsen. Celui-ci est ainsi évité, même si l'anti-bruit a un gain élevé sur une large gamme de fréquence.It is understood that the phase of the denominator is only dependent on a pure delay, which is the sum of the time T FB of physical propagation of the acoustic wave and the time D FB of processing of the digital signal processor (DSP in English), and the phase of the noise cancellation filter HFB2 pushing back into the frequency band, a cancellation of the denominator, which is at the origin of the feedback. This is thus avoided, even if the anti-noise has a high gain over a wide frequency range.

Le résultat est représenté sur les figures 2 et 3.The result is shown on the figure 2 and 3 .

Sur ces figures, l'inverse de la fonction de transfert PlantFB-1 est représenté en trait fin continu. Il est l'inverse mathématique exact de la fonction de transfert PlantFB mesurée expérimentalement sur le casque.In these figures, the inverse of the transfer function PlantFB -1 is represented by a thin continuous line. It is the exact mathematical inverse of the PlantFB transfer function measured experimentally on the helmet.

La fonction de transfert HFBcorr réelle du filtre de stabilisation 34A mis en œuvre est représentée en trait pointillé. Ces deux courbes sont très proches comme expliqué précédemment.The actual HFBcorr transfer function of the implemented stabilization filter 34A is shown as a dotted line. These two curves are very close as explained previously.

Ainsi, la différence égale à PlantFB * HFBcorr représentée en trait continu gras correspond à une fonction de transfert pratiquement plate en terme de gain (figure 2) et de phase (figure 3), la différence de phase aux hautes fréquences étant due principalement aux purs retards du système, lorsque l'on considère : D FB = 11 μs

Figure imgb0006
T FB = 6 μs
Figure imgb0007
Thus, the difference equal to PlantFB * HFBcorr shown in bold solid lines corresponds to a practically flat transfer function in terms of gain ( figure 2 ) and phase ( picture 3 ), the phase difference at high frequencies being mainly due to pure system delays, when considering: D FB = 11 µs
Figure imgb0006
T FB = 6 µs
Figure imgb0007

On considère maintenant un deuxième mode de réalisation dans lequel la chaîne de traitement anti-bruit interne 30 est supprimée et seule la chaîne de traitement anti-bruit externe 40 est présente.We now consider a second embodiment in which the internal anti-noise processing chain 30 is eliminated and only the external anti-noise processing chain 40 is present.

Dans ce cas, le bruit résiduel s s'exprime au niveau du tympan sous la forme : s p = HPA + PlantFF * HFF * exp pTFB * exp pDFF * Hbext * bext

Figure imgb0008
In this case, the residual noise s is expressed at the level of the eardrum in the form: s p = HPA + PlantFF * HFF * exp pTFB * exp pDFF * Hbext * bext
Figure imgb0008

Il est mesuré et traité depuis le seul microphone externe 41.It is measured and processed from the single external microphone 41.

De manière analogue pour la chaine de traitement anti-bruit externe 40, le filtre d'annulation du bruit 44B ayant une fonction de transfert notée HFF2 et le filtre de stabilisation 44A de fonction de transfert HFFcorr, on a : HFF = HFFcorr * HFF2Similarly for the external anti-noise processing chain 40, the noise cancellation filter 44B having a transfer function denoted HFF2 and the stabilization filter 44A having a transfer function HFFcorr, we have: HFF = HFFcorr * HFF2

Selon l'invention, la fonction de transfert HFFcorr est prise sensiblement égale à l'inverse de PlantFF, de sorte que : FFcorr * PlantFF = 1 ie HFFcorr = PlantFF 1 .

Figure imgb0009
According to the invention, the transfer function HFFcorr is taken substantially equal to the inverse of PlantFF, so that: FFcorr * PlantFF = 1 ie HFFcorr = PlantFF 1 .
Figure imgb0009

Dans ce cas, le chemin secondaire traité est donné par : PlantFF = Gadce * Gdac * Hmice * Ha

Figure imgb0010
In this case, the secondary path processed is given by: PlantFF = Gadce * gdac * Hmice * Ha
Figure imgb0010

Pour construire le filtre 44A, on procède d'abord, sur un casque complet en l'absence du filtre de traitement interne 44, à la mesure de la fonction de transfert PlantFF du chemin secondaire traité en soumettant le transducteur 16 à une fréquence variable balayant la gamme audio et mesure du signal obtenu par une oreille artificielle 14To construct the filter 44A, one proceeds first, on a complete helmet in the absence of the internal processing filter 44, to the measurement of the transfer function PlantFF of the secondary path processed by subjecting the transducer 16 to a variable frequency sweeping the audio range and measuring the signal obtained by an artificial ear 14

On calcul ensuite numériquement l'inverse PlantFF-1 de cette fonction de transfert.The inverse PlantFF -1 of this transfer function is then numerically calculated.

Dans la pratique, le filtre de stabilisation 44A est construit de sorte que, comme dans le mode de réalisation précédent sa fonction de transfert est sensiblement égale à l'inverse de la fonction de transfert du chemin secondaire, de 5 Hz à 50 Hz et de 1 kHz à 10 kHz, et avantageusement sur toute la gamme audio, à une erreur près sur le gain de 5 dB, avantageusement de 1 dB, et avec un déphasage de +45 à -45° sur la phase sans tenir compte de la phase linéaire due au retard pur résultant de la propagation dans l'air et du retard dû au processeur.In practice, the stabilization filter 44A is constructed so that, as in the previous embodiment, its transfer function is substantially equal to the inverse of the transfer function of the secondary path, from 5 Hz to 50 Hz and from 1 kHz to 10 kHz, and advantageously over the entire audio range, to within an error on the gain of 5 dB, advantageously 1 dB, and with a phase shift of +45 to -45° on the phase without taking the phase into account linear due to the pure delay resulting from the propagation in the air and the delay due to the processor.

Le bruit résiduel est pour la seule chaine de traitement anti-bruit externe 40 avec seulement le microphone externe 41 s'écrit sous la forme : s p = HPA + PlantFF * HFF * exp pT FB * exp pD FF * Hbext * bext

Figure imgb0011
The residual noise is for the only external anti-noise processing chain 40 with only the external microphone 41 is written in the form: s p = HPA + PlantFF * HFF * exp pT FB * exp pD FF * Hbext * bext
Figure imgb0011

En incorporant [Math 5] dans [Math 4], on obtient : s p = HPA + HFF 2 * exp pT FB * exp pD FF * Hbext * bext

Figure imgb0012
By incorporating [Math 5] into [Math 4], we get: s p = HPA + HFF 2 * exp pT FB * exp pD FF * Hbext * bext
Figure imgb0012

Cette forme permet de définir le filtre HFF2 sans avoir à prendre en compte de contraintes sur les autres éléments du système, ceux-ci étant réduits dans l'expression ci-dessus à un simple retard exp(-pTFF) * exp(-pDFF).This form makes it possible to define the HFF2 filter without having to take into account constraints on the other elements of the system, these being reduced in the expression above to a simple delay exp(-pT FF ) * exp(-pD FF ).

Le filtre 44 de fonction de transfert optimale notée HFFopt correspondant à l'annulation du bruit résiduel exprimé par [Math 4] est : HFFopt = HPA / Hbext / PlantFF * exp pT FB * exp pD FF

Figure imgb0013
The optimal transfer function filter 44 denoted HFFopt corresponding to the cancellation of the residual noise expressed by [Math 4] is: HFOpt = HPA / Hbext / PlantFF * exp pT FB * exp pD FF
Figure imgb0013

Le filtre d'annulation du bruit 44B est choisi de sorte que sa fonction de transfert soit égale à HFF2 = - HPA / Hbext, de sorte qu'ainsi le bruit résiduel est : s p = HPA * 1 exp pT FB * exp pD FF * bext

Figure imgb0014
The noise cancellation filter 44B is chosen so that its transfer function is equal to HFF2 = - HPA / Hbext, so that thus the residual noise is: s p = HPA * 1 exp pT FB * exp pD FF * bext
Figure imgb0014

Les délais TFB et DFF étant petits, le produit des deux exponentielles - exp(-pTFB) * exp(-pDFF) est proche de 1 sur une large gamme de fréquence, de sorte que (1 - exp(-pTFB) * exp(-pDFF)) est très proche de zéro, ce qui correspond à une très forte atténuation du bruit sur une large gamme de fréquence.The delays T FB and D FF being small, the product of the two exponentials - exp(-pT FB ) * exp(-pD FF ) is close to 1 over a wide frequency range, so that (1 - exp(-pT FB ) * exp(-pD FF )) is very close to zero, which corresponds to very strong noise attenuation over a wide frequency range.

On considère maintenant un troisième mode de réalisation dans lequel à la fois la chaîne de traitement anti-bruit interne 30 et la chaîne de traitement anti-bruit externe 40 sont présentes.We now consider a third embodiment in which both the internal anti-noise processing chain 30 and the external anti-noise processing chain 40 are present.

Le bruit résiduel s s'exprime, dans le domaine de Laplace, par l'expression : s p = 1 / 1 PlantFB * HFB * exp pT FB * exp pD FB * HPA + PlantFF * HFF * exp pT FB * exp pD FF * Hbext * bext

Figure imgb0015
The residual noise s is expressed, in the Laplace domain, by the expression: s p = 1 / 1 PlantFB * HFB * exp pT FB * exp pD FB * HPA + PlantFF * HFF * exp pT FB * exp pD FF * Hbext * bext
Figure imgb0015

Dans ce cas, et comme précédemment les fonctions de transfert des filtres de traitement 34 et 44 s'expriment sous la forme : HFB = HFBcorr * HFB 2

Figure imgb0016
et HFF = HFFcorr * HFF 2
Figure imgb0017
avec HFFcorr construite telle que HFFcorr * PlantFF ∼= 1In this case, and as before, the transfer functions of the processing filters 34 and 44 are expressed in the form: HFB = HFBcorr * HFB 2
Figure imgb0016
and HFF = HFFcorr * HFF 2
Figure imgb0017
with HFFcorr constructed such that HFFcorr * PlantFF ∼= 1

Le bruit résiduel s s'écrit alors : s p = 1 / 1 HFB 2 * exp pT FB * exp pD FB * HPA + HFF 2 * exp pT FB * exp pD FF * Hbext * bext

Figure imgb0018
et avantageusement en choisissant HFF 2 = HPA / Hbext
Figure imgb0019
comme expliqué précédemment, on a : s p = 1 / 1 HFB 2 * exp pT FB * exp pD FB * HPA * 1 exp pT FB * exp pD FF * bext
Figure imgb0020
The residual noise s is then written: s p = 1 / 1 HFB 2 * exp pT FB * exp pD FB * HPA + HFF 2 * exp pT FB * exp pD FF * Hbext * bext
Figure imgb0018
and advantageously by choosing HFF 2 = HPA / Hbext
Figure imgb0019
as explained above, we have: s p = 1 / 1 HFB 2 * exp pT FB * exp pD FB * HPA * 1 exp pT FB * exp pD FF * bext
Figure imgb0020

Dans ce mode de réalisation, les avantages des deux modes de réalisation précédents sont combinés.In this embodiment, the advantages of the two previous embodiments are combined.

Claims (5)

Casque audio à réduction de bruit (10) comportant : - un transducteur électro-acoustique (16) placé dans une cavité de restitution sonore (12) ; - au moins une chaine de traitement anti-bruit (30, 40) comportant : - un microphone (31, 41) de capture du son ambiant ; - un filtre de traitement anti-bruit (34, 44) du signal issu du microphone (31, 41) pour produire un signal anti-bruit ; - des moyens (18, 20) d'application du signal anti-bruit pour l'excitation du transducteur électro-acoustique (16)
dans lequel, pour la ou chaque chaine de traitement anti-bruit (30, 40), le filtre de traitement (34, 44) comporte en série :
- un filtre de stabilisation (34A, 44A) dont la fonction de transfert est égale sensiblement à l'inverse (HFBcorr, HFFcorr) de la fonction de transfert du chemin secondaire traité (Plant FB, Plant FF), et - un filtre d'annulation de bruit (34B, 44B) dont la fonction de transfert est une fonction de transfert d'annulation du bruit (HFB2, HFF2), le chemin secondaire étant formé entre le transducteur électro-acoustique (16) et le tympan de l'utilisateur, et la fonction de transfert du chemin secondaire traité étant la fonction de transfert du chemin secondaire affecté des fonctions de transfert des différents composants assurant le traitement jusqu'au transducteur (16) dans la chaine de traitement anti-bruit (30, 40), à l'exception du filtre de traitement (34, 44), caractérisé en ce qu'il comporte une chaine de traitement anti-bruit externe (40) ayant un microphone externe (41) placé hors de la cavité de restitution sonore (12) ; et en ce que, dans la chaine de traitement anti-bruit externe (40), la fonction de transfert d'annulation du bruit (HFF2) est sensiblement égale à l'opposé du quotient de la fonction de transfert correspondant à l'atténuation passive de la cavité (12) par la fonction de transfert entre l'enveloppe externe de la cavité (12) et le microphone externe (41).
Noise reduction headphones (10) comprising: - an electro-acoustic transducer (16) placed in a sound reproduction cavity (12); - at least one anti-noise processing chain (30, 40) comprising: - a microphone (31, 41) for capturing ambient sound; - an anti-noise processing filter (34, 44) of the signal coming from the microphone (31, 41) to produce an anti-noise signal; - means (18, 20) for applying the anti-noise signal for the excitation of the electro-acoustic transducer (16)
in which, for the or each anti-noise processing chain (30, 40), the processing filter (34, 44) comprises in series:
- a stabilization filter (34A, 44A) whose transfer function is substantially equal to the inverse (HFBcorr, HFFcorr) of the transfer function of the processed secondary path (Plant FB, Plant FF), and - a noise cancellation filter (34B, 44B) whose transfer function is a noise cancellation transfer function (HFB2, HFF2), the secondary path being formed between the electro-acoustic transducer (16) and the user's eardrum, and the transfer function of the processed secondary path being the transfer function of the secondary path affected by the transfer functions of the various components ensuring the processing up to the transducer (16) in the anti-noise processing chain (30, 40), at the processing filter exception (34, 44), characterized in that it comprises an external anti-noise processing chain (40) having an external microphone (41) placed outside the sound reproduction cavity (12); and in that , in the external anti-noise processing chain (40), the noise cancellation transfer function (HFF2) is substantially equal to the opposite of the quotient of the transfer function corresponding to the passive attenuation of the cavity (12) by the transfer function between the external envelope of the cavity (12) and the external microphone (41).
Casque audio à réduction de bruit (10) selon la revendication 1, caractérisé en ce que le filtre de stabilisation (34A, 44A) est construit de sorte que sa fonction de transfert (HFBcorr, HFFcorr) est sensiblement égale à l'inverse de la fonction de transfert du chemin secondaire traité (Plant FB, Plant FF), de 5 Hz à 50 Hz et de 1 kHz à 10 kHz, à une erreur près sur le gain de 5 dB et avec un déphasage de +45 à -45° sur la phase corrigée de la phase linéaire due au retard pur résultant de la propagation dans l'air et du retard dû au processeur.Noise reduction audio headset (10) according to Claim 1, characterized in that the stabilization filter (34A, 44A) is constructed so that its transfer function (HFBcorr, HFFcorr) is substantially equal to the inverse of the transfer function of the processed secondary path (Plant FB, Plant FF), from 5 Hz to 50 Hz and from 1 kHz to 10 kHz, up to an error on the gain of 5 dB and with a phase shift of +45 to -45° on phase corrected for the linear phase due to the pure delay resulting from the propagation in the air and the delay due to the processor. Casque audio à réduction de bruit (10) selon la revendication 1 ou 2, caractérisé en ce qu'il comporte, une chaine de traitement anti-bruit interne (30) ayant un microphone interne (31) placé dans la cavité de restitution sonore (12).Noise reduction audio headset (10) according to claim 1 or 2, characterized in that it comprises an internal anti-noise processing chain (30) having an internal microphone (31) placed in the sound reproduction cavity ( 12). Casque audio à réduction de bruit (10) selon la revendication 3, caractérisé en ce que, dans la chaine de traitement anti-bruit interne (30), la fonction de transfert d'annulation du bruit (HFB2) a un gain supérieur à 20 dB sur toute la gamme audio.Noise reduction audio headset (10) according to Claim 3, characterized in that , in the internal anti-noise processing chain (30), the noise cancellation transfer function (HFB2) has a gain greater than 20 dB over the entire audio range. Casque audio à réduction de bruit (10) selon la revendication 3 ou 4, caractérisé en ce que, dans la chaine de traitement anti-bruit interne (30), le filtre de stabilisation (32A) est un filtre proportionnel intégrale ou un filtre étagé.Noise reduction audio headset (10) according to Claim 3 or 4, characterized in that , in the internal anti-noise processing chain (30), the stabilization filter (32A) is a proportional-integral filter or a stepped filter .
EP21200269.5A 2020-10-01 2021-09-30 Audio headset with noise-reduction Pending EP3979663A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2010064A FR3114935B1 (en) 2020-10-01 2020-10-01 Noise canceling headphones

Publications (1)

Publication Number Publication Date
EP3979663A1 true EP3979663A1 (en) 2022-04-06

Family

ID=74183294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21200269.5A Pending EP3979663A1 (en) 2020-10-01 2021-09-30 Audio headset with noise-reduction

Country Status (4)

Country Link
US (1) US11678105B2 (en)
EP (1) EP3979663A1 (en)
CN (1) CN114268869A (en)
FR (1) FR3114935B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923864A2 (en) * 2006-11-14 2008-05-21 Sony Corporation Noise reducing device, noise reducing method, noise reducing program, and noise reducting audio outputting device
US20090080670A1 (en) * 2007-09-24 2009-03-26 Sound Innovations Inc. In-Ear Digital Electronic Noise Cancelling and Communication Device
US20100274369A1 (en) * 2009-04-28 2010-10-28 Kabushiki Kaisha Toshiba Signal processing apparatus, sound apparatus, and signal processing method
EP2830324A1 (en) * 2013-07-23 2015-01-28 Sennheiser electronic GmbH & Co. KG Headphone and headset

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923864A2 (en) * 2006-11-14 2008-05-21 Sony Corporation Noise reducing device, noise reducing method, noise reducing program, and noise reducting audio outputting device
US20090080670A1 (en) * 2007-09-24 2009-03-26 Sound Innovations Inc. In-Ear Digital Electronic Noise Cancelling and Communication Device
US20100274369A1 (en) * 2009-04-28 2010-10-28 Kabushiki Kaisha Toshiba Signal processing apparatus, sound apparatus, and signal processing method
EP2830324A1 (en) * 2013-07-23 2015-01-28 Sennheiser electronic GmbH & Co. KG Headphone and headset

Also Published As

Publication number Publication date
FR3114935B1 (en) 2022-12-09
FR3114935A1 (en) 2022-04-08
CN114268869A (en) 2022-04-01
US11678105B2 (en) 2023-06-13
US20220124431A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
CA1265063A (en) Methods and means for deafening externally generated noises reaching the eardrum and for improving the clarity of perceived electro-acoustic communications
EP2597889B1 (en) Headphones with non-adaptive active noise control
EP0852793B1 (en) Hybrid active vibration control method and device, particularly for mechanical and acoustic vibration and the like
EP2930942A1 (en) Audio headset with active noise control (anc) with electric hiss reduction
FR2974655A1 (en) MICRO / HELMET AUDIO COMBINATION COMPRISING MEANS FOR DEBRISING A NEARBY SPEECH SIGNAL, IN PARTICULAR FOR A HANDS-FREE TELEPHONY SYSTEM.
FR2636189A1 (en) ELECTRONIC NOISE MITIGATION SYSTEM
FR2913521A1 (en) METHOD FOR ACTIVE REDUCTION OF SOUND NUISANCE.
FR2495809A1 (en) APPARATUS FOR MITIGATING SOUND VIBRATIONS AND VIBRATION SUPPRESSION
FR2536891A2 (en) APPARATUS FOR MITIGATING SOUND VIBRATIONS AND REMOVING VIBRATIONS
FR2740599A1 (en) ACTIVE ACOUSTIC MITIGATION DEVICE INTENDED TO BE ARRANGED WITHIN A DUCT, PARTICULARLY FOR SOUNDPROOFING A VENTILATION AND / OR AIR CONDITIONING NETWORK
EP0829079A1 (en) Personal active noise cancellation method and device having invariant impulse response
CN114787911A (en) Noise elimination system and signal processing method of ear-wearing type playing device
EP3979663A1 (en) Audio headset with noise-reduction
FR2607344A1 (en) DEVICE FOR PROCESSING AN AUDIO FREQUENCY ELECTRICAL SIGNAL
FR2587163A1 (en) NON-RECURSITIVE SYSTEM FOR EXTENDING THE STEREOPHONIC BASE OF A STEREOPHONIC ACOUSTIC BROADCASTING APPARATUS
EP0861486B1 (en) Method and device for recovering a wanted acoustic signal from a composite acoustic signal including interference components
EP3975583B1 (en) In-ear earphone
FR3136308A1 (en) Noise-canceling headphones
FR2613153A1 (en) DIGITAL FILTER OPERATING WITH INTERMEDIATE FREQUENCY
FR2967848A1 (en) SPECTRUM CORRECTION SYSTEM INTENDED IN PARTICULAR FOR A SHOWROOM
FR3138750A1 (en) Method for calibrating a portable audio device, system for calibrating a portable audio device and associated computer program product
FR3131972A1 (en) Method for managing the low frequencies of a loudspeaker and device for implementing said method
WO2000051234A1 (en) Antenna treatment method and system
EP4268224A1 (en) Audio headset with active noise reduction
FR2637137A1 (en) Surface wave transverse filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220906

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230425

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240208