EP0690980A1 - Vakuum-lecksuchgerät für die testgaslecksuche mit leichten gasen - Google Patents

Vakuum-lecksuchgerät für die testgaslecksuche mit leichten gasen

Info

Publication number
EP0690980A1
EP0690980A1 EP93919111A EP93919111A EP0690980A1 EP 0690980 A1 EP0690980 A1 EP 0690980A1 EP 93919111 A EP93919111 A EP 93919111A EP 93919111 A EP93919111 A EP 93919111A EP 0690980 A1 EP0690980 A1 EP 0690980A1
Authority
EP
European Patent Office
Prior art keywords
pump
gas
vacuum
leak detector
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93919111A
Other languages
English (en)
French (fr)
Other versions
EP0690980B1 (de
Inventor
Günter REICH
Anno Schoroth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Balzers und Leybold Deutschland Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG, Balzers und Leybold Deutschland Holding AG filed Critical Leybold AG
Publication of EP0690980A1 publication Critical patent/EP0690980A1/de
Application granted granted Critical
Publication of EP0690980B1 publication Critical patent/EP0690980B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems

Definitions

  • Vacuum leak detector for test gas leak detection with light gases
  • the invention relates to a vacuum leak detector for test gas leak detection with light gases as test gas such as helium, with a test specimen which on the one hand has a gas-tight connection with a vacuum pump and on the other hand a gas-tight connection with a gas detector, and with the means for spraying the test specimen with Test gas are assigned.
  • test gas such as helium
  • Mass spectrometers or vacuum measuring devices are used as gas detectors, the display of which depends on the type of gas. (Max Wutz, "Theory and Practice of Vacuum Technology", 1965, published by Friedrich Vieweg & Sohn, Braunschweig, page 410)
  • the invention is based on the object of a vacuum leak detection device for test gas leak detection with light gases as test gas such as helium and with a test specimen which on the one hand has a gas-tight connection to a vacuum pump and on the other hand, has a gas-tight connection with a gas detector and which means for spraying with test gas are to be improved in such a way that its response sensitivity increases when searching for leaks, the pumping time is reduced until the readiness to search for leaks and leak detection is made possible at comparatively higher pressures .
  • a vacuum leak detector of the type mentioned in the preamble of claim 1 with the invention in that a high-vacuum pump is switched on in the connection between the gas detector and the test object, the compressive capacity of the test gas being lower than for heavy gases such as nitrogen and water vapor, and that the pump is arranged with the fore-vacuum side to the test object and with the high-vacuum side to the detector.
  • the response sensitivity in the leak detection of the vacuum system is significantly increased in a surprisingly simple manner and the pumping time until readiness for leak detection is significantly reduced.
  • a leak detection result is achieved even at comparatively higher pressures.
  • the vacuum leak detector according to the invention is considerably less complicated and less expensive than known leak detectors with regard to the functional elements assigned to it, and it has a relatively very high sensitivity in comparison to conventional leak detectors, the display of which is dependent on the type of gas. Characterized in that a high-vacuum pump is switched on in the connection between the gas detector and the test object, the compression capacity of the test gas being lower than for heavy gases, the pump with the fore-vacuum side to the test object and with the A high-vacuum side is arranged to the detector, a degressive pressure stage is generated between the test object and the gas detector.
  • the pump lets the helium pass through the pressure stage in the direction of the gas detector, while the measurement of disruptive or adulterating gases such as nitrogen and water vapor from the high-vacuum pump due to the comparatively extremely high compression capacity in the direction of the test object are conveyed away from the detector.
  • Leak detection is possible as long as the total pressure is lower than the maximum permissible backing pressure of the high vacuum pump.
  • FIG. 1 shows an arrangement of a conventional vacuum leak detector for test gas leak detection
  • FIG. 2 shows an arrangement of a leak detector according to the invention
  • Figure 3 is a diagram of the compressive capacity of a
  • Figure 4 shows another embodiment with a measured value formation over a differentiation stage
  • Figure 5 is a circuit example for the differentiation stage.
  • Figure 1 shows the family tree of a conventional vacuum leak detector for test gas leak detection with light test gas such as helium.
  • the test object 1 has a gas-tight connection 2 with a vacuum pump 3 and a gas-tight connection Connection 4 with a gas detector 5.
  • a test gas spray gun 10 is assigned to the test object 1 for spraying with test gas. This is sprayed with test gas after sufficient evacuation. If the test object 1 has leaks or leaks, test gas penetrates the test object 1 through the pressure drop between the outside atmosphere and the vacuum. Its increase in concentration is then determined and displayed by the gas detector 5.
  • the gas detector 5 can be equipped with any display 6, for example a digital display or an analog display or a combination of both types of display. As described above, in this known leak detection arrangement according to FIG. 1, the response sensitivity is comparatively low and therefore unsatisfactory.
  • a significant improvement is achieved with the arrangement shown in FIG. 2 by switching on a high vacuum pump 7 in the connection 4 between the gas detector 5 and the test object 1.
  • This is specifically a type of high-vacuum pump 7 of this type, whose compression capacity for the test gas, for example helium, is significantly lower than for heavy gases such as nitrogen or water vapor.
  • the pump 7 is arranged with the fore-vacuum side 8 to the test object 1 and with the high-vacuum side 9 to the gas detector 5.
  • the relatively heavier gases from the gas detector 5 are conveyed outside via the connecting line 4 to the test object 1 and from the test object 1 through the vacuum pump 3, while the test gas creates helium via the high-vacuum pump 7 ⁇ open degressive pressure level of the vacuum in the direction of the gas detector 5 and accumulates there with an increase in concentration.
  • this increases the response sensitivity of the leak detector according to the invention significantly.
  • FIG. 3 shows in a diagram the compressive capacity of a turbomolecular pump for different types of gas as a function of the speed.
  • Logarithmic values for the compressive capacity of hydrogen (H 2 ), helium (He), water vapor (H 2 0) and nitrogen (N 2 ) are given on the Y axis of the diagram. At a certain speed, these are approximately 25 in number for H 2 , 100 for He 100, 18,000 for H 2 0 and 190,000 for N 2 . This results in a relative compression ratio of:
  • the pump 7 can either be a molecular pump, a turbo-molecular pump or a diffusion pump. It is also possible that the pump 7 has a combination of the aforementioned types of pumps. Furthermore, the pump 7 should have a configuration for the highest possible vacuum resistance.
  • the gas detector 5 can be a mass spectrometer, but the gas detector 5 can also be a total pressure measuring device such as heat conduction, ionization, Penning, membrane or friction vacuum meters or a combination of the vacuum meters mentioned.
  • a sufficiently sensitive pressure measuring device is, for example, the mass spectrometer. If it is set to the mass of helium, it delivers an ion current proportional to the helium partial pressure. In conventional leak detectors, this results in an ion current signal proportional to the leak rate. However, if it is used to measure an increase in helium concentration, then the ion current essentially only represents the previous history, ie that during previous measurements over the amount of helium accumulated over time. With a further positive measurement, the ion current changes only by a very small amount.
  • the leak rate q H. is therefore given by a differential quotient, namely:
  • this is expediently designed as a differentiation stage, the gain of which increases with increasing frequency.
  • the passive elements of the differentiating stage are to be dimensioned such that the differentiation conditions are largely fulfilled for characteristic times in measuring operation or for the frequencies corresponding to them.
  • FIG. 4 shows an embodiment in which a differentiating stage 20 is connected to the gas detector 5. The measured value is shown on the display 6 via the differentiating stage 20.
  • FIG. 5 An example of a differentiation stage 20 is shown in FIG. 5. It is connected downstream of the mass spectrometer 5 and comprises the input (operational) amplifier 24, the output 25 of which via an inverting amplifier 26 and an inverting integrator 27 and a resistor R-. 28 is connected to the input 22.
  • the output 25 of the input amplifier is connected to the output 30 of the differentiating stage via an amplifier 29 (with a selectable gain factor V_-).
  • the output voltage of the differentiating stage is thus equal to the time derivative of the mass spectrometer current to be measured.
  • the measuring current which also rises steadily due to the steadily increasing argon pressure, acts at the output of the differentiating stage as a constant voltage, which can be subtracted if necessary.
  • any range switching that may be required can take place via the two 31 by adding a resistor R 2 33 whose value is smaller as the output voltage of the integrator increases than Ri is switched to the input of the differentiating stage.
  • connection can, for example, be voltage-dependent via a zener diode 32.
  • the transmission constant of the differentiating stage can be reduced by increasing the amplification of the amplifier 29 accordingly.
  • the sensitive input amplifier does not need to amplify the full background current.
  • the differentiating element is not directly connected to the high-resistance input circuit; this simplifies the design for area switching.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

Bei einem Vakuum-Lecksuchgerät für die Testgaslecksuche mit leichten Gasen als Testgas wie Helium, mit einem Prüfling, der einerseits eine gasdichte Verbindung mit einer Vakuumpumpe und andererseits eine gasdichte Verbindung mit einem Gasdetektor aufweist, und dem Mittel zur Absprühung mit Testgas zugeordnet sind, wird eine signifikante Erhöhung der Ansprechempfindlichkeit dadurch erzielt, daß in die Verbindung (4) zwischen Gasdetektor (5) und Prüfling (1) eine Hochvakuumpumpe (7) eingeschaltet ist, deren Kompressionsvermögen für das Prüfgas geringer ist, als für schwere Gase wie N2 oder H2O, und daß die Pumpe (7) mit der Vorvakuumseite (8) zum Prüfling (1) und mit der Hochvakuumseite (9) zum Detektor (5) angeordnet ist.

Description

Vakuum-Lecksuchgerät für die Testgaslecksuche mit leichten Gasen
Die Erfindung betrifft ein Vakuum-Lecksuchgerät für die Testgaslecksuche mit leichten Gasen als Teεtgas wie Helium, mit einem Prüfling, der einerseits eine gasdichte Verbin¬ dung mit einer Vakuumpumpe und andererseits eine gasdichte Verbindung mit einem Gasdetektor aufweist, und dem Mittel zur Absprühung des Prüflings mit Testgas zugeordnet sind.
Bei bekannten Verfahren bzw. bekannten Vorrichtungen ist vielfach die Ansprechempfindlichkeit der Lecksuche eines Vakuumsystems mit nur einer Vakuumpumpe unbefriedigend. Auch ist die Pumpzeit bis zur Lecksuchbereitschaft ver¬ gleichsweise lang, weil eine wirklich effektive Lecksuche nur bei sehr niedrigen Drücken im Inneren des Gasdetektors erfolgen kann.
Als Gasdetektor werden Massenspektrometer oder solche Vakuummeßgeräte verwendet, deren Anzeige abhängig von der Gasart ist. (Max Wutz, "Theorie und Praxis der Vakuumtech¬ nik", 1965, Verlag Friedrich Vieweg & Sohn, Braunschweig, Seite 410)
Der Erfindung liegt die Aufgabe zugrunde, ein Vakuumleck- suchgerät für die Testgaslecksuche mit leichten Gasen als Testgas wie Helium und mit einem Prüfling, der einerseits eine gasdichte Verbindung mit einer Vakuumpumpe und andererseits eine gasdichte Verbindung mit einem Gasdetek¬ tor aufweist, und welchem Mittel zur Absprühung mit Testgas zugeordnet sind, dahingehend zu verbessern, daß dessen Ansprech-Empfindlichkeit bei der Lecksuche erhöht, die Pumpzeit bis zur Lecksuchbereitschaft verkürzt und die Lecksuche bei vergleichsweise höheren Drücken ermöglicht wird.
Die Lösung der Aufgabe gelingt bei einem Vakuum-Lecksuch¬ gerät der im Oberbegriff von Anspruch 1 genannten Art mit der Erfindung dadurch, daß in die Verbindung zwischen Gasdetektor und Prüfling eine Hochvakuumpumpe eingeschaltet ist, deren Kompressionsvermögen für das Prüfgas geringer ist, als für schwere Gase wie Stickstoff und Wasserdampf, und daß die Pumpe mit der Vorvakuumseite zum Prüfling und mit der Hochvakuumseite zum Detektor angeordnet ist.
Mit der Erfindung wird in überraschend einfacher Weise die Ansprech-Empfindlichkeit bei der Lecksuche des Vakuumsy¬ stems signifikant erhöht und die Pumpzeit bis zur Leck¬ suchbereitschaft wesentlich verkürzt. Darüber hinaus wird infolge der damit erzielbaren Verbesserungen ein Lecksuch¬ ergebnis schon bei vergleichsweise höheren Drücken erzielt.
Das Vakuum-Lecksuchgerät nach der Erfindung ist hinsicht¬ lich der ihm zugeordneten Funktionselemente wesentlich unkomplizierter und preisgünstiger als bekannte Lecksuch¬ geräte, dabei weist es eine relativ sehr hohe Ansprechemp¬ findlichkeit im Vergleich zu üblichen Lecksuchgeräten auf, deren Anzeige gasartabhängig ist. Dadurch, daß in die Verbindung zwischen Gasdetektor und Prüfling eine Hochva¬ kuumpumpe eingeschaltet ist, deren Kompressionsvermögen für das Prüfgas geringer ist, als für schwere Gase, wobei die Pumpe mit der Vorvakuumseite zum Prüfling und mit der Hochvakuumseite zum Detektor angeordnet ist, wird zwischen Prüfling und Gasdetektor eine degressive Druckstufe er¬ zeugt. Infolge des für das Prüfgas Helium extrem geringen Kompressionsvermögens der Pumpe läßt diese das Helium über die Druckstufe in Richtung des Gasdetektors passieren, während die Messung störende bzw. verfälschende Gase wie Stickstoff und Wasserdampf von der Hochvakuumpumpe infolge des vergleichsweise.extrem höheren Kompressionsvermögens in Richtung des Prüflings aus dem Detektor weggefördert werden. Eine Lecksuche ist möglich, solange der Totaldruck kleiner ist als der maximal zulässige Vorvakuumdruck der Hochvakuumpumpe.
Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachstehenden Erläuterung eines in den Zeichnungen schematisch dargestellten Ausführungsbei- spieles.
Es zeigen:
Figur 1 eine Anordnung eines konventionellen Vakuu -Leck- .suchgerätes für die Testgaslecksuche,
Figur 2 eine Anordnung eines Lecksuchgerätes gemäß Erfin¬ dung,
Figur 3 ein Diagramm des Kompressionsvermögens einer
Hochvakuumpumpe für unterschiedliche Gasarten,
Figur 4 ein weiteres Ausführungsbeispiel mit einer Me߬ wertbildung über eine Differenzierstufe und
Figur 5 ein Schaltbeispiel für die Differenzierstufe.
Figur 1 zeigt den Stammbaum eines konventionellen Vakuum- Lecksuchgerätes für die Testgaslecksuche mit leichtem Testgas wie Helium. Der Prüfling 1 weist eine gasdichte Verbindung 2 mit einer Vakuumpumpe 3 und eine gasdichte Verbindung 4 mit einem Gasdetektor 5 auf. Dem Prüfling 1 ist für die Absprühung mit Testgas eine Testgas-Sprühpi¬ stole 10 zugeordnet. Mit dieser wird er nach hinreichender Evakuierung mit Testgas besprüht. Falls der Prüfling 1 Undichtheiten bzw. Lecks aufweist, dringt Testgas durch das Druckgefälle zwischen Außenatmosphäre und Vakuum in den Prüfling 1 ein. Dessen Konzentrationsanstieg wird dann vom Gasdetektor 5 ermittelt und angezeigt. Zu diesem Zweck kann der Gasdetektor 5 mit einer beliebigen Anzeige 6, bei¬ spielsweise einer Digitalanzeige oder einer Analoganzeige oder einer Kombination beider Anzeigearten ausgestattet sein. Wie vorstehend beschrieben, ist bei dieser bekannten Lecksuchanordnung gemäß Figur 1 die Ansprech-Empfindlich¬ keit vergleichsweise gering und somit unbefriedigend.
Eine deutliche Verbesserung wird mit der in der Figur 2 dargestellten Anordnung durch Einschalten einer Hochvaku¬ umpumpe 7 in die Verbindung 4 zwischen Gasdetektor 5 und Prüfling 1 erreicht. Dabei handelt es sich speziell um eine solche Bauart der Hochvakuumpumpe 7, deren Kompressions¬ vermögen für das Prüfgas, beispielsweise Helium, wesentlich geringer ist, als für schwere Gase wie Stickstoff oder Wasserdampf. Die Pumpe 7 ist dabei mit der Vorvakuumseite 8 zum Prüfling 1 und mit der Hochvakuumseite 9 zum Gasdetek¬ tor 5 angeordnet. Infolge des unterschiedlichen Kompressi¬ onsvermögens für die unterschiedlichen Gasarten werden die relativ schwereren Gase aus dem Gasdetektor 5 über die Verbindungsleitung 4 zum Prüfling 1 und aus dem Prüfling 1 durch die Vakuumpumpe 3 ins Freie gefördert, während das Prüfgas Helium über die von der Hochvakuumpumpe 7 geschaf¬ fene degressive Druckstufe des Vakuums in Richtung des Gasdetektors 5 übertritt und sich dort unter Konzentrati¬ onsanstieg anreichert. Dadurch wird, wie vorher beschrie¬ ben, die Ansprech-Empfindlichkeit des Lecksuchgerätes nach der Erfindung signifikant erhöht. Weiter wird die Pumpzeit bis zur Lecksuchbereitschaft verkürzt und das Lecksucher¬ gebnis bei relativ höheren Drücken erreicht. Die Messung des Heliumkonzentrationsanstieges ist möglich, solange der Totaldruck kleiner als das maximal zulässige Vorvakuum der Hochvakuumpumpe ist. Beispielsweise beträgt bei einem Druck an der Vorvakuumseite 8 der Hochvakuumpumpe 7 von 0,1 mbar der Druck an der Hochvakuumseite 10_= mbar.
Figur 3 zeigt in einem Diagramm das Kompressionsvermögen einer Turbomolekularpumpe für unterschiedliche Gasarten in Abhängigkeit von der Drehzahl. An der Y-Achse des Diagramms sind logarithmische Werte für das Kompressionsvermögen von Wasserstoff (H2), Helium (He), Wasserdampf (H20) und Stickstoff (N2) angegeben. Diese betragen bei einer be¬ stimmten Drehzahl für H2 in etwa zahlenmäßig 25, für He 100, für H20 18.000 und für N2 190.000. Daraus ergibt sich ein relatives Kompressionsverhältnis von:
Es ist ferner erkennbar, daß die Unterschiede des Kompres¬ sionsvermögens mit abnehmender Drehzahl abnehmen und umgekehrt mit zunehmender Drehzahl zunehmen.
Die Pumpe 7 kann entweder eine Molekularpumpe, eine Turbo¬ molekularpumpe oder eine Diffusionspumpe sein. Es ist auch möglich, daß die Pumpe 7 eine Kombinations der vorgenannten Pumpenarten aufweist. Weiterhin soll die Pumpe 7 eine Ausgestaltung für eine möglichst hohe Vakuumbeständigkeit aufweisen.
Es kann sich bei dem Gasdetektor 5 um ein Massenspektrome- ter handeln, der Gasdetektor 5 kann aber auch ein Total¬ druckmeßgerät wie Wärmeleitungs-, Ionisations-, Penning-, Membran- oder Reibungsvakuummeter oder eine Kombination der genannten Vakuummeter sein. Ein ausreichend empfindliches Druckmeßgerät ist zum Bei¬ spiel das Massenspektro eter. Ist es auf die Masse des Heliums eingestellt, dann liefert es einen dem Helium-Par- tialdruck proportionalen Ionenstrom. Bei herkömmlichen Lecksuchgeräten ergibt sich dadurch ein der Leckrate proportionales Ionenstrom-Signal. Wird es jedoch zur Messung eines Heliumkonzentrationsanstiegs gesetzt, dann repräsentiert der Ionenstrom im wesentlichen nur die Vorgeschichte, d.h., die während vorhergegangener Messungen über die zeit akkumulierte Heliummenge. Bei einer weiteren positiven Messung ändert sich der Ionenstrom nur um einen sehr kleinen Betrag. Die Leckrate qH. ist deshalb durch einen Differentialquotienten gegeben, nämlich:
q*_. = a - dl dt
Es ist deshalb zweckmäßig, das vom Massenspektrometer abgegebene Stomsignal einem hochempfindlichen Strom-/ Spannungswandler zuzuführen. Dieser ist im Rahmen der vorliegenden Erfindung zweckmäßig als Differenzierstufe ausgebildet, deren Verstärkung mit steigender Frequenz zunimmt. Die passiven Elemente der Differenzierstufe sind so zu bemessen, daß für charakteristische Zeiten im Meßbe¬ trieb bzw. für die dazu korrespondierenden Frequenzen die Differentiationsbedingungen weitgehend erfüllt sind.
Figur 4 zeigt ein Ausführungsbeispiel, bei dem sich an dem Gasdetektor 5 eine Differenzierstufe 20 anschließt. Über die Differenzierstufe 20 erfolgt die Darstellung des Meßwertes auf der Anzeige 6.
Ein Beispiel für eine Differenzierstufe 20 ist in Figur 5 dargestellt. Sie ist dem Massenspektrometer 5 nachgeschal¬ tet und umfaßt den Eingangs(Operations-)Verstärker 24, dessen Ausgang 25 über einen invertierenden Verstärker 26 und einen invertierenden Integrator 27 und einen Widerstand R-. 28 mit dem Eingang 22 verbunden ist. Der Ausgang 25 des Eingangsverstärkers wird über einen Verstärker 29 (mit wählbarem) Verstärkungsfaktor V_-, an den Ausgang 30 der Differenzierstufe gelegt.
Es gilt: U-_ = VÄ U__ (Gl. 1)
Wegen des relativ geringen Eingangsström des Eingangsver¬ stär¬ kers 24 gilt der Zusammenhang U2 = Ri I__ (Gl. 2). Die AusgangsSpannung des Integrators ist
Tj2 = Vi • U_.(t)dt. (G1.3)
Durch Differenzieren dieser Gleichung ergibt sich
du2(t) dt
Nach Umstellen und Einsetzen der Gleichungen 1 und 2 gilt für
V__ dlι(t)
Damit ist die Ausgangsspannung der Differenzierstufe gleich der zeitlichen Ableitung des zu messenden Stromes des Massenspektrometers. Der durch den gleichmäßig ansteigenden Argondruck ebenfalls ständig steigende Meßstrom wirkt sich am Ausgang der Differenzierstufe als konstante Spannung aus, die gegebenenfalls subtrahiert werden kann.
Eine evtl. erforderliche Bereichsumschaltung kann über den Zwei 31 erfolgen, indem bei zunehmender AusgangsSpannung des Integrators ein Widerstand R2 33, dessen Wert kleiner als Ri ist, auf den Eingang der Differenzierstufe geschal¬ tet wird.
Das Zuschalten kann beispielsweise spannungsabhängig über eine zener-Diode 32 erfolgen. Eine Verringerung der Über¬ tragungskonstante der Differenzierstufe kann durch ent¬ sprechende Vergrös-serung der Verstärkung des Verstärkers 29 erfolgen.
Die Vorteile der oben beschriebenen Realisierung einer Strom-Differenzierstufe lassen sich wie folgt zusammenfas¬ sen:
Der empfindliche Eingangsverstärker braucht nicht den vollen Untergrundstrom zu verstärken.
Das diffenrenzierende Element ist nicht unmittelbar mit dem hochohmigen Eingangskreis verbunden; dadurch vereinfacht sich das Design für eine Bereichsumschal- tung.
Eine .Auslegung des Verstärkers als allgemeines Filter erlaubt weitergehende Anpassungen bezüglich Rauschen, Drift und anderer Störquellen an die eigentliche Meßaufgabe.
Ersichtlich wird mit der Erfindung in überraschend ein¬ facher Weise mit einem Minimum an technischem Aufwand eine signifikante Erhöhung der Ansprech-Empfindlichkeit bei der Lecksuche mit einem Vakuum-Lecksuchgerät sowie eine Ver¬ kürzung der Pumpzeit bis zur Lecksuchbereitschaft und ein Ansprechen des Lecksuchgerätes bereits bei vergleichsweise höheren Drücken ermöglicht und damit die eingangs gestellte Aufgabe in idealer Weise gelöst.

Claims

PATENTANSPRÜCHE
1. Vakuum-Lecksuchgerät für die Testgaslecksuche mit leichten Gasen.als Testgas wie Helium, mit einem Prüfling, der einerseits eine gasdichte Verbindung mit einer Vakuumpumpe und andererseits eine gasdichte Verbindung mit einem Gasdetektor aufweist, und dem Mittel zur Absprühung mit Testgas zugeordnet sind, dadurch gekennzeichnet, daß in die Verbindung (4) zwischen Gasdetektor (5) und Prüfling (1) eine Hoch¬ vakuumpumpe (7) eingeschaltet ist, deren Kompressi¬ onsvermögen für das Prüfgas geringer ist, als für schwere Gase wie Na oder HaO, und daß die Pumpe (7) mit der Vorvakuumseite (8) zum Prüfling (1) und mit der Hochvakuumseite (9) zum Detektor (5) angeordnet ist.
2. Lecksuchgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Pumpe (7) eine Molekularpumpe ist.
3. Lecksuchgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Pumpe (7) eine Turbomolekularpumpe ist.
4. Lecksuchgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Pumpe (7) eine Diffusionspumpe ist.
5. Lecksuchgerät nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Pumpe (7) eine Kombination der vorgenannten Pumpenarten aufweist.
6. Lecksuchgerät nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Pumpe (7) eine hohe Vakuumbeständigkeit aufweist.
7. Lecksuchgerät nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Gasdetektor (5) mit einer Digitalanzeige (6) oder einer Analoganzeige oder einer Kombination beider Anzeigearten ausgebildet ist.
8. Lecksuchgerät nach einem oder mehreren der Ansprüche 1 bis 7, dadurch.gekennzeichnet, daß der Gasdetektor (5) ein Massenspektrometer ist.
9. Lecksuchgerät nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Gasdetektor (5) ein Totaldruckmeßgerät wie Wärmeleitungs-, Ionisati- ons-, Penning-, Membran- oder Reibungs-Vakuummeter oder eine Kombination der genannten Vakuummeter ist.
10. Nach dem Gegenstromprinzip arbeitendes Vakuumleck- suchgerät mit einem Testgasdetektor (5), einer an den Testgasdetektor angeschlossenen, vom Testgas entgegen der Förderrichtung durchströmten Hochvakuumpumpe (7) und einer weiteren Vakuumpumpe (3) , dadurch gekenn¬ zeichnet, daß sich der auf Lecks zu untersuchende Prüfling zwischen der Hochvakuumpumpe (7) und der Vakuumpumpe (3) befindet.
11. Lecksuchgerät nach Anspruch 10, dadurch gekennzeich¬ net, daß die Vakuumpumpe (3) eine Vorvakuumpumpe oder eine Kombination aus einer weiteren Hochvakuumstufe und einer Vorvakuumstufe ist.
12. Lecksuchgerät nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Testgasregistriergerät (5) ein Druckmeßgerät ist.
13. Lecksuchgerät nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Testgasregistriergerät (5) ein Massenspektrometer ist.
14. Lecksuchgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem Testgasregistriergerät (5) eine Differenzierstufe (20) nachgeschaltet ist.
EP93919111A 1992-08-25 1993-08-20 Vakuum-lecksuchgerät für die testgaslecksuche mit leichten gasen Expired - Lifetime EP0690980B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19924228148 DE4228148A1 (de) 1992-08-25 1992-08-25 Vakuum-Lecksuchgerät für die Testgaslecksuche mit leichten Gasen
DE4228148 1992-08-25
PCT/EP1993/002227 WO1994004901A1 (de) 1992-08-25 1993-08-20 Vakuum-lecksuchgerät für die testgaslecksuche mit leichten gasen

Publications (2)

Publication Number Publication Date
EP0690980A1 true EP0690980A1 (de) 1996-01-10
EP0690980B1 EP0690980B1 (de) 1998-03-04

Family

ID=6466341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93919111A Expired - Lifetime EP0690980B1 (de) 1992-08-25 1993-08-20 Vakuum-lecksuchgerät für die testgaslecksuche mit leichten gasen

Country Status (4)

Country Link
EP (1) EP0690980B1 (de)
JP (1) JP3166859B2 (de)
DE (2) DE4228148A1 (de)
WO (1) WO1994004901A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9405028U1 (de) * 1994-03-24 1994-06-09 Leybold AG, 50968 Köln Testgas-Lecksuchgerät
DE102004050762A1 (de) * 2004-10-16 2006-04-20 Inficon Gmbh Verfahren zur Lecksuche
DE102007057944A1 (de) * 2007-12-01 2009-06-04 Inficon Gmbh Verfahren und Vorrichtung zur Dichtheitsprüfung
CN103868660B (zh) * 2014-04-09 2017-10-20 上海科石科技发展有限公司 卤素气体专用检漏装置及辅助开机结构
DE102016205381B4 (de) 2016-03-31 2023-11-30 Inficon Gmbh Gaslecksuche mit einer Testgassprühvorrichtung
CN111562060A (zh) * 2020-06-22 2020-08-21 上海真兰仪表科技股份有限公司 一种氦检方法及其系统
CN112798193B (zh) * 2020-10-16 2022-12-13 湖南澳美佳健康科技有限公司 一种新型氦检漏仪
CN112710437A (zh) * 2020-12-21 2021-04-27 东部超导科技(苏州)有限公司 Sf6断路器箱体干式真空检漏系统及检漏方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690151A (en) * 1968-07-25 1972-09-12 Norton Co Leak detector
DE6903550U (de) * 1969-01-30 1969-05-29 Asf Gmbh Tankschutzeinrichtung
US3968675A (en) * 1974-06-07 1976-07-13 Varian Associates Method and apparatus for preparing a mass spectrometer leak detector system for operation
DE2924258A1 (de) * 1979-06-15 1980-12-18 Leybold Heraeus Gmbh & Co Kg Verfahren zum betrieb eines lecksuchgeraetes sowie dafuer geeignetes lecksuchgeraet
DE3038089A1 (de) * 1980-10-09 1982-05-19 Messer Griesheim Gmbh, 6000 Frankfurt Verfahren zum ermitteln der stationaeren leckrate
DE3124205A1 (de) * 1981-06-19 1982-12-30 Balzers Hochvakuum Gmbh, 6200 Wiesbaden Lecksuchanordnung
DE3144503C2 (de) * 1981-11-09 1985-03-21 Cit-Alcatel GmbH, 6980 Wertheim Massenspektrometer-Lecksuchgerät
DE3616319C1 (de) * 1986-05-15 1987-07-02 Cit Alcatel Gmbh Heliumlecksuchanlage
DE3828588C1 (de) * 1988-08-23 1989-12-07 Alcatel Hochvakuumtechnik Gmbh, 6980 Wertheim, De
DE3831258C1 (de) * 1988-09-14 1989-10-12 Alcatel Hochvakuumtechnik Gmbh, 6980 Wertheim, De
FR2658292B1 (fr) * 1990-02-09 1994-09-16 Cit Alcatel Detecteur de fuite a helium fonctionnant a contre-courant, portable pour tester une enceinte possedant son propre groupe de pompage.
JP2500488B2 (ja) * 1991-02-08 1996-05-29 ヤマハ株式会社 漏洩試験方法及び漏洩試験装置
DE4140366A1 (de) * 1991-12-07 1993-06-09 Leybold Ag, 6450 Hanau, De Lecksucher fuer vakuumanlagen sowie verfahren zur durchfuehrung der lecksuche an vakuumanlagen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9404901A1 *

Also Published As

Publication number Publication date
JP3166859B2 (ja) 2001-05-14
DE59308231D1 (de) 1998-04-09
WO1994004901A1 (de) 1994-03-03
EP0690980B1 (de) 1998-03-04
DE4228148A1 (de) 1994-03-03
JPH08500672A (ja) 1996-01-23

Similar Documents

Publication Publication Date Title
DE1937271A1 (de) Lecksuchgeraet
EP2399112B1 (de) Schnüffellecksucher
DE1648648B2 (de) Anordnung zur Lecksuche nach dem Massenspektrometer Prinzip
WO1993012411A1 (de) Lecksucher für vakuumanlagen sowie verfahren zur durchführung der lecksuche an vakuumanlagen
EP0799414A1 (de) Gegenstrom-schnüffellecksucher
DE4326265A1 (de) Testgasdetektor, vorzugsweise für Lecksuchgeräte, sowie Verfahren zum Betrieb eines Testgasdetektors dieser Art
EP0712489B1 (de) Heliumlecksuche mit FEP Membran, Getter und Differenzierstufe
DE4442174A1 (de) Lecksuchgerät mit Vakuumpumpen und Betriebsverfahren dazu
DE102015222213A1 (de) Druckmessung am Prüfgaseinlass
EP0690980A1 (de) Vakuum-lecksuchgerät für die testgaslecksuche mit leichten gasen
DE69007930T2 (de) System zur Aufspürung von Undichtigkeit unter Verwendung von Trägergas.
EP0834061B1 (de) Lecksuchgerät mit vorvakuumpumpe
DE10156205A1 (de) Testgaslecksuchgerät
DE69103499T2 (de) Hochleistungsleckdetektor mit drei Molekularfiltern.
EP0718613B1 (de) Verfahren zur Gasanalyse und Gasanalysator
EP1629263B1 (de) Lecksuchgerät
WO1994004902A1 (de) Vakuum-messgerät für die integrale dichtigkeitskontrolle mit leichten gasen
DE10149219B4 (de) Verfahren zur Partialdruck-Kalibrierung von Quadrupol-Massenspektrometern und Kalibriereinrichtung dazu
DE19535832C1 (de) Verfahren und Vorrichtung zum Nachweis eines leichten Spürgases
WO2024099639A1 (de) Trägergas-lecksuchsystem und trägergas-lecksuchverfahren zur leckagedetektion an einem prüfling
WO1995004922A1 (de) Lecksuchgerät
DE19608502C1 (de) Verfahren zur Gegenstrom-Lecksuche mit einem leichten Spürgas
WO2021233720A1 (de) VERFAHREN ZUR ERFASSUNG DES GASAUSTAUSCHES ZWISCHEN DEM INNEREN EINES GROßEN GEHÄUSES UND DESSEN ÄUßERER UMGEBUNG
EP0130305A1 (de) Verfahren und Vorrichtung zur Lecksuche an Turbinengehäusen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19960202

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BALZERS UND LEYBOLD DEUTSCHLAND HOLDING AKTIENGESE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59308231

Country of ref document: DE

Date of ref document: 19980409

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980505

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101027

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110824

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110824

Year of fee payment: 19

Ref country code: FR

Payment date: 20110829

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110825

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120820

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59308231

Country of ref document: DE

Effective date: 20130301