EP4268224A1 - Audio headset with active noise reduction - Google Patents

Audio headset with active noise reduction

Info

Publication number
EP4268224A1
EP4268224A1 EP21848016.8A EP21848016A EP4268224A1 EP 4268224 A1 EP4268224 A1 EP 4268224A1 EP 21848016 A EP21848016 A EP 21848016A EP 4268224 A1 EP4268224 A1 EP 4268224A1
Authority
EP
European Patent Office
Prior art keywords
vent
noise reduction
cavity
active noise
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21848016.8A
Other languages
German (de)
French (fr)
Inventor
Shahin REZAEI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Focal JMLab SAS
Original Assignee
Focal JMLab SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Focal JMLab SAS filed Critical Focal JMLab SAS
Publication of EP4268224A1 publication Critical patent/EP4268224A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17861Methods, e.g. algorithms; Devices using additional means for damping sound, e.g. using sound absorbing panels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17873General system configurations using a reference signal without an error signal, e.g. pure feedforward
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2815Enclosures comprising vibrating or resonating arrangements of the bass reflex type
    • H04R1/2819Enclosures comprising vibrating or resonating arrangements of the bass reflex type for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2815Enclosures comprising vibrating or resonating arrangements of the bass reflex type
    • H04R1/2823Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material
    • H04R1/2826Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material for loudspeaker transducers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3214Architectures, e.g. special constructional features or arrangements of features
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3224Passive absorbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation

Definitions

  • the invention relates to an audio headset with active noise reduction, that is to say a headset comprising two circum-auricular earpieces intended to isolate the user from at least part of the exterior noise.
  • each headset comprises at least one microphone associated with a loudspeaker.
  • the invention can be used in all the technical fields for which it is desired to isolate the user from external noise, for example for the broadcasting of music or for the protection of a user moving in a noisy environment.
  • the invention finds a particularly advantageous application when a leak is present at the level of the frontal cavity formed around each ear of the user by the circum-auricular earpieces of the audio headset.
  • each circumaural earpiece 100 conventionally comprises a partition 15 associated with a pad 20 to form a frontal cavity 11 around the ear of the user, as illustrated in FIG.
  • the partition 15 supports a microphone 14 disposed in the front cavity 11 and configured to pick up sounds from outside entering the front cavity 11.
  • the partition 15 is open to allow the integration of a loudspeaker 17 making it possible to generate sound waves opposite to the sounds from the outside picked up by the microphone 14.
  • a rear cavity 12 can also be formed by a shell 16 intended to protect and integrate the electronic components, such as a sound controller emitted by the loudspeaker 17.
  • the loudspeaker 17 is preferably integrated into an intermediate cavity 13 so as to form an acoustic load making it possible to adjust the directivity of the loudspeaker 17.
  • the motor 19 is integrated into the intermediate cavity 13 and the membrane 18 s extends radially at the level of the partition 15.
  • the tuning of this acoustic load can be obtained with a portion of low or high acoustic impedance before 21, for example micro-perforations made in the partition 15 between the front cavity 11 and the intermediate cavity 13.
  • a rear wall 29 of the intermediate cavity 13 is conventionally provided with a portion of intermediate low acoustic impedance 22 and/or with a vent 27.
  • the shell 16 can be made acoustically transparent by means of a vent or a rear low acoustic impedance portion 23 made in the shell 16.
  • the transfer function of an earpiece corresponds to the difference between the signal transmitted to the loudspeaker 17 and the sound actually generated in the frontal cavity 11 for different frequencies.
  • the assembly illustrated in FIG. 2 in which the headphones are perfectly placed on the listening holes of a dummy 32. These listening holes of the dummy 32 simulate the behavior of a middle ear of a user by means, for example, of a torsion simulator.
  • the signal picked up by these listening holes is transmitted to an amplifier 33.
  • an audio management unit 30 For each frequency, an audio management unit 30 generates a signal S of the frequency considered, and picks up a signal Dut corresponding to the measurement made at the output of the amplifier 33.
  • the signal S is reinjected at the input of the management unit audio 30 to obtain a reference signal Ref.
  • the audio management unit 30 is connected to a computer 31 performing the comparison between the reference signal Ref and the measured signal Dut for each frequency analyzed so as to obtain the transfer function.
  • FIG. 4 An example of a transfer function is plotted in FIG. 4 between 10Hz and 20kHz for an earpiece having a front vent 101 of the state of the art, as illustrated in FIG. 1. More specifically, FIG. 4 illustrates two transfer functions: a transfer function measured while the front vent 101 is open; and a transfer function measured while the front vent 101 is closed.
  • the variation of the amplitude and the phase between the signals Ref and Dut reveal the behavior of all the acoustic and electroacoustic elements, such as the characteristics of the loudspeaker, the microphone, the volumes, vents and portions of low or high acoustic impedance.
  • the presence of the front vent 101 in a state-of-the-art headset does not modify the transfer function thereof since the amplitude and phase curves are superimposed .
  • the front vent 101 of the state of the art is also sized to have a low cut-off frequency.
  • the front vent 101 has a length of 21.5 mm and a section of 2.26 mm 2 .
  • the cutoff frequency can be approximated by a simplified analogy with an RC electric circuit, in which the resistor is called acoustic mass Ma and the capacitor is called acoustic compliance of the frontal volume Cfv of the frontal cavity 11, the cutoff frequency Fc of a cylindrical vent can be determined with the relation
  • the acoustic mass Ma can be obtained from the section S and the length L of the vent, using the air density p, with the following relationship:
  • the acoustic compliance of the frontal volume of the vent Cfv can be estimated from the volume Vfv of the frontal cavity 11 and the speed of sound c with the following relationship:
  • the estimation of the volume Vfv of the frontal cavity 11 is preferably carried out without taking into account the volume of the ear present in the frontal cavity 11 and by making the approximation that the pad 20 is not compressed.
  • the volume Vfv of the front cavity 11 can be estimated by considering a flat surface arranged on the pad 20 and by estimating the volume Vfv between the flat surface, the partition 15 and the pad 20 without taking into account the volume of the different vents .
  • the partition 15 may have recesses which should be taken into account in the estimation of the volume Vfv of the frontal cavity 11.
  • the volume Vfv of the frontal cavity 11 of the atrium 100 of FIG. 1 can be estimated at 62.4 cm 3 .
  • This estimation of the volume Vfv of the frontal cavity 11 makes it possible to determine the cut-off frequency Fc with the following relationship:
  • the cutoff frequency Fc of the front vent 101 of the atrium 100 of Figure 1 is substantially 70Hz.
  • the helmet has a frontal cavity whose volume Vfv is estimated at 78.6 cm 3 as well as a front vent having a length of 7 mm and a section of 1.5 mm 2 .
  • the cutoff frequency of the helmet's front vent can be estimated at 90Hz.
  • a major problem with active noise reduction headphones comes from the leaks that may appear between the front cavity 11 and the exterior of the headset 100, typically between the user's skin and the pad 20.
  • leaks from the frontal cavity 11 are generally observed at the level of a branch of the glasses resting on the ear of the user because this amount of glasses degrades the tightness produced by the pad.
  • leaks can be generated when the user has not positioned an earpiece correctly because of that hair, hat, scar, or any other reason.
  • the sound controller emitted by the loudspeaker is designed by making the approximation that the acoustic system is mostly fixed. If the acoustic system drastically changes phase, for example in the presence of leaks from the frontal cavity 11, the controller can become unstable and control the generation of unwanted sounds.
  • the technical problem proposes to solve the invention and therefore to obtain an active noise reduction headset with an improved transfer function when the frontal cavity has leaks.
  • the invention proposes to use at least one vent making it possible to create intentional low-frequency leaks.
  • the invention stems from an observation according to which the creation of intentional low-frequency leaks makes it possible to limit the degradation of the frequency response due to a defect in the insulation of the frontal cavity, for example when the user wears eyeglasses.
  • the research of the invention has shown that it is possible to use at least one vent having: a length greater than 1.5 mm; and a width selected so that:
  • a ratio between said length and said width is less than or equal to 8: 1 if a median section is greater than 1.7 mm 2 ;
  • a ratio between said length and said width is less than or equal to 4:1 if said median section is less than or equal to 1.7 mm 2 .
  • the invention relates to an audio headset with active noise reduction having two circum-auricular earpieces, each circum-auricular earpiece comprising: a partition intended to be arranged facing one ear; a bearing mounted on an outer edge of said partition so as to form a front cavity; a shell positioned at the rear of said partition so as to form a rear cavity, a loudspeaker mounted on an opening of said partition; at least one microphone placed in said frontal cavity; and a noise canceling module controlling said loudspeaker to cancel unwanted noise detected by said microphone in said front cavity.
  • the invention is characterized in that said shell has at least one vent or a portion of low rear acoustic impedance made in said shell so as to make said shell acoustically transparent at low frequencies.
  • the invention is also characterized in that said partition incorporates at least one vent passing through said partition so as to generate intentional leaks, said at least one vent having: a length greater than 1.5 mm; and a width selected so that:
  • a ratio between said length and said width is less than or equal to 8: 1 if a median section is greater than 1.7 mm 2 ;
  • a ratio between said length and said width is less than or equal to 4:1 if said median section is less than or equal to 1.7 mm 2 .
  • the range of frequencies for which the shell is acoustically transparent is determined according to the dimensions of the vent or vents.
  • the helmet can be made acoustically transparent for low frequencies, i.e. below 5000 Hz.
  • the invention thus makes it possible to obtain an audio headset with active noise reduction with homogeneous performance, even when the frontal cavity has leaks and without modifying the pad.
  • a vent configured to generate intentional leaks corresponds to a vent whose opening or closing modifies the measured frequency response of the atrium.
  • intentional leaks can be characterized by a phase shift of at least 5 deg over a frequency range of at least 10Hz between 20Hz and 200Hz between the transfer functions of said circumaural atrium, measured when said at least a vent is opened and closed.
  • the phase shift between the transfer functions is less than 5 deg, then the vent does not generate intentional leaks.
  • the total phase shift can be measured when all vents are simultaneously open and closed.
  • the partial phase shift related to a specific vent can be measured by closing all the vents and by opening and closing the vent whose phase shift is to be calculated.
  • intentional leaks are characterized by a phase shift of at least 10 deg over a frequency range of at least 20Hz between 20Hz and 200Hz between the measured transfer functions when the vent is open and closed.
  • the phase shift measurement over a frequency range of at least 10Hz or 20Hz prevents a localized difference in the measurement from causing poor characterization of the vent.
  • the transfer functions are preferably measured at each frequency unit between at least 20Hz and 200Hz, i.e. at 20Hz, at 21Hz, at 22Hz, at 23Hz, etc.
  • Intentional leaks can be created by one or more vents of various shapes.
  • each vent has a length greater than 1.5 mm, preferably greater than 2 mm.
  • the invention stems from an observation that it is not enough to create a simple hole in the partition to generate these intentional leaks and limit the undesirable sounds that may appear when a user is wearing glasses or the pad is not is not correctly placed. Moreover, a simple hole would have the disadvantage of creating additional distortions at medium frequencies.
  • the invention also stems from an observation according to which two ratio thresholds between the length and the width make it possible to generate effective intentional leaks:
  • the “middle section” of a vent corresponds to its section in the middle of the height of the vent.
  • the vent can have a cylindrical shape with a constant section. With this cylindrical shape, the width of the vent corresponds to its diameter.
  • the vent can have a more complex shape than a simple cylinder.
  • at least one terminal part of the vent can form a pavilion, that is to say a flared end, to limit the disturbances acting in the air around this end of the vent.
  • the vent can thus have the shape of a nozzle with two flared ends.
  • the vent geometry can also be sized to search for a specific cutoff frequency of the vent, for example a cutoff frequency between 60 Hz and IKHz or between 60 and 300Hz.
  • the cutoff frequency can be determined with the e: with Vfv corresponding to the volume of the frontal cavity, L to the length of the vent and S to its section.
  • the cut-off frequency is determined with the following relationship:
  • the cutoff frequency is measured independently for each vent, for example by closing the other vents. Indeed, this formula does not make it possible to measure the cut-off frequency generated by the association of several vents. To estimate the cutoff frequency of multiple vents, it is possible to determine the cutoff frequency of multiple vents by measuring the Bode diagram of the vents.
  • the acoustic behavior of the vent can also be adapted by selecting the position of the vent, for example closer or less close to the loudspeaker.
  • the vent can exit into a rear front cavity or directly outside the earcup, exhibiting distinct acoustic behaviors.
  • the acoustic behavior of the vent is adapted by forming a bell or by placing a resistive mesh on a terminal end of the vent forming a portion of low or high acoustic impedance.
  • a resistive mesh can be formed by a fabric, provided with holes, glued on the end of the vent opening in the front cavity.
  • Intentional leaks can be accomplished through a single vent.
  • each circum-auricular earpiece comprises several juxtaposed vents having distinct lengths. Indeed, by using several vents having distinct shapes, it is possible to combine the impact of these vents to generate these intentional leaks and limit unwanted sounds. In particular, it has been observed that the embodiment in which each circumaural earpiece comprises two juxtaposed vents having distinct lengths presents a very good compromise between performance and space saving.
  • Figure 1 is a schematic sectional view of a prior art headset
  • FIG. 2 is a schematic representation of a protocol for measuring a transfer function according to a non-invasive embodiment
  • FIG. 3 is a schematic representation of a protocol for measuring a transfer function according to an invasive embodiment
  • Figure 4 illustrates the transfer functions, in amplitude and in phase, of the atrium of Figure 1 when the vent of the state of the art is open or closed;
  • Figure 5 is a schematic sectional view of an earpiece according to a first embodiment of the invention with a vent;
  • Figure 6 is a schematic sectional view of an earpiece according to a second embodiment of the invention with two vents;
  • Figure 7 illustrates the transfer functions, in amplitude and in phase, of the atrium of Figure 5, with the vent closed and with or without leaks from the frontal cavity;
  • Figure 8 illustrates the transfer functions, in amplitude and in phase, of the atrium of Figure 5 having a long vent with or without leaks from the frontal cavity;
  • Figure 9 illustrates the transfer functions, in amplitude and in phase, of the atrium of Figure 5 having a medium vent with or without leakage from the frontal cavity;
  • FIG. 10 Figure 10 illustrates the transfer functions, in amplitude and in phase, of the atrium of Figure 5 comprising a short vent with or without leakage from the frontal cavity;
  • Figure 11 illustrates the transfer functions, in amplitude and in phase, of an atrium comprising three vents with or without leaks from the frontal cavity;
  • FIG. 12 illustrates the phase shifts linked to the presence or absence of vents on the amplitude and phase transfer functions of an atrium comprising from zero to three vents.
  • FIG. 5 illustrates a circum-auricular earpiece 10a of an audio headset with active noise reduction.
  • the circum-auricular headset 10a conventionally comprises a partition 15 associated with a pad 20 to form a frontal cavity 11 around the ear of the user.
  • the partition 15 supports a microphone 14 disposed in the frontal cavity 11 and configured to pick up sounds from outside entering the frontal cavity 11.
  • the partition 15 is open to allow the integration of a loudspeaker 17 making it possible to generate sound waves that are the opposite of the sounds from outside picked up by the microphone 14.
  • a noise suppression module for example an analog or digital signal processor, controls the loudspeaker 17 to suppress the undesirable noises detected by the microphone 14 in the frontal cavity 11.
  • the undesirable noises correspond to the sounds picked up in the frontal cavity 11 which are not generated by speaker 17.
  • the pad 20, the partition 15 and the loudspeaker 17 form an assembly that is substantially hermetic to the external air.
  • Circum-auricular headset 10a also has a shell 16 positioned at the rear of partition 15 so as to form a rear cavity 12 between the partition and the internal wall of shell 16.
  • This rear cavity 12 is intended to protect and integrating electronic components, such as a sound controller emitted by the loudspeaker 17, the latter integrating for example the noise suppression module.
  • Loudspeaker 17 is preferably integrated into an intermediate cavity 13 formed between partition 15 and shell 16.
  • This intermediate cavity 13 is used to form an acoustic load making it possible to adjust the directivity of loudspeaker 17.
  • the motor 19 is integrated in the intermediate cavity 13 and the membrane 18 extends radially at the level of the partition 15.
  • the tuning of this acoustic load can be obtained with a portion of low or high acoustic impedance before 21, for example micro-perforations made in the partition 15 between the front cavity 11 and the intermediate cavity 13.
  • a rear wall 29 of the intermediate cavity 13 is conventionally provided with a portion of intermediate low acoustic impedance 22 and/or with a vent 27.
  • the shell 16 is made acoustically transparent at low frequencies by means of a vent or a portion of low rear acoustic impedance 23 arranged in the shell 16.
  • the atrium 10a of Figure 5 differs from the atrium 100 of Figure 1 of the state of the art by the characteristics of the vent 24 passing through the partition 15 between the frontal cavity 11 and the rear cavity 12 .
  • this vent 24 has a length L1 greater than 1.5 mm; and a width DI selected such that: a ratio between the length L1 and the width DI is less than or equal to 8:1 if a middle section is greater than 1.7 mm 2 ; or a ratio between the length L1 and the width DI is less than or equal to 4:1 if the median section is less than or equal to 1.7 mm 2 .
  • the median section S is less than 1.7 mm 2
  • the length L1 of the vent must therefore be less than 5.6 mm, i.e. 4.D1, so that the ratio between the length L1 and the width DI is less than or equal to 4:1.
  • vents 24 of length 4 or 5 mm can be used to generate effective intentional leaks whereas a vent 24 of 6 mm or 10 mm would be less effective.
  • the vent 24 corresponds to a cylinder having a diameter DI of 1.3 mm
  • the median section S is approximately 1.33 mm 2 .
  • the midsection S is still less than 1.7 mm 2 , so the length L1 of the vent must be less than 5.2 mm, i.e. 4.D1, so that the ratio between the length L1 and the width DI is less than or equal to 4:1.
  • the median section S is approximately 2 mm 2 .
  • the length L1 of the vent must therefore be less than 12.8 mm, i.e. 8. Dl, so that the ratio between the length L1 and the width Dl is less than or equal to 8:1.
  • vents 24 of length 4, 5, 6 or 10 mm can be used to generate effective intentional leaks whereas a vent 24 of 15 mm would be less effective.
  • the dimensions of the vent 24 can be selected so that the vent 24 has a cut-off frequency Fc of between 60 Hz and 1 kHz, or preferably between 60 Hz and 300 Hz, so as to limit the phase shift of the transfer function in case of leaks from the frontal cavity 11.
  • the transfer function of an earpiece corresponds to the difference between the signal transmitted to the loudspeaker 17 and the sound actually generated in the frontal cavity 11 for different frequencies.
  • the assembly illustrated in FIG. 2 in which the headphones are perfectly placed on the listening holes of a dummy 32.
  • These listening holes of the dummy 32 simulate the behavior of a middle ear of a user by means, for example, of a torsion simulator.
  • the signal picked up by these listening holes is transmitted to an amplifier 33.
  • an audio management unit 30 For each frequency, an audio management unit 30 generates a signal S of the frequency considered, and picks up a signal Dut corresponding to the measurement made at the output of the amplifier 33. The signal S is reinjected at the input of the management unit audio 30 to obtain a reference signal Ref.
  • the audio management unit 30 is connected to a computer 31 performing the comparison between the reference signal Ref and the measured signal Dut for each frequency analyzed so as to obtain the transfer function.
  • a computer 31 performing the comparison between the reference signal Ref and the measured signal Dut for each frequency analyzed so as to obtain the transfer function.
  • FIG. 7 An example of a transfer function is plotted in Figure 7 between 10Hz and 20kHz for the atrium 10a of Figure 5 while the vent 24 is closed so as to visualize the degradation of the transfer function when the front cavity 11 has leaks with respect to the transfer function when the front cavity 11 is sealed.
  • the presence of leaks can, for example, be simulated by placing glasses on the dummy 32.
  • the transfer functions measured with and without leaks are very different.
  • the measured phase of the atrium 10a is 40 deg while with leaks the measured phase is 110 deg.
  • the presence of leaks thus induces a phase shift of 70 deg. This phase shift is more than enough to cause controller instability and generate unwanted sounds.
  • the invention proposes using a vent configured to generate intentional leaks.
  • Figures 8, 9 and 10 illustrate three examples of transfer function measured, with and without leakage from the frontal cavity 11, for the same earpiece 10a and with three cylindrical vents 24 of the same section S, approximately equal to 1.65 mm 2 , and with different L1 lengths.
  • the frontal cavity 11 has a volume Vfv of 70 cm 3 and the vents 24 have a diameter DI of 1.45 mm.
  • the estimation of the volume Vfv of the frontal cavity 11 is preferably carried out without taking into account the volume of the ear present in the frontal cavity 11 and by making the approximation that the pad 20 is not compressed.
  • the volume Vfv of the front cavity 11 can be estimated by considering a flat surface arranged on the pad 20 and by estimating the volume Vfv between the flat surface, the partition 15 and the pad 20 without taking into account the volume of the different vents .
  • a cylindrical vent 24 of 10 mm in length L1 is used.
  • the cut-off frequency of this vent 24 of 10 mm length L1 can be estimated at 83.1 Hz using the following relationship: with Vfv corresponding to the volume of the frontal cavity 11, L1 to the length of the vent 24 and S to its section.
  • This vent 24 of 10 mm in length L1 therefore has a cut-off frequency Fc of between 60 Hz and 1 kHz. As illustrated in FIG. 12, it makes it possible to generate intentional leaks.
  • intentional leaks can be characterized by a phase shift of at least 5 deg over a frequency range of at least 10Hz between 20Hz and 200Hz between the transfer functions measured when the vent 24 is open and when the vent 24 is closed.
  • the intentional leaks are characterized by a phase shift of at least 10 deg over a frequency range of at least 20Hz between 20Hz and 200Hz between the transfer functions measured when the vent 24 is open and when the vent 24 is closed.
  • FIG. 8 reveals that the phase shift measured without leakage with this vent 24 is reduced compared to the phase shift measured without leakage and without the presence of this vent 24, as illustrated in FIG. 7.
  • the phase measured without leakage is 70 deg without vent 24 while the phase measured without leakage is 40 deg in the presence of vent 24.
  • the presence of vent 24 therefore leads to a reduction in the phase shift 30 deg.
  • FIG. 9 illustrates the transfer functions of a cylindrical vent 24 with a length L of 6 mm with the same section S of 1.65 mm 2 . With the same volume Vfv of 70 cm 3 , the cut-off frequency Fc of this vent 24 is 107.3 Hz. As illustrated in FIG. 9, the phase shift measured with or without leakage with this vent 24 of a cut-off frequency Fc of 107.3 Hz is globally lower than the phase shift measured with the vent 24 having a cut-off frequency Fc of 83.1 Hz, illustrated in figure 8.
  • this phase shift is even more reduced when a cylindrical vent 24 with a length L of 4 mm is used, as illustrated in FIG. 10.
  • this vent 24 with a length L of 4 mm has a cut-off frequency Fc of 131.4 Hz.
  • Fc 131.4 Hz
  • the phase measured without leakage is substantially 60 deg then that the phase measured with leaks is close to 80 deg.
  • This 4 mm vent 24 therefore makes it possible to obtain a phase shift limited to 20 deg contrary to the phase shift of 70 deg measured without using a vent 24 making it possible to generate intentional leaks.
  • FIGS. 8 to 10 make it possible to illustrate how to size the characteristics of a vent 24 to generate intentional leaks.
  • the shape of the vent 24 can vary while configuring the vent 24 to generate intentional leaks.
  • the vent 24 can have the shape of a nozzle, a shape of a horn or any other shape suitable for controlling the propagation of air.
  • the cutoff frequency Fc is determined with the following relationship: with Vfv corresponding to the volume of the frontal cavity 11, L1 to the length of the vent 24 and S' to its middle section.
  • one or more end portions can also be provided with a resistive mesh 28 to adapt the acoustic properties of the vent 24.
  • vents 24 can be juxtaposed to obtain an improvement in the phase shift with or without leakage from the frontal cavity 11.
  • FIG. L2 and a width D2 and a second vent 26 having a length L3 and a width D3.
  • the width D2 of the first vent 25 can be 1.45mm and the length L2 of the first vent 25 can be 2.7mm.
  • the width D3 of the second vent 26 can be 45mm and the length L3 of the second vent 26 can be 3.9mm.
  • Figure 11 illustrates the transfer function of an atrium in which the three vents described with Figures 8, 9 and 10 are juxtaposed. This combination of several vents 24 makes it possible to obtain a very limited phase shift between the transfer functions measured with or without leakage from the frontal cavity 11.
  • the invention thus makes it possible to limit the phase shift with or without leakage from the frontal cavity 11 by creating intentional leakages which degrade the measured response when the circum-auricular earpiece 10a-10b is perfectly positioned around the ears of the user.
  • the invention starts from the observation that this ideal positioning is practically not reproducible in reality and that it is preferable to produce headphones with active noise reduction in which the quality of the attenuation is better in the majority of case of use and in particular in the most degraded cases for which leaks are present at the level of the frontal cavity 11 so as to obtain a limitation of the undesirable sounds.
  • the invention therefore makes it possible to guarantee homogeneity in the performance of an active noise reduction headset for all cases of use by reducing the maximum degradation that may be suffered in the presence of leaks from the frontal cavity 11.

Abstract

The invention relates to an audio headset with active noise reduction that has two circumaural earpieces (10a) comprising: a partition (15) designed to be arranged facing an ear: the partition (15) integrating at least one vent (24) that passes through the partition (15) in such a way as to generate intentional leaks and has: a length (L1) greater than 1.5 mm; and a width (D1) selected such that: - a ratio between the length (L1) and width (D1) is less than or equal to 8:1 if a median cross-section is greater than 1.7 mm²; or - a ratio between the length (L1) and the width (D1) is less than or equal to 4:1 if the median cross-section is less than 1.7 mm².

Description

L'invention concerne un casque audio à réduction de bruit active, c'est-à-dire un casque comportant deux oreillettes circum-auriculaires destinées à isoler l'utilisateur d'au moins une partie des bruits extérieurs. Pour ce faire, chaque oreillette comporte au moins un microphone associé à un haut-parleur. The invention relates to an audio headset with active noise reduction, that is to say a headset comprising two circum-auricular earpieces intended to isolate the user from at least part of the exterior noise. To do this, each headset comprises at least one microphone associated with a loudspeaker.
L’invention peut être utilisée dans tous les domaines techniques pour lesquels il est recherché d’isoler l’utilisateur des bruits extérieurs, par exemple pour la diffusion de musique ou pour la protection d’un utilisateur évoluant dans un environnement bruyant. The invention can be used in all the technical fields for which it is desired to isolate the user from external noise, for example for the broadcasting of music or for the protection of a user moving in a noisy environment.
L’invention trouve une application particulièrement avantageuse lorsqu’une fuite est présente au niveau de la cavité frontale formée autour de chaque oreille de l’utilisateur par les oreillettes circum-auriculaires du casque audio. The invention finds a particularly advantageous application when a leak is present at the level of the frontal cavity formed around each ear of the user by the circum-auricular earpieces of the audio headset.
ART ANTERIEUR PRIOR ART
Dans un casque audio à réduction de bruit active, chaque oreillette circum- auriculaire 100 comporte classiquement une cloison 15 associée à un coussinet 20 pour former une cavité frontale 11 autour de l’oreille de l’utilisateur, tel qu’illustré sur la figure 1. La cloison 15 supporte un microphone 14 disposé dans la cavité frontale 11 et configuré pour capter les sons de l’extérieur pénétrant dans la cavité frontale 11. En outre, la cloison 15 est ouverte pour permettre l’intégration d’un haut-parleur 17 permettant de générer des ondes sonores inverses aux sons de l’extérieur captés par le microphone 14. In an active noise reduction headset, each circumaural earpiece 100 conventionally comprises a partition 15 associated with a pad 20 to form a frontal cavity 11 around the ear of the user, as illustrated in FIG. The partition 15 supports a microphone 14 disposed in the front cavity 11 and configured to pick up sounds from outside entering the front cavity 11. In addition, the partition 15 is open to allow the integration of a loudspeaker 17 making it possible to generate sound waves opposite to the sounds from the outside picked up by the microphone 14.
Pour limiter les sons de l’extérieur pénétrant dans la cavité frontale 11, le coussinet 20, la cloison 15 et le haut-parleur 17 forment un ensemble sensiblement hermétique à l’air externe. Une cavité arrière 12 peut également être formée par une coque 16 destinée à protéger et intégrer les composants électroniques, tel qu’un contrôleur du son émis par le haut- parleur 17. To limit the sounds from outside penetrating into the frontal cavity 11, the pad 20, the partition 15 and the loudspeaker 17 form an assembly that is substantially hermetic to the external air. A rear cavity 12 can also be formed by a shell 16 intended to protect and integrate the electronic components, such as a sound controller emitted by the loudspeaker 17.
Le haut-parleur 17 est préférentiellement intégré dans une cavité intermédiaire 13 de sorte à former une charge acoustique permettant de régler la directivité du haut-parleur 17. Pour ce faire, le moteur 19 est intégré dans la cavité intermédiaire 13 et la membrane 18 s’étend radialement au niveau de la cloison 15. The loudspeaker 17 is preferably integrated into an intermediate cavity 13 so as to form an acoustic load making it possible to adjust the directivity of the loudspeaker 17. To do this, the motor 19 is integrated into the intermediate cavity 13 and the membrane 18 s extends radially at the level of the partition 15.
L’accord de cette charge acoustique peut être obtenu avec une portion de faible ou de forte impédance acoustique avant 21, par exemple des micro perforations réalisées dans la cloison 15 entre la cavité frontale 11 et la cavité intermédiaire 13. De même, pour réaliser un accord acoustique entre la cavité intermédiaire 13 et la cavité arrière 12, une paroi arrière 29 de la cavité intermédiaire 13 est classiquement pourvue d’une portion de faible impédance acoustique intermédiaire 22 et/ou d’un évent 27. The tuning of this acoustic load can be obtained with a portion of low or high acoustic impedance before 21, for example micro-perforations made in the partition 15 between the front cavity 11 and the intermediate cavity 13. Likewise, to produce a acoustic agreement between the intermediate cavity 13 and the rear cavity 12, a rear wall 29 of the intermediate cavity 13 is conventionally provided with a portion of intermediate low acoustic impedance 22 and/or with a vent 27.
La coque 16 peut être rendue transparente acoustiquement au moyen d’un évent ou d’une portion de faible impédance acoustique arrière 23 ménagée dans la coque 16. The shell 16 can be made acoustically transparent by means of a vent or a rear low acoustic impedance portion 23 made in the shell 16.
Il est également connu d’utiliser un évent avant 101 reliant la cavité frontale 11 à la cavité arrière 12 pour équilibrer la pression statique entre la cavité frontale 11 et l'extérieur de l’oreillette 100. Il est classiquement recherché de dimensionner cet évent avant 101 pour ne pas dégrader la fonction de transfert de l’oreillette. It is also known to use a front vent 101 connecting the front cavity 11 to the rear cavity 12 to balance the static pressure between the front cavity 11 and the exterior of the headset 100. It is conventionally sought to dimension this front vent 101 so as not to degrade the transfer function of the headset.
La fonction de transfert d’une oreillette correspond à la différence entre le signal transmis au haut-parleur 17 et le son effectivement généré dans la cavité frontale 11 pour différentes fréquences. Pour obtenir cette fonction de transfert, il est possible d’utiliser le montage illustré sur la figure 2, dans lequel le casque est parfaitement disposé sur des orifices d’écoute d’un mannequin 32. Ces orifices d’écoute du mannequin 32 simulent le comportement d’une oreille moyenne d’un utilisateur au moyen, par exemple, d’un simulateur de torsions. Le signal capté par ces orifices d’écoute est transmis à un amplificateur 33. Pour chaque fréquence, un organe de gestion audio 30 génère un signal S de la fréquence considérée, et capte un signal Dut correspondant à la mesure réalisée en sortie de l’amplificateur 33. Le signal S est réinjecté en entrée de l’organe de gestion audio 30 pour obtenir un signal de référence Ref. The transfer function of an earpiece corresponds to the difference between the signal transmitted to the loudspeaker 17 and the sound actually generated in the frontal cavity 11 for different frequencies. To obtain this transfer function, it is possible to use the assembly illustrated in FIG. 2, in which the headphones are perfectly placed on the listening holes of a dummy 32. These listening holes of the dummy 32 simulate the behavior of a middle ear of a user by means, for example, of a torsion simulator. The signal picked up by these listening holes is transmitted to an amplifier 33. For each frequency, an audio management unit 30 generates a signal S of the frequency considered, and picks up a signal Dut corresponding to the measurement made at the output of the amplifier 33. The signal S is reinjected at the input of the management unit audio 30 to obtain a reference signal Ref.
L’organe de gestion audio 30 est connecté à un ordinateur 31 effectuant la comparaison entre le signal de référence Ref et le signal mesuré Dut pour chaque fréquence analysée de sorte à obtenir la fonction de transfert. The audio management unit 30 is connected to a computer 31 performing the comparison between the reference signal Ref and the measured signal Dut for each frequency analyzed so as to obtain the transfer function.
En variante, au lieu d’utiliser les orifices d’écoute, il est possible de réutiliser le signal issu du microphone 14 présent dans la cavité frontale 11, tel qu’illustré sur la figure 3. Ainsi, en connectant l’organe de gestion audio 30 au signal de ce microphone 14, il est également possible d’obtenir la fonction de transfert. As a variant, instead of using the listening holes, it is possible to reuse the signal from the microphone 14 present in the front cavity 11, as illustrated in FIG. 3. Thus, by connecting the management member audio 30 to the signal from this microphone 14, it is also possible to obtain the transfer function.
Un exemple de fonction de transfert est tracé sur la figure 4 entre 10Hz et 20kHz pour une oreillette présentant un évent avant 101 de l’état de l’art, tel qu’illustré sur la figure 1. Plus précisément, la figure 4 illustre deux fonctions de transfert : une fonction de transfert mesurée alors que l’évent avant 101 est ouvert ; et une fonction de transfert mesurée alors que l’évent avant 101 est obturé. An example of a transfer function is plotted in FIG. 4 between 10Hz and 20kHz for an earpiece having a front vent 101 of the state of the art, as illustrated in FIG. 1. More specifically, FIG. 4 illustrates two transfer functions: a transfer function measured while the front vent 101 is open; and a transfer function measured while the front vent 101 is closed.
Sur chaque fonction de transfert, la variation de l’amplitude et de la phase entre les signaux Ref et Dut révèlent le comportement de l’ensemble des éléments acoustiques et électroacoustiques, tels que les caractéristiques du haut-parleur, du microphone, des volumes, des évents et des portions de faible ou forte impédance acoustique. On each transfer function, the variation of the amplitude and the phase between the signals Ref and Dut reveal the behavior of all the acoustic and electroacoustic elements, such as the characteristics of the loudspeaker, the microphone, the volumes, vents and portions of low or high acoustic impedance.
Tel qu’illustré sur la figure 4, la présence de l’évent avant 101 dans une oreillette de l’état de la technique ne modifie pas la fonction de transfert de celui-ci puisque que les courbes d’amplitude et de phase sont superposées. As illustrated in FIG. 4, the presence of the front vent 101 in a state-of-the-art headset does not modify the transfer function thereof since the amplitude and phase curves are superimposed .
Outre la fonction de transfert, l’évent avant 101 de l’état de la technique est également dimensionné pour présenter une fréquence de coupure basse. Par exemple, l’évent avant 101 présente une longueur de 21.5 mm et une section de 2.26 mm2. La fréquence de coupure peut être approximée par une analogie simplifiée avec un circuit électrique RC, dans lequel la résistance est appelée masse acoustique Ma et le condensateur est appelé compliance acoustique du volume frontal Cfv de la cavité frontale 11, la fréquence de coupure Fc d’un évent cylindrique peut être déterminée avec la relation In addition to the transfer function, the front vent 101 of the state of the art is also sized to have a low cut-off frequency. For example, the front vent 101 has a length of 21.5 mm and a section of 2.26 mm 2 . The cutoff frequency can be approximated by a simplified analogy with an RC electric circuit, in which the resistor is called acoustic mass Ma and the capacitor is called acoustic compliance of the frontal volume Cfv of the frontal cavity 11, the cutoff frequency Fc of a cylindrical vent can be determined with the relation
La masse acoustique Ma peut être obtenue à partir de la section S et de la longueur L de l’évent, en utilisant la masse volumique de l’air p, avec la relation suivante : The acoustic mass Ma can be obtained from the section S and the length L of the vent, using the air density p, with the following relationship:
[Math 2] [Math 2]
La compliance acoustique du volume frontal de l’évent Cfv peut être estimée à partir du volume Vfv de la cavité frontale 11 et de la vitesse du son c avec la relation suivante : The acoustic compliance of the frontal volume of the vent Cfv can be estimated from the volume Vfv of the frontal cavity 11 and the speed of sound c with the following relationship:
[Math 3] [Math 3]
L’estimation du volume Vfv de la cavité frontale 11 est préférentiellement réalisée sans prendre en compte le volume de l’oreille présente dans la cavité frontale 11 et en faisant l’approximation que le coussinet 20 n’est pas compressé. Ainsi, le volume Vfv de la cavité frontale 11 peut être estimé en considérant une surface plane disposée sur le coussinet 20 et en estimant le volume Vfv entre la surface plane, la cloison 15 et le coussinet 20 sans prendre en compte le volume des différents évents. The estimation of the volume Vfv of the frontal cavity 11 is preferably carried out without taking into account the volume of the ear present in the frontal cavity 11 and by making the approximation that the pad 20 is not compressed. Thus, the volume Vfv of the front cavity 11 can be estimated by considering a flat surface arranged on the pad 20 and by estimating the volume Vfv between the flat surface, the partition 15 and the pad 20 without taking into account the volume of the different vents .
Pour autant, la cloison 15 peut présenter des renfoncements qu’il convient de prendre en compte dans l’estimation du volume Vfv de la cavité frontale 11. However, the partition 15 may have recesses which should be taken into account in the estimation of the volume Vfv of the frontal cavity 11.
Avec cette méthode, le volume Vfv de la cavité frontale 11 de l’oreillette 100 de la figure 1 peut être estimé à 62.4 cm3. Cette estimation du volume Vfv de la cavité frontale 11 permet de déterminer la fréquence de coupure Fc avec la relation suivante : With this method, the volume Vfv of the frontal cavity 11 of the atrium 100 of FIG. 1 can be estimated at 62.4 cm 3 . This estimation of the volume Vfv of the frontal cavity 11 makes it possible to determine the cut-off frequency Fc with the following relationship:
[Math 4] [Math 4]
Avec un volume Vfv de la cavité frontale 11 de 62.4 cm3, et un évent avant 101 présentant une longueur de 21.5 mm et une section de 2.26 mm2, la fréquence de coupure Fc de l’évent avant 101 de l’oreillette 100 de la figure 1 est sensiblement de 70Hz. With a volume Vfv of the front cavity 11 of 62.4 cm 3 , and a front vent 101 having a length of 21.5 mm and a section of 2.26 mm 2 , the cutoff frequency Fc of the front vent 101 of the atrium 100 of Figure 1 is substantially 70Hz.
Pour un autre exemple, le casque présente une cavité frontale dont le volume Vfv est estimé à 78.6 cm3 ainsi qu’un évent avant présentant une longueur de 7 mm et une section de 1.5 mm2. Avec cet autre exemple, la fréquence de coupure de l’évent avant du casque peut être estimée à 90Hz. For another example, the helmet has a frontal cavity whose volume Vfv is estimated at 78.6 cm 3 as well as a front vent having a length of 7 mm and a section of 1.5 mm 2 . With this other example, the cutoff frequency of the helmet's front vent can be estimated at 90Hz.
Par ailleurs, un problème majeur des casques audio à réduction de bruit active provient des fuites pouvant apparaitre entre la cavité frontale 11 et l’extérieur de l’oreillette 100, typiquement entre la peau de l’utilisateur et le coussinet 20. Par exemple, des fuites de la cavité frontale 11 sont généralement constatées au niveau d’une branche de lunettes reposant sur l’oreille de l'utilisateur car ce montant de lunettes vient dégrader l'étanchéité réalisée par le coussinet. De même, des fuites peuvent être générées lorsque l’utilisateur n’a pas positionné correctement une oreillette à cause de ces cheveux, de son chapeau, d’une cicatrice ou de tout autre raison. Furthermore, a major problem with active noise reduction headphones comes from the leaks that may appear between the front cavity 11 and the exterior of the headset 100, typically between the user's skin and the pad 20. For example, leaks from the frontal cavity 11 are generally observed at the level of a branch of the glasses resting on the ear of the user because this amount of glasses degrades the tightness produced by the pad. Likewise, leaks can be generated when the user has not positioned an earpiece correctly because of that hair, hat, scar, or any other reason.
En effet, dans un système de suppression de sons par rétroaction, le contrôleur du son émis par le haut-parleur est conçu en faisant l’approximation que le système acoustique est majoritairement fixe. Si le système acoustique change radicalement de phase, par exemple en présence de fuites de la cavité frontale 11, le contrôleur peut devenir instable et commander la génération de sons indésirables. Indeed, in a feedback sound suppression system, the sound controller emitted by the loudspeaker is designed by making the approximation that the acoustic system is mostly fixed. If the acoustic system drastically changes phase, for example in the presence of leaks from the frontal cavity 11, the controller can become unstable and control the generation of unwanted sounds.
Pour réduire ce problème de fuites de la cavité frontale, il est connu de modifier la structure des coussinets pour qu'ils se déforment très fortement au plus proche de la peau et que cette déformation forme une barrière la plus hermétique possible. Cependant, la modification structurelle des coussinets est souvent insuffisante pour prévenir les fuites de la cavité frontale et elle risque de dégrader le confort de l'utilisateur. To reduce this problem of leakage from the frontal cavity, it is known to modify the structure of the pads so that they deform very strongly as close as possible to the skin and that this deformation forms a barrier that is as airtight as possible. However, structural modification of the pads is often insufficient to prevent frontal cavity leakage and may degrade wearer comfort.
Le problème technique se propose de résoudre l'invention et donc d’obtenir un casque audio à réduction de bruit active avec une fonction de transfert améliorée lorsque la cavité frontale présente des fuites. The technical problem proposes to solve the invention and therefore to obtain an active noise reduction headset with an improved transfer function when the frontal cavity has leaks.
EXPOSE DE L’INVENTION DISCLOSURE OF THE INVENTION
Pour répondre à ce problème technique, l’invention propose d’utiliser au moins un évent permettant de créer des fuites intentionnelles basse fréquences. To respond to this technical problem, the invention proposes to use at least one vent making it possible to create intentional low-frequency leaks.
En effet, l’invention est issue d’une observation selon laquelle la création de fuites intentionnelles basse fréquences permet de limiter la dégradation de la réponse fréquentielle due à un défaut d’isolation de la cavité frontale, par exemple lorsque l’utilisateur porte des lunettes. Indeed, the invention stems from an observation according to which the creation of intentional low-frequency leaks makes it possible to limit the degradation of the frequency response due to a defect in the insulation of the frontal cavity, for example when the user wears eyeglasses.
Pour obtenir des fuites intentionnelles basse fréquences efficaces, les recherches de l’invention ont montré qu’il est possible d’utiliser au moins un évent présentant : une longueur supérieure à 1,5 mm ; et une largeur sélectionnée de sorte que : To obtain effective low-frequency intentional leaks, the research of the invention has shown that it is possible to use at least one vent having: a length greater than 1.5 mm; and a width selected so that:
- un rapport entre ladite longueur et ladite largeur soit inférieur ou égal à 8: 1 si une section médiane est supérieure à 1,7 mm2 ; ou - a ratio between said length and said width is less than or equal to 8: 1 if a median section is greater than 1.7 mm 2 ; Where
- un rapport entre ladite longueur et ladite largeur soit inférieur ou égal à 4: 1 si ladite section médiane est inférieure ou égale à 1,7 mm2. - a ratio between said length and said width is less than or equal to 4:1 if said median section is less than or equal to 1.7 mm 2 .
A cet effet, l’invention concerne un casque audio à réduction de bruit active présentant deux oreillettes circum-auriculaires, chaque oreillette circum-auriculaire comportant : une cloison destinée à être disposée en regard d’une oreille ; un coussinet monté sur un bord externe de ladite cloison de sorte à former une cavité frontale ; une coque positionnée à l’arrière de ladite cloison de sorte à former une cavité arrière, un haut-parleur monté sur une ouverture de ladite cloison ; au moins un microphone placé dans ladite cavité frontale ; et un module de suppression de bruit commandant ledit haut-parleur pour supprimer les bruits indésirables détectés par ledit microphone dans ladite cavité frontale. To this end, the invention relates to an audio headset with active noise reduction having two circum-auricular earpieces, each circum-auricular earpiece comprising: a partition intended to be arranged facing one ear; a bearing mounted on an outer edge of said partition so as to form a front cavity; a shell positioned at the rear of said partition so as to form a rear cavity, a loudspeaker mounted on an opening of said partition; at least one microphone placed in said frontal cavity; and a noise canceling module controlling said loudspeaker to cancel unwanted noise detected by said microphone in said front cavity.
L’invention se caractérise en ce que ladite coque présente au moins un évent ou une portion de faible impédance acoustique arrière ménagée dans ladite coque de sorte à rendre ladite coque acoustiquement transparente en basse fréquences. The invention is characterized in that said shell has at least one vent or a portion of low rear acoustic impedance made in said shell so as to make said shell acoustically transparent at low frequencies.
L’invention se caractérise également en ce que ladite cloison intègre au moins un évent traversant ladite cloison de sorte à générer des fuites intentionnelles, ledit au moins un évent présentant : une longueur supérieure à 1,5 mm ; et une largeur sélectionnée de sorte que : The invention is also characterized in that said partition incorporates at least one vent passing through said partition so as to generate intentional leaks, said at least one vent having: a length greater than 1.5 mm; and a width selected so that:
- un rapport entre ladite longueur et ladite largeur soit inférieur ou égal à 8: 1 si une section médiane est supérieure à 1,7 mm2 ; ou - a ratio between said length and said width is less than or equal to 8: 1 if a median section is greater than 1.7 mm 2 ; Where
- un rapport entre ladite longueur et ladite largeur soit inférieur ou égal à 4: 1 si ladite section médiane est inférieure ou égale à 1,7 mm2. - a ratio between said length and said width is less than or equal to 4:1 if said median section is less than or equal to 1.7 mm 2 .
Au sens de l’invention, la gamme de fréquences pour lesquelles la coque est transparente acoustiquement est déterminée en fonction des dimensions du ou des évents. Typiquement, le casque peut être rendu transparent acoustiquement pour des fréquences basses, c’est-à-dire inférieures à 5000 Hz. Within the meaning of the invention, the range of frequencies for which the shell is acoustically transparent is determined according to the dimensions of the vent or vents. Typically, the helmet can be made acoustically transparent for low frequencies, i.e. below 5000 Hz.
L’invention permet, ainsi, d’obtenir un casque audio à réduction de bruit active avec des performances homogènes, même lorsque la cavité frontale présente des fuites et sans modifier le coussinet. The invention thus makes it possible to obtain an audio headset with active noise reduction with homogeneous performance, even when the frontal cavity has leaks and without modifying the pad.
Ce faisant, l’invention permet de limiter les sons indésirables pouvant apparaître lorsqu’un utilisateur porte des lunettes ou que le coussinet n’est pas correctement placé. Au sens de l’invention, un évent configuré pour générer des fuites intentionnelles correspond à un évent dont l’ouverture ou la fermeture modifie la réponse fréquentielle mesurée de l’oreillette. Par exemple, les fuites intentionnelles peuvent être caractérisées par un déphasage d’au moins 5 deg sur une plage de fréquence d’au moins 10Hz comprise entre 20Hz et 200Hz entre les fonctions de transfert de ladite oreillette circum-auriculaire, mesurées lorsque ledit au moins un évent est ouvert et fermé. Au contraire, tel que décrit dans l’état de la technique, si le déphasage entre les fonctions de transfert est inférieur à 5 deg, alors l’évent ne génère pas de fuites intentionnelles. Lorsque plusieurs évents sont utilisés pour générer les fuites intentionnelles, le déphasage total peut être mesuré lorsque tous les évents sont simultanément ouverts et fermés. Le déphasage partiel lié à un évent spécifique peut être mesuré en obturant tous les évents et en ouvrant et fermant l’évent dont on souhaite calculer le déphasage. In doing so, the invention makes it possible to limit the undesirable sounds that may appear when a user is wearing glasses or when the pad is not correctly placed. Within the meaning of the invention, a vent configured to generate intentional leaks corresponds to a vent whose opening or closing modifies the measured frequency response of the atrium. For example, intentional leaks can be characterized by a phase shift of at least 5 deg over a frequency range of at least 10Hz between 20Hz and 200Hz between the transfer functions of said circumaural atrium, measured when said at least a vent is opened and closed. On the contrary, as described in the state of the art, if the phase shift between the transfer functions is less than 5 deg, then the vent does not generate intentional leaks. When multiple vents are used to generate the intentional leaks, the total phase shift can be measured when all vents are simultaneously open and closed. The partial phase shift related to a specific vent can be measured by closing all the vents and by opening and closing the vent whose phase shift is to be calculated.
De préférence, les fuites intentionnelles sont caractérisées par un déphasage d’au moins 10 deg sur une plage de fréquence d’au moins 20Hz comprise entre 20Hz et 200Hz entre les fonctions de transfert mesurées lorsque l’évent est ouvert et fermé. Preferably, intentional leaks are characterized by a phase shift of at least 10 deg over a frequency range of at least 20Hz between 20Hz and 200Hz between the measured transfer functions when the vent is open and closed.
La mesure de déphasage sur une plage de fréquence d’au moins 10Hz ou 20Hz permet d’éviter qu’une différence localisée dans la prise de mesure entraine une mauvaise caractérisation de l’évent. Pour ce faire, les fonctions de transfert sont préférentiellement mesurées à chaque unité de fréquence entre au moins 20Hz et 200Hz, c’est-à-dire à 20Hz, à 21Hz, à 22Hz, à 23Hz... The phase shift measurement over a frequency range of at least 10Hz or 20Hz prevents a localized difference in the measurement from causing poor characterization of the vent. To do this, the transfer functions are preferably measured at each frequency unit between at least 20Hz and 200Hz, i.e. at 20Hz, at 21Hz, at 22Hz, at 23Hz, etc.
Les fuites intentionnelles peuvent être créées par un ou plusieurs évents de formes variées. Pour ce faire, chaque évent présente une longueur supérieure à 1,5 mm, préférentiellement supérieure à 2 mm. En effet, l’invention est issue d’une observation selon laquelle il ne suffit pas de créer un simple trou dans la cloison pour générer ces fuites intentionnelles et limiter les sons indésirables pouvant apparaître lorsqu’un utilisateur porte des lunettes ou que le coussinet n’est pas correctement placé. Par ailleurs, un simple trou présenterait l’inconvénient de créer des distorsions additionnelles en moyennes fréquences. Outre la longueur, l’invention est également issue d’une observation selon laquelle deux seuils de rapport entre la longueur et la largeur permettent de générer les fuites intentionnelles efficaces : Intentional leaks can be created by one or more vents of various shapes. To do this, each vent has a length greater than 1.5 mm, preferably greater than 2 mm. Indeed, the invention stems from an observation that it is not enough to create a simple hole in the partition to generate these intentional leaks and limit the undesirable sounds that may appear when a user is wearing glasses or the pad is not is not correctly placed. Moreover, a simple hole would have the disadvantage of creating additional distortions at medium frequencies. In addition to the length, the invention also stems from an observation according to which two ratio thresholds between the length and the width make it possible to generate effective intentional leaks:
- soit le rapport entre la longueur et la largeur doit être inférieur ou égal à 8:1 si la section médiane est supérieure à 1,7 mm2 ; ou - either the ratio between the length and the width must be less than or equal to 8:1 if the median section is greater than 1.7 mm 2 ; Where
- soit le rapport entre la longueur et la largeur doit être inférieur ou égal à 4:1 si ladite section médiane est inférieure à 1,7 mm2. - or the ratio between the length and the width must be less than or equal to 4:1 if the said median section is less than 1.7 mm 2 .
Au sens de l’invention, la « section médiane » d’un évent correspond à sa section au milieu de la hauteur de l’évent. Dans le cas le plus simple, l’évent peut présenter une forme cylindrique avec une section constante. Avec cette forme cylindrique, la largeur de l’évent correspond à son diamètre. Within the meaning of the invention, the “middle section” of a vent corresponds to its section in the middle of the height of the vent. In the simplest case, the vent can have a cylindrical shape with a constant section. With this cylindrical shape, the width of the vent corresponds to its diameter.
L’évent peut néanmoins présenter une forme plus complexe qu’un simple cylindre. Par exemple, au moins une partie terminale de l’évent peut former un pavillon, c’est-à-dire une extrémité évasée, pour limiter les perturbations agissant dans l’air autour de cette extrémité de l’évent. However, the vent can have a more complex shape than a simple cylinder. For example, at least one terminal part of the vent can form a pavilion, that is to say a flared end, to limit the disturbances acting in the air around this end of the vent.
L’évent peut ainsi présenter la forme d’une tuyère avec deux extrémités évasées. The vent can thus have the shape of a nozzle with two flared ends.
La géométrie de l’évent peut également être dimensionnée pour rechercher une fréquence de coupure spécifique de l’évent, par exemple une fréquence de coupure comprise entre 60 Hz et IKHz ou entre 60 et 300Hz. évent cylindrique, la fréquence de coupure peut être déterminée avec la e : avec Vfv correspondant au volume de la cavité frontale, L à la longueur de l’évent et S à sa section. Lorsque l’évent présente une forme de révolution de section variable, la fréquence de coupure est déterminée avec la relation suivante : The vent geometry can also be sized to search for a specific cutoff frequency of the vent, for example a cutoff frequency between 60 Hz and IKHz or between 60 and 300Hz. cylindrical vent, the cutoff frequency can be determined with the e: with Vfv corresponding to the volume of the frontal cavity, L to the length of the vent and S to its section. When the vent presents a shape of revolution of variable section, the cut-off frequency is determined with the following relationship:
[Mathô] avec Vfv correspondant au volume de la cavité frontale, L à la longueur de l’évent et S’ à sa section moyenne. [Matho] with Vfv corresponding to the volume of the frontal cavity, L to the length of the vent and S' to its average section.
Lorsque plusieurs évents sont utilisés, la fréquence de coupure est mesurée indépendamment pour chaque évent, par exemple en obturant les autres évents. En effet, cette formule ne permet pas de mesurer la fréquence de coupure générée par l’association de plusieurs évents. Pour estimer la fréquence de coupure de plusieurs évents, il est possible de déterminer la fréquence de coupure de plusieurs évents en mesurant le diagramme de Bode des évents. When several vents are used, the cutoff frequency is measured independently for each vent, for example by closing the other vents. Indeed, this formula does not make it possible to measure the cut-off frequency generated by the association of several vents. To estimate the cutoff frequency of multiple vents, it is possible to determine the cutoff frequency of multiple vents by measuring the Bode diagram of the vents.
Outre sa forme, le comportement acoustique de l’évent peut également être adapté en sélectionnant la position de l’évent, par exemple plus ou moins proche du haut-parleur. L’évent peut déboucher dans une cavité frontale arrière ou directement à l’extérieur de l’oreillette, présentant ainsi des comportements acoustiques distincts. Besides its shape, the acoustic behavior of the vent can also be adapted by selecting the position of the vent, for example closer or less close to the loudspeaker. The vent can exit into a rear front cavity or directly outside the earcup, exhibiting distinct acoustic behaviors.
Selon un mode de réalisation, le comportement acoustique de l’évent est adapté en formant un pavillon ou en plaçant une maille résistive sur une extrémité terminale de l’évent formant une portion de faible ou forte impédance acoustique. Par exemple, une maille résistive peut être formée par un tissu, pourvu de trous, collé sur l’extrémité de l’évent débouchant dans la cavité frontale. According to one embodiment, the acoustic behavior of the vent is adapted by forming a bell or by placing a resistive mesh on a terminal end of the vent forming a portion of low or high acoustic impedance. For example, a resistive mesh can be formed by a fabric, provided with holes, glued on the end of the vent opening in the front cavity.
Les fuites intentionnelles peuvent être réalisées au moyen d’un seul évent. Intentional leaks can be accomplished through a single vent.
De préférence, chaque oreillette circum-auriculaire comporte plusieurs évents juxtaposés présentant des longueurs distinctes. En effet, en utilisant plusieurs évents présentant des formes distinctes, il est possible de cumuler l’impact de ces évents pour générer ces fuites intentionnelles et limiter les sons indésirables. En particulier, il a été constaté que le mode de réalisation dans lequel chaque oreillette circum-auriculaire comporte deux évents juxtaposés présentant des longueurs distinctes présente un très bon compromis entre performance et gain de place. Preferably, each circum-auricular earpiece comprises several juxtaposed vents having distinct lengths. Indeed, by using several vents having distinct shapes, it is possible to combine the impact of these vents to generate these intentional leaks and limit unwanted sounds. In particular, it has been observed that the embodiment in which each circumaural earpiece comprises two juxtaposed vents having distinct lengths presents a very good compromise between performance and space saving.
DESCRIPTION SOMMAIRE DES FIGURES BRIEF DESCRIPTION OF FIGURES
La manière de réaliser l’invention ainsi que les avantages qui en découlent, ressortiront bien des modes de réalisation qui suivent, donnés à titre indicatif mais non limitatif, à l’appui des figures annexées dans lesquelles : The manner of carrying out the invention as well as the advantages which result from it, will clearly emerge from the embodiments which follow, given by way of indication but not limitation, in support of the appended figures in which:
[Fig. 1] La figure 1 est une vue schématique en coupe d’une oreillette de l’état de la technique ; [Fig. 1] Figure 1 is a schematic sectional view of a prior art headset;
[Fig. 2] La figure 2 est une représentation schématique d’un protocole de mesure d’une fonction de transfert selon un mode de réalisation non-invasif ; [Fig. 2] FIG. 2 is a schematic representation of a protocol for measuring a transfer function according to a non-invasive embodiment;
[Fig. 3] La figure 3 est une représentation schématique d’un protocole de mesure d’une fonction de transfert selon un mode de réalisation invasif ; [Fig. 3] FIG. 3 is a schematic representation of a protocol for measuring a transfer function according to an invasive embodiment;
[Fig. 4] La figure 4 illustre les fonctions de transfert, en amplitude et en phase, de l'oreillette de la figure 1 lorsque l’évent de l’état de l’art est ouvert ou fermé ; [Fig. 4] Figure 4 illustrates the transfer functions, in amplitude and in phase, of the atrium of Figure 1 when the vent of the state of the art is open or closed;
[Fig. 5] La figure 5 est une vue schématique en coupe d’une oreillette selon un premier mode de réalisation de l’invention avec un évent ; [Fig. 5] Figure 5 is a schematic sectional view of an earpiece according to a first embodiment of the invention with a vent;
[Fig. 6] La figure 6 est une vue schématique en coupe d’une oreillette selon un second mode de réalisation de l’invention avec deux évents ; [Fig. 6] Figure 6 is a schematic sectional view of an earpiece according to a second embodiment of the invention with two vents;
[Fig. 7] La figure 7 illustre les fonctions de transfert, en amplitude et en phase, de l’oreillette de la figure 5, avec l’évent fermé et avec ou sans fuites de la cavité frontale ; [Fig. 7] Figure 7 illustrates the transfer functions, in amplitude and in phase, of the atrium of Figure 5, with the vent closed and with or without leaks from the frontal cavity;
[Fig. 8] La figure 8 illustre les fonctions de transfert, en amplitude et en phase, de l’oreillette de la figure 5 comportant un évent long avec ou sans fuites de la cavité frontale ; [Fig. 8] Figure 8 illustrates the transfer functions, in amplitude and in phase, of the atrium of Figure 5 having a long vent with or without leaks from the frontal cavity;
[Fig. 9] La figure 9 illustre les fonctions de transfert, en amplitude et en phase, de l’oreillette de la figure 5 comportant un évent moyen avec ou sans fuites de la cavité frontale ; [Fig. 9] Figure 9 illustrates the transfer functions, in amplitude and in phase, of the atrium of Figure 5 having a medium vent with or without leakage from the frontal cavity;
[Fig. 10] La figure 10 illustre les fonctions de transfert, en amplitude et en phase, de l’oreillette de la figure 5 comportant un évent court avec ou sans fuites de la cavité frontale ; [Fig. 11] La figure 11 illustre les fonctions de transfert, en amplitude et en phase, d’une oreillette comportant trois évents avec ou sans fuites de la cavité frontale ; et [Fig. 10] Figure 10 illustrates the transfer functions, in amplitude and in phase, of the atrium of Figure 5 comprising a short vent with or without leakage from the frontal cavity; [Fig. 11] Figure 11 illustrates the transfer functions, in amplitude and in phase, of an atrium comprising three vents with or without leaks from the frontal cavity; and
[Fig. 12] La figure 12 illustre les déphasages liés à la présence ou non d’évents sur les fonctions de transfert en amplitude et en phase d’une oreillette comportant de zéro à trois évents. DESCRIPTION DETAILLEE DE L’INVENTION [Fig. 12] FIG. 12 illustrates the phase shifts linked to the presence or absence of vents on the amplitude and phase transfer functions of an atrium comprising from zero to three vents. DETAILED DESCRIPTION OF THE INVENTION
La figure 5 illustre une oreillette circum-auriculaire 10a d’un casque audio à réduction de bruit active. L’oreillette circum-auriculaire 10a comporte classiquement une cloison 15 associée à un coussinet 20 pour former une cavité frontale 11 autour de l’oreille de l’utilisateur. La cloison 15 supporte un microphone 14 disposé dans la cavité frontale 11 et configuré pour capter les sons de l’extérieur pénétrant dans la cavité frontale 11. FIG. 5 illustrates a circum-auricular earpiece 10a of an audio headset with active noise reduction. The circum-auricular headset 10a conventionally comprises a partition 15 associated with a pad 20 to form a frontal cavity 11 around the ear of the user. The partition 15 supports a microphone 14 disposed in the frontal cavity 11 and configured to pick up sounds from outside entering the frontal cavity 11.
En outre, la cloison 15 est ouverte pour permettre l’intégration d’un haut-parleur 17 permettant de générer des ondes sonores inverses aux sons de l’extérieur captés par le microphone 14. Pour ce faire, un module de suppression de bruit, par exemple un processeur de signal analogique ou numérique, commande le haut-parleur 17 pour supprimer les bruits indésirables détectés par le microphone 14 dans la cavité frontale 11. Les bruits indésirables correspondent aux sons captés dans la cavité frontale 11 qui ne sont pas générés par le haut-parleur 17. In addition, the partition 15 is open to allow the integration of a loudspeaker 17 making it possible to generate sound waves that are the opposite of the sounds from outside picked up by the microphone 14. To do this, a noise suppression module, for example an analog or digital signal processor, controls the loudspeaker 17 to suppress the undesirable noises detected by the microphone 14 in the frontal cavity 11. The undesirable noises correspond to the sounds picked up in the frontal cavity 11 which are not generated by speaker 17.
Pour limiter les sons de l’extérieur pénétrant dans la cavité frontale 11, le coussinet 20, la cloison 15 et le haut-parleur 17 forment un ensemble sensiblement hermétique à l’air externe. To limit the sounds from outside penetrating into the frontal cavity 11, the pad 20, the partition 15 and the loudspeaker 17 form an assembly that is substantially hermetic to the external air.
L’oreillette circum-auriculaire 10a présente également une coque 16 positionnée à l’arrière de la cloison 15 de sorte à former une cavité arrière 12 entre la cloison et la paroi interne de la coque 16. Cette cavité arrière 12 est destinée à protéger et intégrer des composants électroniques, tel qu’un contrôleur du son émis par le haut-parleur 17, ce dernier intégrant par exemple le module de suppression de bruit. Circum-auricular headset 10a also has a shell 16 positioned at the rear of partition 15 so as to form a rear cavity 12 between the partition and the internal wall of shell 16. This rear cavity 12 is intended to protect and integrating electronic components, such as a sound controller emitted by the loudspeaker 17, the latter integrating for example the noise suppression module.
Le haut-parleur 17 est préférentiellement intégré dans une cavité intermédiaire 13 formée entre la cloison 15 et la coque 16. Cette cavité intermédiaire 13 est utilisée pour former une charge acoustique permettant de régler la directivité du haut-parleur 17. Pour ce faire, le moteur 19 est intégré dans la cavité intermédiaire 13 et la membrane 18 s’étend radialement au niveau de la cloison 15. L’accord de cette charge acoustique peut être obtenu avec une portion de faible ou de forte impédance acoustique avant 21, par exemple des micro perforations réalisées dans la cloison 15 entre la cavité frontale 11 et la cavité intermédiaire 13. De même, pour réaliser un accord acoustique entre la cavité intermédiaire 13 et la cavité arrière 12, une paroi arrière 29 de la cavité intermédiaire 13 est classiquement pourvue d’une portion de faible impédance acoustique intermédiaire 22 et/ou d’un évent 27. Loudspeaker 17 is preferably integrated into an intermediate cavity 13 formed between partition 15 and shell 16. This intermediate cavity 13 is used to form an acoustic load making it possible to adjust the directivity of loudspeaker 17. To do this, the motor 19 is integrated in the intermediate cavity 13 and the membrane 18 extends radially at the level of the partition 15. The tuning of this acoustic load can be obtained with a portion of low or high acoustic impedance before 21, for example micro-perforations made in the partition 15 between the front cavity 11 and the intermediate cavity 13. Likewise, to produce a acoustic agreement between the intermediate cavity 13 and the rear cavity 12, a rear wall 29 of the intermediate cavity 13 is conventionally provided with a portion of intermediate low acoustic impedance 22 and/or with a vent 27.
La coque 16 est rendue transparente acoustiquement en basse fréquences au moyen d’un évent ou d’une portion de faible impédance acoustique arrière 23 ménagée dans la coque 16. The shell 16 is made acoustically transparent at low frequencies by means of a vent or a portion of low rear acoustic impedance 23 arranged in the shell 16.
En outre, l’oreillette 10a de la figure 5 diffère de l’oreillette 100 de la figure 1 de l’état de la technique par les caractéristiques de l’évent 24 traversant la cloison 15 entre la cavité frontale 11 et la cavité arrière 12. In addition, the atrium 10a of Figure 5 differs from the atrium 100 of Figure 1 of the state of the art by the characteristics of the vent 24 passing through the partition 15 between the frontal cavity 11 and the rear cavity 12 .
Dans le cadre de l’invention, cet évent 24 présente une longueur L1 supérieure à 1,5 mm ; et une largeur DI sélectionnée de sorte que : un rapport entre la longueur L1 et la largeur DI soit inférieur ou égal à 8 : 1 si une section médiane est supérieure à 1,7 mm2 ; ou un rapport entre la longueur L1 et la largeur DI soit inférieur ou égal à 4:1 si la section médiane est inférieure ou égale à 1,7 mm2. In the context of the invention, this vent 24 has a length L1 greater than 1.5 mm; and a width DI selected such that: a ratio between the length L1 and the width DI is less than or equal to 8:1 if a middle section is greater than 1.7 mm 2 ; or a ratio between the length L1 and the width DI is less than or equal to 4:1 if the median section is less than or equal to 1.7 mm 2 .
Par exemple, si l’évent 24 correspond à un cylindre présentant un diamètre DI de 1.4 mm, la section médiane S est d’environ 1.53 mm2, selon la formule S=7iD2/4. Dans cet exemple, la section médiane S est inférieure à 1,7 mm2, la longueur L1 de l’évent doit donc être inférieure à 5.6 mm, soit 4.D1, pour que le rapport entre la longueur L1 et la largeur DI soit inférieur ou égal à 4:1. Ainsi, avec un diamètre DI de 1.4 mm, des évents 24 de longueur 4 ou 5 mm peuvent être utilisés pour générer des fuites intentionnelles efficaces alors qu’un évent 24 de 6 mm ou 10 mm serait moins efficace. For example, if the vent 24 corresponds to a cylinder having a diameter DI of 1.4 mm, the median section S is approximately 1.53 mm 2 , according to the formula S=7iD 2 /4. In this example, the median section S is less than 1.7 mm 2 , the length L1 of the vent must therefore be less than 5.6 mm, i.e. 4.D1, so that the ratio between the length L1 and the width DI is less than or equal to 4:1. Thus, with a diameter ID of 1.4 mm, vents 24 of length 4 or 5 mm can be used to generate effective intentional leaks whereas a vent 24 of 6 mm or 10 mm would be less effective.
Pour un autre exemple similaire, si l’évent 24 correspond à un cylindre présentant un diamètre DI de 1.3 mm, la section médiane S est d’environ 1.33 mm2. Dans cet exemple, la section médiane S est encore inférieure à 1,7 mm2, la longueur L1 de l’évent doit donc être inférieure à 5.2 mm, soit 4.D1, pour que le rapport entre la longueur L1 et la largeur DI soit inférieur ou égal à 4: 1. For another similar example, if the vent 24 corresponds to a cylinder having a diameter DI of 1.3 mm, the median section S is approximately 1.33 mm 2 . In this example, the midsection S is still less than 1.7 mm 2 , so the length L1 of the vent must be less than 5.2 mm, i.e. 4.D1, so that the ratio between the length L1 and the width DI is less than or equal to 4:1.
Pour un autre exemple avec une section plus importante, si l’évent 24 correspond à un cylindre présentant un diamètre DI de 1.6 mm, la section médiane S est d’environ 2 mm2. Dans cet exemple, la section médiane S est supérieure à 1,7 mm2, la longueur L1 de l’évent doit donc être inférieure à 12.8 mm, soit 8. Dl, pour que le rapport entre la longueur L1 et la largeur Dl soit inférieur ou égal à 8:1. Ainsi, avec un diamètre Dl de 1.6 mm, des évents 24 de longueur 4, 5, 6 ou 10 mm peuvent être utilisés pour générer des fuites intentionnelles efficaces alors qu’un évent 24 de 15 mm serait moins efficace. For another example with a larger section, if the vent 24 corresponds to a cylinder having a diameter DI of 1.6 mm, the median section S is approximately 2 mm 2 . In this example, the median section S is greater than 1.7 mm 2 , the length L1 of the vent must therefore be less than 12.8 mm, i.e. 8. Dl, so that the ratio between the length L1 and the width Dl is less than or equal to 8:1. Thus, with a diameter D1 of 1.6 mm, vents 24 of length 4, 5, 6 or 10 mm can be used to generate effective intentional leaks whereas a vent 24 of 15 mm would be less effective.
En complément, les dimensions de l’évent 24 peuvent être sélectionnées pour que l’évent 24 présente une fréquence de coupure Fc comprise entre 60 Hz et 1kHz, ou préférentiellement entre 60Hz et 300Hz, de sorte à limiter le déphasage de la fonction de transfert en cas de fuites de la cavité frontale 11. In addition, the dimensions of the vent 24 can be selected so that the vent 24 has a cut-off frequency Fc of between 60 Hz and 1 kHz, or preferably between 60 Hz and 300 Hz, so as to limit the phase shift of the transfer function in case of leaks from the frontal cavity 11.
La fonction de transfert d’une oreillette correspond à la différence entre le signal transmis au haut-parleur 17 et le son effectivement généré dans la cavité frontale 11 pour différentes fréquences. Pour obtenir cette fonction de transfert, il est possible d’utiliser le montage illustré sur la figure 2, dans lequel le casque est parfaitement disposé sur des orifices d’écoute d’un mannequin 32. Ces orifices d’écoute du mannequin 32 simulent le comportement d’une oreille moyenne d’un utilisateur au moyen, par exemple, d’un simulateur de torsions. Le signal capté par ces orifices d’écoute est transmis à un amplificateur 33. The transfer function of an earpiece corresponds to the difference between the signal transmitted to the loudspeaker 17 and the sound actually generated in the frontal cavity 11 for different frequencies. To obtain this transfer function, it is possible to use the assembly illustrated in FIG. 2, in which the headphones are perfectly placed on the listening holes of a dummy 32. These listening holes of the dummy 32 simulate the behavior of a middle ear of a user by means, for example, of a torsion simulator. The signal picked up by these listening holes is transmitted to an amplifier 33.
Pour chaque fréquence, un organe de gestion audio 30 génère un signal S de la fréquence considérée, et capte un signal Dut correspondant à la mesure réalisée en sortie de l’amplificateur 33. Le signal S est réinjecté en entrée de l’organe de gestion audio 30 pour obtenir un signal de référence Ref. For each frequency, an audio management unit 30 generates a signal S of the frequency considered, and picks up a signal Dut corresponding to the measurement made at the output of the amplifier 33. The signal S is reinjected at the input of the management unit audio 30 to obtain a reference signal Ref.
L’organe de gestion audio 30 est connecté à un ordinateur 31 effectuant la comparaison entre le signal de référence Ref et le signal mesuré Dut pour chaque fréquence analysée de sorte à obtenir la fonction de transfert. En variante, au lieu d’utiliser les orifices d’écoute, il est possible de réutiliser le signal issu du microphone 14 présent dans la cavité frontale 11, tel qu’illustré sur la figure 3. Ainsi, en connectant l’organe de gestion audio 30 au signal de ce microphone 14, il est également possible d’obtenir la fonction de transfert. The audio management unit 30 is connected to a computer 31 performing the comparison between the reference signal Ref and the measured signal Dut for each frequency analyzed so as to obtain the transfer function. As a variant, instead of using the listening holes, it is possible to reuse the signal from the microphone 14 present in the front cavity 11, as illustrated in FIG. 3. Thus, by connecting the management member audio 30 to the signal from this microphone 14, it is also possible to obtain the transfer function.
Un exemple de fonction de transfert est tracé sur la figure 7 entre 10Hz et 20kHz pour l’oreillette 10a de la figure 5 alors que l’évent 24 est obturé de sorte à visualiser la dégradation de la fonction de transfert lorsque la cavité frontale 11 présente des fuites par rapport à la fonction de transfert lorsque la cavité frontale 11 est hermétique. La présence de fuites peut, par exemple, être simulée en plaçant des lunettes sur le mannequin 32. An example of a transfer function is plotted in Figure 7 between 10Hz and 20kHz for the atrium 10a of Figure 5 while the vent 24 is closed so as to visualize the degradation of the transfer function when the front cavity 11 has leaks with respect to the transfer function when the front cavity 11 is sealed. The presence of leaks can, for example, be simulated by placing glasses on the dummy 32.
Tel qu’illustré sur cette figure 7, en dessous de IKHz, les fonctions de transfert mesurées avec et sans fuites sont très différentes. Par exemple, à 20 Hz, la phase mesurée de l’oreillette 10a est de 40 deg alors qu’avec des fuites la phase mesurée est de 110 deg. La présence de fuites induit ainsi une déphase de 70 deg. Ce déphasage est largement suffisant pour entrainer une instabilité du contrôleur et générer des sons indésirables. As illustrated in this figure 7, below IKHz, the transfer functions measured with and without leaks are very different. For example, at 20 Hz, the measured phase of the atrium 10a is 40 deg while with leaks the measured phase is 110 deg. The presence of leaks thus induces a phase shift of 70 deg. This phase shift is more than enough to cause controller instability and generate unwanted sounds.
Pour limiter ce déphasage, l'invention propose d'utiliser un évent configuré pour générer des fuites intentionnelles. To limit this phase shift, the invention proposes using a vent configured to generate intentional leaks.
Les figures 8, 9 et 10 illustrent trois exemples de fonction de transfert mesurées, avec et sans fuite de la cavité frontale 11, pour une même oreillette 10a et avec trois évents cylindriques 24 de même section S, environ égale à 1.65 mm2, et présentant des longueurs L1 différentes. Dans ces trois exemples, la cavité frontale 11 présente un volume Vfv de 70 cm3 et les évents 24 présentent un diamètre DI de 1.45 mm. Figures 8, 9 and 10 illustrate three examples of transfer function measured, with and without leakage from the frontal cavity 11, for the same earpiece 10a and with three cylindrical vents 24 of the same section S, approximately equal to 1.65 mm 2 , and with different L1 lengths. In these three examples, the frontal cavity 11 has a volume Vfv of 70 cm 3 and the vents 24 have a diameter DI of 1.45 mm.
L’estimation du volume Vfv de la cavité frontale 11 est préférentiellement réalisée sans prendre en compte le volume de l’oreille présente dans la cavité frontale 11 et en faisant l’approximation que le coussinet 20 n’est pas compressé. Ainsi, le volume Vfv de la cavité frontale 11 peut être estimé en considérant une surface plane disposée sur le coussinet 20 et en estimant le volume Vfv entre la surface plane, la cloison 15 et le coussinet 20 sans prendre en compte le volume des différents évents. Dans l’exemple de la figure 8, un évent cylindrique 24 de 10 mm de longueur L1 est utilisé. La fréquence de coupure de cet évent 24 de 10 mm de longueur L1 peut être estimé à 83.1 Hz en utilisant la relation suivante : avec Vfv correspondant au volume de la cavité frontale 11, L1 à la longueur de l’évent 24 et S à sa section. The estimation of the volume Vfv of the frontal cavity 11 is preferably carried out without taking into account the volume of the ear present in the frontal cavity 11 and by making the approximation that the pad 20 is not compressed. Thus, the volume Vfv of the front cavity 11 can be estimated by considering a flat surface arranged on the pad 20 and by estimating the volume Vfv between the flat surface, the partition 15 and the pad 20 without taking into account the volume of the different vents . In the example of Figure 8, a cylindrical vent 24 of 10 mm in length L1 is used. The cut-off frequency of this vent 24 of 10 mm length L1 can be estimated at 83.1 Hz using the following relationship: with Vfv corresponding to the volume of the frontal cavity 11, L1 to the length of the vent 24 and S to its section.
Cet évent 24 de 10 mm de longueur L1 présente donc une fréquence de coupure Fc comprise entre 60 Hz et 1 kHz. Tel qu'illustré sur la figure 12, il permet de générer des fuites intentionnelles. Par exemple, les fuites intentionnelles peuvent être caractérisées par un déphasage d’au moins 5 deg sur une plage de fréquence d’au moins 10Hz comprise entre 20Hz et 200Hz entre les fonctions de transfert mesurées lorsque l’évent 24 est ouvert et lorsque l’évent 24 est fermé. This vent 24 of 10 mm in length L1 therefore has a cut-off frequency Fc of between 60 Hz and 1 kHz. As illustrated in FIG. 12, it makes it possible to generate intentional leaks. For example, intentional leaks can be characterized by a phase shift of at least 5 deg over a frequency range of at least 10Hz between 20Hz and 200Hz between the transfer functions measured when the vent 24 is open and when the vent 24 is closed.
De préférence, les fuites intentionnelles sont caractérisées par un déphasage d’au moins 10 deg sur une plage de fréquence d’au moins 20Hz comprise entre 20Hz et 200Hz entre les fonctions de transfert mesurées lorsque l’évent 24 est ouvert et lorsque l’évent 24 est fermé. Preferably, the intentional leaks are characterized by a phase shift of at least 10 deg over a frequency range of at least 20Hz between 20Hz and 200Hz between the transfer functions measured when the vent 24 is open and when the vent 24 is closed.
En effet, la figure 8 révèle que le déphasage mesuré sans fuite avec cet évent 24 est diminué par rapport au déphasage mesuré sans fuite et sans la présence de cet évent 24, tel qu’illustré sur la figure 7. Par exemple, sur la figure 7, à 20 Hz, la phase mesurée sans fuite est de 70 deg sans évent 24 alors que la phase mesurée sans fuite est de 40 deg en présence de l’évent 24. La présence de l’évent 24 entraine donc une réduction du déphasage de 30 deg. Indeed, FIG. 8 reveals that the phase shift measured without leakage with this vent 24 is reduced compared to the phase shift measured without leakage and without the presence of this vent 24, as illustrated in FIG. 7. For example, in FIG. 7, at 20 Hz, the phase measured without leakage is 70 deg without vent 24 while the phase measured without leakage is 40 deg in the presence of vent 24. The presence of vent 24 therefore leads to a reduction in the phase shift 30 deg.
Cette limitation du déphasage est d'autant plus marquée lorsque la fréquence de coupure Fc de l'évent 24 est comprise entre 60 Hz et 1 kHz. En effet, la figure 9 illustre les fonctions de transfert d'un évent 24 cylindrique d'une longueur L de 6 mm avec une même section S de 1.65 mm2. Avec le même volume Vfv de 70 cm3, la fréquence de coupure Fc de cet évent 24 est de 107.3 Hz. Tel qu'illustré sur la figure 9, le déphasage mesuré avec ou sans fuite avec cet évent 24 d'une fréquence de coupure Fc de 107.3 Hz est globalement plus faible que le déphasage mesuré avec l’évent 24 possédant une fréquence de coupure Fc de 83.1 Hz, illustré sur la figure 8. This limitation of the phase shift is all the more marked when the cut-off frequency Fc of the vent 24 is between 60 Hz and 1 kHz. Indeed, FIG. 9 illustrates the transfer functions of a cylindrical vent 24 with a length L of 6 mm with the same section S of 1.65 mm 2 . With the same volume Vfv of 70 cm 3 , the cut-off frequency Fc of this vent 24 is 107.3 Hz. As illustrated in FIG. 9, the phase shift measured with or without leakage with this vent 24 of a cut-off frequency Fc of 107.3 Hz is globally lower than the phase shift measured with the vent 24 having a cut-off frequency Fc of 83.1 Hz, illustrated in figure 8.
De même, ce déphasage est encore plus réduit lorsqu’un évent 24 cylindrique d'une longueur L de 4 mm est utilisé, tel qu'illustré sur la figure 10. Avec la section S de 1.65 mm2 et le volume Vvf de 70 cm3, cet évent 24 d’une longueur L de 4 mm présente une fréquence de coupure Fc de 131.4 Hz. Tel qu'illustré sur la figure 10, le déphasage mesuré avec ou sans fuite avec cet évent 24 d'une fréquence de coupure Fc de 131.4 Hz est globalement plus faible que le déphasage mesuré avec l’évent 24 possédant une fréquence de coupure Fc de 107.3 Hz, illustré sur la figure 9. Par exemple, à 20 Hz, la phase mesurée sans fuite est sensiblement de 60 deg alors que la phase mesurée avec fuites est proche de 80 deg. Cet évent 24 de 4 mm permet donc d'obtenir un déphasage limité à 20 deg contrairement au déphasage de 70 deg mesuré sans utiliser un évent 24 permettant de générer de fuites intentionnelles. Similarly, this phase shift is even more reduced when a cylindrical vent 24 with a length L of 4 mm is used, as illustrated in FIG. 10. With the section S of 1.65 mm 2 and the volume Vvf of 70 cm 3 , this vent 24 with a length L of 4 mm has a cut-off frequency Fc of 131.4 Hz. of 131.4 Hz is generally lower than the phase shift measured with the vent 24 having a cut-off frequency Fc of 107.3 Hz, illustrated in FIG. 9. For example, at 20 Hz, the phase measured without leakage is substantially 60 deg then that the phase measured with leaks is close to 80 deg. This 4 mm vent 24 therefore makes it possible to obtain a phase shift limited to 20 deg contrary to the phase shift of 70 deg measured without using a vent 24 making it possible to generate intentional leaks.
Ces exemples des figures 8 à 10 permettent d’illustrer comment dimensionner les caractéristiques d’un évent 24 pour générer des fuites intentionnelles. Bien entendu, la forme de l’évent 24 peut varier tout en configurant l’évent 24 pour générer des fuites intentionnelles. Ainsi, l’évent 24 peut présenter une forme de tuyère, une forme de pavillon ou tout autre forme adaptée pour contrôler la propagation de l’air. Avec une forme de révolution de section variable, la fréquence de coupure Fc est déterminée avec la relation suivante : avec Vfv correspondant au volume de la cavité frontale 11, L1 à la longueur de l’évent 24 et S’ à sa section moyenne. Outre la forme de l’évent 24, une ou plusieurs parties terminales peuvent également être pourvues d’une maille résistive 28 pour adapter les propriétés acoustiques de l’évent 24. These examples of FIGS. 8 to 10 make it possible to illustrate how to size the characteristics of a vent 24 to generate intentional leaks. Of course, the shape of the vent 24 can vary while configuring the vent 24 to generate intentional leaks. Thus, the vent 24 can have the shape of a nozzle, a shape of a horn or any other shape suitable for controlling the propagation of air. With a shape of revolution of variable section, the cutoff frequency Fc is determined with the following relationship: with Vfv corresponding to the volume of the frontal cavity 11, L1 to the length of the vent 24 and S' to its middle section. Besides the shape of the vent 24, one or more end portions can also be provided with a resistive mesh 28 to adapt the acoustic properties of the vent 24.
De préférence, plusieurs évents 24 peuvent être juxtaposés pour obtenir une amélioration du déphasage avec ou sans fuite de la cavité frontale 11. Par exemple, la figure 6 illustre une oreillette circum-auriculaire 10b comportant deux évents juxtaposés, un premier évent 25 présentant une longueur L2 et une largeur D2 et un second évent 26 présentant une longueur L3 et une largeur D3. Preferably, several vents 24 can be juxtaposed to obtain an improvement in the phase shift with or without leakage from the frontal cavity 11. For example, FIG. L2 and a width D2 and a second vent 26 having a length L3 and a width D3.
A titre d’exemple, la largeur D2 du premier évent 25 peut être de 1.45mm et la longueur L2 du premier évent 25 peut être de 2.7mm. De même, la largeur D3 du second évent 26 peut être de.45mm et la longueur L3 du second évent 26 peut être de 3.9mm. By way of example, the width D2 of the first vent 25 can be 1.45mm and the length L2 of the first vent 25 can be 2.7mm. Similarly, the width D3 of the second vent 26 can be 45mm and the length L3 of the second vent 26 can be 3.9mm.
La figure 11 illustre la fonction de transfert d’une oreillette dans laquelle les trois évents décrits avec les figures 8, 9 et 10 sont juxtaposés. Cette combinaison de plusieurs évents 24 permet d’obtenir un déphasage très limité entre les fonctions de transfert mesurées avec ou sans fuite de la cavité frontale 11. Figure 11 illustrates the transfer function of an atrium in which the three vents described with Figures 8, 9 and 10 are juxtaposed. This combination of several vents 24 makes it possible to obtain a very limited phase shift between the transfer functions measured with or without leakage from the frontal cavity 11.
L'invention permet ainsi de limiter le déphasage avec ou sans fuite de la cavité frontale 11 en créant des fuites intentionnelles qui dégradent la réponse mesurée lorsque l’oreillette circum-auriculaire 10a-10b est parfaitement disposée autour des oreilles de l'utilisateur. Cependant, l'invention part du constat que ce positionnement idéal n'est pratiquement pas reproductible dans la réalité et qu'il est préférable de réaliser un casque à réduction de bruit active dans lequel la qualité de l'atténuation est meilleure dans la majorité des cas d’usage et notamment dans les cas les plus dégradés pour lesquels des fuites sont présentes au niveau de la cavité frontale 11 de sorte à obtenir une limitation des sons indésirables. The invention thus makes it possible to limit the phase shift with or without leakage from the frontal cavity 11 by creating intentional leakages which degrade the measured response when the circum-auricular earpiece 10a-10b is perfectly positioned around the ears of the user. However, the invention starts from the observation that this ideal positioning is practically not reproducible in reality and that it is preferable to produce headphones with active noise reduction in which the quality of the attenuation is better in the majority of case of use and in particular in the most degraded cases for which leaks are present at the level of the frontal cavity 11 so as to obtain a limitation of the undesirable sounds.
L’invention permet donc de garantir une homogénéité dans les performances d’un casque à réduction de bruit active pour tous les cas d’usage en réduisant la dégradation maximum pouvant être subie en présence de fuites de la cavité frontale 11. The invention therefore makes it possible to guarantee homogeneity in the performance of an active noise reduction headset for all cases of use by reducing the maximum degradation that may be suffered in the presence of leaks from the frontal cavity 11.

Claims

REVENDICATIONS
1. Casque audio à réduction de bruit active présentant deux oreillettes circum- auriculaires (10a-10b), chaque oreillette circum-auriculaire (10a-10b) comportant : 1. Active noise reduction headphones having two circum-auricular ear pieces (10a-10b), each circum-auricular ear piece (10a-10b) comprising:
- une cloison (15) destinée à être disposée en regard d’une oreille ; - a partition (15) intended to be arranged opposite an ear;
- un coussinet (20) monté sur un bord externe de ladite cloison (15) de sorte à former une cavité frontale (11) ; - a bearing (20) mounted on an outer edge of said partition (15) so as to form a front cavity (11);
- une coque (16) positionnée à l’arrière de ladite cloison (15) de sorte à former une cavité arrière (12) ; un haut-parleur (17) monté sur une ouverture de ladite cloison (15) ; au moins un microphone (14) placé dans ladite cavité frontale (11) ; et un module de suppression de bruit commandant ledit haut-parleur (17) pour supprimer les bruits indésirables détectés par ledit microphone (14) dans ladite cavité frontale (11) ; caractérisé en ce que ladite coque (16) présente au moins un évent ou une portion de faible impédance acoustique arrière (23) ménagée dans ladite coque (16) de sorte à rendre ladite coque (16) acoustiquement transparente en basse fréquences, et en ce que ladite cloison (15) intègre au moins un évent (24-26) traversant ladite cloison (15) et s’étendant entre ladite cavité frontale (11) et ladite cavité arrière (12) de sorte à générer des fuites intentionnelles, ledit au moins un évent (24-26) présentant : une longueur (L1-L3) supérieure à 1,5 mm ; et une largeur (D1-D3) sélectionnée de sorte que : - a shell (16) positioned at the rear of said partition (15) so as to form a rear cavity (12); a loudspeaker (17) mounted on an opening of said partition (15); at least one microphone (14) placed in said front cavity (11); and a noise canceling module controlling said speaker (17) to cancel unwanted noise detected by said microphone (14) in said front cavity (11); characterized in that said shell (16) has at least one vent or a portion of low rear acoustic impedance (23) made in said shell (16) so as to make said shell (16) acoustically transparent at low frequencies, and in that that said partition (15) incorporates at least one vent (24-26) passing through said partition (15) and extending between said front cavity (11) and said rear cavity (12) so as to generate intentional leaks, said at least at least one vent (24-26) having: a length (L1-L3) greater than 1.5 mm; and a width (D1-D3) selected so that:
- un rapport entre ladite longueur (L1-L3) et ladite largeur (D1-D3) soit inférieur ou égal à 8: 1 si une section médiane est supérieure à 1,7 mm2 ; ou - a ratio between said length (L1-L3) and said width (D1-D3) is less than or equal to 8: 1 if a median section is greater than 1.7 mm 2 ; Where
- un rapport entre ladite longueur (L1-L3) et ladite largeur (D1-D3) soit inférieur ou égal à 4: 1 si ladite section médiane est inférieure ou égale à 1,7 mm2. - a ratio between said length (L1-L3) and said width (D1-D3) is less than or equal to 4: 1 if said median section is less than or equal to 1.7 mm 2 .
2. Casque audio à réduction de bruit active selon la revendication 1, dans lequel ledit au moins un évent (24-26) présente une longueur (L1-L3) supérieure à 2 mm. 2. Headphones with active noise reduction according to claim 1, wherein said at least one vent (24-26) has a length (L1-L3) greater than 2 mm.
3. Casque audio à réduction de bruit active selon la revendication 1 ou 2, dans lequel lesdites fuites intentionnelles sont caractérisées par un déphasage d’au moins 5 deg sur une plage de fréquence d’au moins 10Hz comprise entre 20Hz et 200Hz entre les fonctions de transfert de ladite oreillette circum- auriculaire (10a-10b), mesurées lorsque ledit au moins un évent (24-26) est ouvert et fermé. 3. Active noise reduction headphones according to claim 1 or 2, wherein said intentional leaks are characterized by a phase shift of at least 5 deg over a frequency range of at least 10Hz between 20Hz and 200Hz between functions of transfer of said circumauricular atrium (10a-10b), measured when said at least one vent (24-26) is open and closed.
4. Casque audio à réduction de bruit active selon la revendication 3, dans lequel lesdites fuites intentionnelles sont caractérisées par un déphasage d’au moins 10 deg sur une plage de fréquence d’au moins 20Hz comprise entre 20Hz et 200Hz entre les fonctions de transfert de ladite oreillette circum-auriculaire (10a- 10b), mesurées lorsque ledit au moins un évent (24-26) est ouvert et fermé. 4. Active noise reduction headphones according to claim 3, wherein said intentional leaks are characterized by a phase shift of at least 10 deg over a frequency range of at least 20Hz between 20Hz and 200Hz between the transfer functions of said circumaural atrium (10a-10b), measured when said at least one vent (24-26) is open and closed.
5. Casque audio à réduction de bruit active selon l’une des revendications 1 à 4, dans lequel ledit au moins un évent (24-26) présente une forme cylindrique. 5. Headphones with active noise reduction according to one of claims 1 to 4, wherein said at least one vent (24-26) has a cylindrical shape.
6. Casque audio à réduction de bruit active selon la revendication 5, dans lequel ledit au moins un évent (24-26) présente une fréquence de coupure (Fc) comprise entre 60 et 300Hz, ladite fréquence de coupure (Fc) étant déterminée avec la e : avec Vfv correspondant au volume de ladite cavité frontale (11), L à ladite longueur dudit au moins un évent (24-26) et S à sa section. 6. Headphones with active noise reduction according to claim 5, wherein said at least one vent (24-26) has a cutoff frequency (Fc) of between 60 and 300Hz, said cutoff frequency (Fc) being determined with the e: with Vfv corresponding to the volume of said frontal cavity (11), L to said length of said at least one vent (24-26) and S to its section.
7. Casque audio à réduction de bruit active selon l’une des revendications 1 à 4, dans lequel ledit au moins un évent (24-26) présente une forme de révolution de section variable et une fréquence de coupure (Fc) comprise entre 60 et 300Hz, ladite fréquence de coupure (Fc) étant déterminée avec la relation suivante : avec Vfv correspondant au volume de ladite cavité frontale (11), L à ladite longueur dudit au moins un évent (24-26) et S’ à sa section moyenne. 7. Headphones with active noise reduction according to one of claims 1 to 4, wherein said at least one vent (24-26) has a shape of revolution of variable section and a cut-off frequency (Fc) of between 60 and 300Hz, said cut-off frequency (Fc) being determined with the following relationship: with Vfv corresponding to the volume of said front cavity (11), L to said length of said at least one vent (24-26) and S' to its middle section.
8. Casque audio à réduction de bruit active selon l’une des revendications 1 à 7, dans lequel ledit au moins un évent (24-26) présente au moins une partie terminale en forme de pavillon. 8. Headphones with active noise reduction according to one of claims 1 to 7, wherein said at least one vent (24-26) has at least one end portion in the shape of a flag.
9. Casque audio à réduction de bruit active selon l’une des revendications 1 à 8, dans lequel ledit au moins un évent (24-26) présente au moins une partie terminale pourvue d’une maille résistive (28). 9. Headphones with active noise reduction according to one of claims 1 to 8, wherein said at least one vent (24-26) has at least one end portion provided with a resistive mesh (28).
10. Casque audio à réduction de bruit active selon l’une des revendications 1 à 9, dans lequel chaque oreillette circum-auriculaire (10a-10b) comporte deux évents (24-26) juxtaposés présentant des longueurs (L1-L3) distinctes. 10. Headphones with active noise reduction according to one of claims 1 to 9, wherein each circum-auricular earpiece (10a-10b) comprises two vents (24-26) juxtaposed having distinct lengths (L1-L3).
EP21848016.8A 2020-12-24 2021-12-23 Audio headset with active noise reduction Pending EP4268224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2014116A FR3118526B1 (en) 2020-12-24 2020-12-24 ACTIVE NOISE CANCELING HEADPHONES
PCT/FR2021/052440 WO2022136807A1 (en) 2020-12-24 2021-12-23 Audio headset with active noise reduction

Publications (1)

Publication Number Publication Date
EP4268224A1 true EP4268224A1 (en) 2023-11-01

Family

ID=75278160

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21848016.8A Pending EP4268224A1 (en) 2020-12-24 2021-12-23 Audio headset with active noise reduction

Country Status (5)

Country Link
EP (1) EP4268224A1 (en)
KR (1) KR20230122026A (en)
CN (1) CN116671128A (en)
FR (1) FR3118526B1 (en)
WO (1) WO2022136807A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2234882B (en) * 1989-08-03 1994-01-12 Plessey Co Plc Noise reduction system
US8447058B1 (en) * 2011-12-02 2013-05-21 Merry Electronics Co., Ltd. Headphone with acoustic modulator
US20160330537A1 (en) * 2015-05-06 2016-11-10 Aliphcom Hybrid headset tuned for open-back and closed-back operation
EP3447762A1 (en) * 2017-08-23 2019-02-27 ams International AG Noise cancellation headphone
CN107854215A (en) * 2017-12-07 2018-03-30 歌尔科技有限公司 A kind of noise reduction earflap
CN108810703A (en) * 2018-07-03 2018-11-13 歌尔科技有限公司 A kind of earphone promoting sound insulation room performance

Also Published As

Publication number Publication date
KR20230122026A (en) 2023-08-22
FR3118526B1 (en) 2023-11-24
WO2022136807A1 (en) 2022-06-30
FR3118526A1 (en) 2022-07-01
CN116671128A (en) 2023-08-29

Similar Documents

Publication Publication Date Title
CA1265063A (en) Methods and means for deafening externally generated noises reaching the eardrum and for improving the clarity of perceived electro-acoustic communications
EP0843452B1 (en) Telephone handset with reduced thickness of the receiver
FR2983026A1 (en) AUDIO HELMET WITH ACTIVE NON-ADAPTIVE TYPE NOISE CONTROL FOR LISTENING TO AUDIO MUSIC SOURCE AND / OR HANDS-FREE TELEPHONE FUNCTIONS
FR2595178A1 (en) EARPHONE OF THE TYPE TO BE USED OUTSIDE
EP3171612A1 (en) Audio headphones with active noise control, anti-occlusion control and passive attenuation cancellation, based on the presence or the absence of a vocal activity of the headphone user
FR3019961A1 (en) AUDIO HEADSET WITH ANC ACTIVE NOISE CONTROL WITH REDUCTION OF THE ELECTRICAL BREATH
FR2500248A1 (en) AUXILIARY HEARING TYPE TO BE CARRIED BEHIND THE EAR
EP2518724A1 (en) Microphone/headphone audio headset comprising a means for suppressing noise in a speech signal, in particular for a hands-free telephone system
CH683477A5 (en) acoustic device with feedback compensation.
FR2894425A3 (en) EARPHONES FOR RECEIVING AND TRANSMITTING ANTI-PARASITES.
US20120033822A1 (en) Earphone having sound insulation means
FR2630610A1 (en) DIRECT MICROPHONE
US20150016653A1 (en) Tunable headphone
US11405717B2 (en) Pressure equalizing earphone
WO2022136807A1 (en) Audio headset with active noise reduction
WO2015144708A1 (en) Acoustic apparatus comprising at least one electroacoustic microphone, an osteophonic microphone and means for calculating a corrected signal, and associated item of headwear
CN114450745A (en) Audio system and signal processing method for ear-wearing type playing device
EP1244277B1 (en) Handsfree phone with improved leak tolerance
US20170006380A1 (en) Front Enclosed In-Ear Earbuds
FR2855358A1 (en) MICROPHONE
JP3326958B2 (en) hearing aid
EP1665870A2 (en) Sound-reproducing transducer
FR2955731A1 (en) Acoustic enclosure for emitting acoustic waves, has viscoelastic membrane displaced under action of wavy excitation to attenuate stationary acoustic wave created by cavity, at or around resonance frequency
EP3975583B1 (en) In-ear earphone
US11825281B1 (en) Adaptive equalization compensation for earbuds

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)