EP0666585A1 - Drehanoden-Röntgenröhre mit einem Gleitlager - Google Patents

Drehanoden-Röntgenröhre mit einem Gleitlager Download PDF

Info

Publication number
EP0666585A1
EP0666585A1 EP95200159A EP95200159A EP0666585A1 EP 0666585 A1 EP0666585 A1 EP 0666585A1 EP 95200159 A EP95200159 A EP 95200159A EP 95200159 A EP95200159 A EP 95200159A EP 0666585 A1 EP0666585 A1 EP 0666585A1
Authority
EP
European Patent Office
Prior art keywords
ray tube
bearing
filter body
lubricant
groove pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95200159A
Other languages
English (en)
French (fr)
Other versions
EP0666585B1 (de
Inventor
Axel C/O Philips Vetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0666585A1 publication Critical patent/EP0666585A1/de
Application granted granted Critical
Publication of EP0666585B1 publication Critical patent/EP0666585B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes

Definitions

  • the invention relates to a rotating anode X-ray tube with a sliding bearing, which comprises a fixed and a rotatable bearing part, the surfaces of which face one another and has a groove pattern, a bearing gap being formed between the two bearing parts and being filled with a lubricant at least in the region of the groove pattern is.
  • the lubricant may contain gas inclusions, some of which only form during operation at higher temperatures.
  • the gas inclusions primarily collect in the area of low pressure, that is, at the edges of the groove patterns. There they can unite and displace the lubricant, which impairs the function of the plain bearing. These gas inclusions predominate until the end of the evacuation process of the X-ray tube.
  • a channel system is provided in the X-ray tube known from EP-OS 552 808 in the center of the inner bearing part, which is only partly filled with lubricant; the remaining part of the sewer system can absorb the gas inclusions. There is a risk that the lubricant will leak from the duct system.
  • EP-OS 479 198 discloses a rotating anode X-ray tube of the type mentioned at the outset, in which the bearing gap continues outwards in a labyrinth in order to prevent lubricant from escaping.
  • the labyrinth opens into a chamber that is closed to the outside by a porous material made of a material that reacts with the lubricant. This porous substance can be trapped by gas inclusions while the lubricant is held in the substance. If gas inclusions can reach the material through the labyrinth, they can no longer impair the function of the plain bearing anyway.
  • the object of the present invention is to design a rotating anode X-ray tube of the type mentioned at the outset in such a way that gaseous lubricant inclusions which impair the function of the plain bearing can be removed.
  • This object is achieved in that in at least one of the two bearing parts in a region outside the groove pattern, a filter body which is not wettable by the lubricant is provided, via which the bearing gap is connected to the vacuum space of the X-ray tube.
  • a “filter body” is a body that has openings through which the gas inclusions can escape into the vacuum space of the X-ray tube. Since the filter body comprises a material that cannot be wetted by the lubricant, due to its surface tension, it cannot penetrate the filter body and exit on the side facing away from the bearing gap.
  • the filter body can consist of a material that cannot be wetted by the lubricant - in the case of a gallium alloy as a lubricant, for example made of ceramic or glass. However, it can also consist of a base material which, in itself, can be wetted by the lubricant, but which is provided with a coating which cannot be wetted by the lubricant. This coating must then also cover the surface inside the filter body.
  • the filter body itself can have different shapes. According to a further development of the invention it can be formed by a body provided with bores, according to another further development an open-pore sintered body can be used and finally according to another further development the filter body can be formed by a net or a wire mesh become. Perforated foils are also conceivable.
  • the lubricant rolls off a non-wettable surface. This can lead to difficulties when filling the bearing with the lubricant. These difficulties are avoided in that the surface of the filter body facing the bearing gap is designed such that it can be wetted by the lubricant. In this case, only the surface of the filter body facing the bearing gap can be wetted by the lubricant, so that beading would be avoided. Nonetheless, the lubricant could not penetrate the filter body because, apart from the surface facing the bearing gap, it cannot be wetted by the lubricant.
  • This embodiment of the invention can be realized in that in the case of a filter body made of material which is not wettable by the lubricant, the surface of which is provided with a wettable coating or in that in the case of a filter body made of material wettable by the lubricant which is provided with a non-wettable coating , the coating is ground down on the surface facing the bearing gap.
  • a further development of the invention provides that two groove patterns arranged at a distance from one another are provided for absorbing radial bearing forces and that the filter body is arranged between these groove patterns. As a result, the gas inclusions occurring on the mutually facing edges of the groove patterns can be removed.
  • Another embodiment of the invention provides that a groove pattern is provided for absorbing axial bearing forces and that a filter body is arranged in the center enclosed by this groove pattern.
  • a groove pattern for absorbing axial bearing forces occupies a circular ring that includes gas inclusions occurring in its center. These are discharged to the outside through the filter body.
  • the drawing shows the rotating anode of a rotating anode X-ray tube, the remaining parts of which are not shown in detail.
  • the rotating anode comprises an anode disc 1, which is connected via a stem 2 to an outer, rotatable bearing part 3, which encloses an inner, fixed bearing part 4.
  • the inner bearing part 4 has the shape of a cylinder which merges downwards into a shaft 41 with a reduced diameter.
  • the shaft 41 is connected on its outer circumference in a vacuum-tight manner to the piston of the X-ray tube, not shown, so that the parts 1 ... 4 are in the vacuum space of the X-ray tube. Only the central bore 42 provided for cooling purposes in the interior of the bearing part 4 is located outside the vacuum space. A liquid coolant can therefore be introduced here.
  • the cylinder 4 is provided with a spiral groove pattern 43 and 44 on its two opposite end faces.
  • the inner contour of the outer bearing part 3 is adapted to the outer contour of the inner bearing part 4 such that - at least in the area of the spiral groove patterns 43 .. 46 narrow bearing gaps ( 10 to 50 ⁇ m thick), in which there is a liquid lubricant made of gallium or a gallium alloy in the operating state.
  • gas inclusions can form in the lubricant, especially when higher temperatures are reached, and these mainly collect in the areas of low pressure, that is to say at the edges of the spiral groove pattern 43.. 41 along into the interior of the X-ray tube.
  • the gas inclusions from the other edges of the spiral groove patterns 43 to 46 could only get there pass through the bearing gaps, which is not easily possible due to the relatively large surface tension of the lubricant.
  • the sintered bodies 31 and 32 are arranged in the area between the two groove patterns 45 and 46 that absorb the radial bearing forces — offset relative to one another on the circumference.
  • Gas inclusions on the mutually facing edges of the groove patterns 45 and 46 can reach the vacuum space of the X-ray tube via these filter bodies.
  • Another filter body 33 is arranged concentrically to the axis of rotation of the rotating anode in the center of the groove pattern 43 provided on the upper end face. This allows gas inclusions to be removed from the inner edge of the groove pattern.
  • the filter bodies 31, 32 and 33 cannot be wetted by the lubricant.
  • they can be made of a material that is itself not wettable by the lubricant, such as ceramic, or they can be made of a material that is actually wettable by the lubricant (e.g. molybdenum), but with a layer is covered from a non-wettable material (e.g. titanium dioxide).
  • the filter bodies are provided with openings which can be passed through by the gas inclusions, but which are not so large that the lubricant can pass through them unhindered.
  • the filter bodies can be formed by a body provided with bores, by single- or multi-layer networks or perforated foils, by an open-pore sintered body or by a wire mesh.
  • the pore diameter in the open-pore sintered body 33 serving as a filter body, which is not subject to a higher lubricant pressure resulting from centrifugal forces, can be in the range of 10-14 ⁇ m (better ⁇ 12 ⁇ m).
  • the pore diameters in the sintered bodies 31, 32 should be smaller, and the smaller the larger the centrifugal accelerations occurring there during operation.
  • the area between the groove patterns 44 and 46 is connected to the effective area of the filter bodies 31 and 32 via a capillary system 48.
  • a filter body which consists of a wettable material (molybdenum) and which, including the surfaces inside the filter body, is provided with a non-wettable coating
  • the invention has been described above with reference to a plain bearing with a fixed inner bearing part 4 and a rotating outer bearing part 3.
  • the invention is also applicable to a plain bearing in which the outer bearing part is fixed and the inner bearing part is rotatable.
  • the capillary system must be in the fixed bearing part.
  • the filter body must be installed in the wall of the outer bearing part.

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

Die Erfindung betrifft eine Drehanoden-Röntgenröhre mit einem Gleitlager, das einen feststehenden und einen drehbaren Lagerteil umfaßt, von deren einander zugewandten Oberflächen eine ein Rillenmuster aufweist, wobei zwischen den beiden Lagerteilen ein Lagerspalt gebildet wird, der zumindest im Bereich des Rillenmusters mit einen, Schmiermittel gefüllt ist. Gaseinschlüsse aus dem Lagerbereich können dabei dadurch abgeführt werden, daß in wenigstens einem der beiden Lagerteile in einem Bereich außerhalb des Rillenmusters ein vom Schmiermittel nicht benetzbarer Filterkörper vorgesehen ist, über den der Lagerspalt mit dem Vakuumraum der Röntgenröhre in Verbindung steht. <IMAGE>

Description

  • Die Erfindung betrifft eine Drehanoden-Röntgenröhre mit einem Gleitlager, das einen feststehenden und einen drehbaren Lagerteil umfaßt, von deren einander zugewandten Oberflächen eine ein Rillenmuster aufweist, wobei zwischen den beiden Lagerteilen ein Lagerspalt gebildet wird, der zumindest im Bereich des Rillenmusters mit einem Schmiermittel gefüllt ist.
  • Bei derartigen Drehanoden-Röntgenröhren besteht das Problem, daß im Schmiermittel Gaseinschlüsse enthalten sein können, die sich zum Teil erst im Laufe des Betriebs bei höheren Temperaturen bilden. Die Gaseinschlüsse sammeln sich vornehmlich in dem Bereich niedrigen Drucks, also an den Rändern der Rillenmuster. Dort können sie sich vereinigen und das Schmiermittel verdrängen, was die Funktion des Gleitlagers beeinträchtigt. Überwiegend machen sich diese Gaseinschlüsse bis zum Ende des Evakuierungsprozesses der Röntgenröhre bemerkbar.
  • Zur Beseitigung solcher Gaseinschlüsse ist bei der aus der EP-OS 552 808 bekannten Röntgenröhre im Zentrum des inneren Lagerteils ein Kanalsystem vorgesehen, das nur zu einem Teil mit Schmiermittel gefüllt ist; der restliche Teil des Kanalsystems kann die Gaseinschlüsse aufnehmen. Dabei besteht die Gefahr, daß das Schmiermittel aus dem Kanalsystem ausläuft.
  • Weiterhin ist aus der EP-OS 479 198 eine Drehanoden-Röntgenröhre der eingangs genannten Art bekannt, bei der sich der Lagerspalt nach außen hin in einem Labyrinth fortsetzt, um den Austritt von Schmiermittel zu verhindern. Das Labyrinth mündet in eine Kammer, die nach außen hin durch einen porösen Stoff aus einem mit dem Schmiermittel reagierenden Material abgeschlossen wird. Dieser poröse Stoff kann von Gaseinschlüssen passiert werden, während das Schmiermittel in dem Stoff festgehalten wird. Wenn Gaseinschlüsse durch das Labyrinth hindurch zu dem Stoff gelangen können, können sie die Funktion des Gleitlagers ohnehin nicht mehr beeinträchtigen.
  • Die Wirkung auf die Gaseinschlüsse im Bereich der Gleitlager ist daher gering. Würde man den porösen Stoff in der Nähe der Rillenmuster einsetzen, dann bestünde die Gefahr, daß nicht nur die Gaseinschlüsse, sondern auch das Schmiermittel zu dem porösen Stoff gelangt und dort festgehalten und dem Gleitlager entzogen wird.
  • Aufgabe der vorliegenden Erfindung ist es, eine Drehanoden-Röntgenröhre der eingangs genannten Art so auszugestalten, daß gasförmige Schmiermitteleinschlüsse die die Funktion des Gleitlagers beeinträchtigen, abgeführt werden können. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß in wenigstens einem der beiden Lagerteile in einem Bereich außerhalb des Rillenmusters ein vom Schmiermittel nicht benetzbarer Filterkörper vorgesehen ist, über den der Lagerspalt mit dem Vakuumraum der Röntgenröhre in Verbindung steht.
  • Als "Filterkörper" wird dabei ein Körper bezeichnet, der Öffnungen aufweist, durch die hindurch die Gaseinschlüsse in den Vakuumraum der Röntgenröhre austreten können. Da der Filterkörper ein Material umfaßt, das von dem Schmiermittel nicht benetzbar ist, kann dieses aufgrund seiner Oberflächenspannung den Filterkörper nicht durchsetzen und auf der vom Lagerspalt abgewandten Seite austreten.
  • Der Filterkörper kann aus einem Material bestehen, das vom Schmiermittel nicht benetzbar ist - bei einer Galliumlegierung als Schmiermittel beispielsweise aus Keramik oder Glas. Er kann aber auch aus einem Grundmaterial bestehen, das an sich zwar von dem Schmiermittel benetzbar ist, das jedoch mit einem Überzug versehen ist, der nicht von dem Schmiermittel benetzbar ist. Dieser Überzug muß dann auch die Oberfläche im Innern des Filterkörpers bedecken.
  • Der Filterkörper selbst kann unterschiedliche Formen haben. Nach einer Weiterbildung der Erfindung kann er durch einen mit Bohrungen versehenen Körper gebildet werden, nach einer anderen Weiterbildung kann ein offenporiger Sinterkörper verwendet werden und nach einer anderen Weiterbildung schließlich kann der Filterkörper durch ein Netz oder ein Drahtgeflecht gebildet werden. Auch perforierte Folien sind denkbar.
  • Das Schmiermittel perlt aufgrund seiner Oberflächenspannung an einer nicht benetzbaren Oberfläche ab. Daraus können sich unter Umständen beim Füllen des Lagers mit dem Schmiermittel Schwierigkeiten ergeben. Diese Schwierigkeiten werden dadurch vermieden, daß die dem Lagerspalt zugewandte Oberfläche des Filterkörpers so ausgestaltet ist, daß sie von dem Schmiermittel benetzbar ist. Hierbei ist also nur die dem Lagerspalt zugewandte Oberfläche des Filterkörpers vom Schmiermittel benetzbar, so daß ein Abperlen vermieden würde. Gleichwohl könnte das Schmiermittel nicht in den Filterkörper eindringen, weil dieser - bis auf die dem Lagerspalt zugewandte Oberfläche - vom Schmiermittel nicht benetzbar ist. Diese Ausgestaltung der Erfindung läßt sich dadurch realisieren, daß bei einem Filterkörper aus vom Schmiermittel nicht benetzbarem Material, dessen Oberfläche mit einem benetzbaren Überzug versehen ist oder dadurch, daß bei einem Filterkörper aus einem vom Schmiermittel benetzbaren Material, das mit einem nicht benetzbaren Überzug versehen ist, der Überzug auf der dem Lagerspalt zugewandten Oberfläche abgeschliffen wird.
  • Wenn zwei Rillenmuster, beispielsweise für die axiale und die radiale Lagerung aneinandergrenzen, ist es nicht ohne weiteres möglich, in diesem Bereich einen Filterkörper anzuordnen. Die dort entstehenden Gaseinschlüsse können aber dadurch abgeführt werden, daß wenigstens ein Rand eines Rillenmusters über ein Kapillarsystem mit dem Filterkörper in Verbindung steht.
  • Eine Weiterbildung der Erfindung sieht vor, daß zwei im Abstand voneinander angeordnete Rillenmuster zur Aufnahme radialer Lagerkräfte vorgesehen sind und daß der Filterkörper zwischen diesen Rillenmustern angeordnet ist. Dadurch können die an den einander zugewandten Rändern der Rillenmuster auftretenden Gaseinschlüsse abgeführt werden.
  • Eine andere Ausgestaltung der Erfindung sieht vor, daß ein Rillenmuster zur Aufnahme axialer Lagerkräfte vorgesehen ist und daß in dem von diesem Rillenmuster umschlossenen Zentrum ein Filterkörper angeordnet ist. Ein Rillenmuster zur Aufnahme axialer Lagerkräfte belegt einen Kreisring, der die in dessen Zentrum auftretenden Gaseinschlüsse einschließt. Diese werden durch den Filterkörper nach außen abgeführt.
  • Die Erfindung wird nachstehend anhand der Zeichnung näher erläutert.
  • Die Zeichnung zeigt die Drehanode einer Drehanoden-Röntgenröhre, deren übrige Teile nicht näher dargestellt sind. Die Drehanode umfaßt eine Anodenscheibe 1, die über einen Stiel 2 mit einem äußeren, drehbaren Lagerteil 3 verbunden ist, der einen inneren, feststehenden Lagerteil 4 umschließt.
  • Der innere Lagerteil 4 hat in dieser Ausführung die Form eines Zylinders, der sich nach unten in einen Schaft 41 mit verringertem Durchmesser übergeht. Der aus dem Lagerteil 3 herausragt. Der Schaft 41 ist auf seinem äußeren Umfang mit dem nicht näher dargestellten Kolben der Röntgenröhre vakuumdicht verbunden, so daß sich die Teile 1 ... 4 im Vakuumraum der Röntgenröhre befinden. Lediglich die zu Kühlzwecken vorgesehene zentrale Bohrung 42 im Innern des Lagerteils 4 befindet sich außerhalb des Vakuumraumes. Hier kann daher ein flüssiges Kühlmittel eingeführt werden.
  • Der Zylinder 4 ist auf seinen beiden einander gegenüberliegenden Stirnflächen mit einem Spiralrillenmuster 43 bzw. 44 versehen. Außerdem befinden sich auf dem äußeren Umfang des feststehenden Lagerteils 3 zwei Spiralrillenmuster 45 und 46. Die innere Kontur des äußeren Lagerteils 3 ist der äußeren Kontur des inneren Lagerteils 4 so angepaßt, daß sich - zumindest im Bereich der Spiralrillenmuster 43 .. 46 enge Lagerspalte (10 bis 50 µm dick) ergeben, in denen sich im Betriebszustand ein flüssiges Schmiermittel aus Gallium oder einer Galliumlegierung befindet.
  • Im Betrieb der Röntgenröhre können sich - insbesondere beim Erreichen höherer Temperaturen - im Schmiermittel Gaseinschlüsse bilden, die sich vornehmlich in den Bereichen niedrigen Druckes sammeln, also an den Rändern der Spiralrillenmuster 43 .. 46. Die am Innenrand des Spiralrillenmusters 44 auftretenden Gaseinschlüsse können am Schaft 41 entlang in den Innenraum der Röntgenröhre gelangen. Dorthin könnten die Gaseinschlüsse von den anderen Rändern der Spiralrillenmuster 43 bis 46 jedoch nur durch die Lagerspalte hindurch gelangen, was wegen der relativ großen Oberflächenspannung des Schmiermittels nicht ohne weiteres möglich ist. Deshalb sind in dem Bereich zwischen den beiden die Radiallagerkräfte aufnehmenden Rillenmustern 45 und 46 sind - auf dem Umfang gegeneinander versetzt - die Sinterkörper 31 und 32 angeordnet. Gaseinschlüsse an den einander zugewandten Rändern der Rillenmuster 45 und 46 können über diese Filterkörper in den Vakuumraum der Röntgenröhre gelangen. Ein weiterer Filterkörper 33 ist konzentrisch zur Rotationsachse der Drehanode im Zentrum des auf der oberen Stirnfläche vorgesehenen Rillenmusters 43 angeordnet. Dadurch können Gaseinschlüsse am inneren Rand des Rillenmusters abgeführt werden.
  • Die Filterkörper 31, 32 und 33 sind vom Schmiermittel nicht benetzbar. Zu diesem Zweck können sie aus einem Material hergestellt sein, das selbst nicht vom Schmiermittel benetzbar ist, wie beispielsweise Keramik, oder sie können aus einem Material bestehen, das zwar an sich von dem Schmiermittel benetzbar ist (z.B. Molybdän), das aber mit einer Schicht aus einem nicht benetzbaren Material (z.B. Titandioxid) bedeckt ist.
  • Die Filterkörper sind mit Öffnungen versehen, die von den Gaseinschlüssen passiert werden können, die aber nicht so groß sind, daß das Schmiermittel ungehindert durch sie hindurchtreten könnte. Die Filterkörper können durch einen mit Bohrungen versehen Körper, durch ein- oder mehrlagige Netze oder perforierte Folien, durch einen offenporigen Sinterkörper oder durch ein Drahtgeflecht gebildet werden. Die Porendurchmesser in dem als Filterkörper dienenden offenporigen Sinterkörper 33, der nicht einem aus Zentrifugalkräften resultierenden höheren Schmiermitteldruck unterliegt, können im Bereich von 10 - 14 µm liegen (besser ≦ 12 µm). Die Porendurchmesser in den Sinterkörpern 31, 32 sollten Kleiner sein, und zwar umso kleiner, je größer die im Betrieb dort auftretenden Zentrifugalbeschleunigungen sind.
  • In den Bereichen, in denen die Rillenmuster 43 und 45 sowie die Rillenmuster 44 und 46 aneinander grenzen, können aus konstruktiven Gründen nicht ohne weiteres Filterkörper angeordnet werden. Die am äußeren Rand des Rillenmusters 43 bzw. am oberen Rand des Rillenmusters 45 entstehenden Gaseinschlüsse stehen daher über ein Kapillarsystem 47 mit den Bereichen an der Oberfläche des Lagerteils 4 in Verbindung, von denen aus Gaseinschlüsse über die Filterkörper 31 ... 33 abgeführt werden können. Der Durchmesser der Kapillaren soll deutlich größer sein als die Dicke des Lagerspalts im Bereich des Rillenmusters, z.B. 100 µm oder größer, jedoch nicht so groß, daß ihre Kapillarwirkung das Schmiermittel nicht mehr halten kann. Es können sich dabei relativ lange und dünne Schmiermittelkanäle ergeben, die den in der deutschen Patentanmeldung P 43 39 817 beschriebenen Aufbau haben können.
  • Analog dazu wird der Bereich zwischen den Rillenmustern 44 und 46 über ein Kapillarsystem 48 mit dem Wirkungsbereich der Filterkörper 31 und 32 verbunden.
  • Wenn das Schmiermittel mit einer von ihm nicht benetzbaren Oberfläche in Berührung kommt, zieht es sich im Extremfall zu Schmiermittelkügelchen zusammen. Wenn sich derartige Schmiermittelkügelchen im Bereich der Filterkörper bilden würden, könnte das zu Schwierigkeiten bei der Befüllung des Lagers mit dem Schmiermittel führen. Diese lassen sich dadurch vermeiden, daß die dem Lagerspalt zugewandte Oberfläche der Filterkörper - und nur diese Oberfläche - benetzbar gemacht wird. Dies könnte bei einem Filterkörper aus einem vom Schmiermittel nicht benetzbaren Material durch einen geeigneten Überzug (z.B. Titandioxid) erfolgen. Bei einem Filterkörper hingegen, der aus einem benetzbaren Material (Molybdän) besteht und der inkl. der Flächen im Innern des Filterkörpers mit einem nicht benetzbaren Überzug versehen ist, könnte dies dadurch erfolgen, daß der Überzug auf der dem Lagerspalt zugewandten Seite abgeschliffen wird.
  • Vorstehend wurde die Erfindung anhand eines Gleitlagers mit feststehendem inneren Lagerteil 4 und rotierendem äußeren Lagerteil 3 beschrieben. Jedoch ist die Erfindung auch bei einem Gleitlager anwendbar, bei dem der äußere Lagerteil feststeht und der innere Lagerteil drehbar ist. Auch in diesem Fall muß sich das Kapillarsystem im feststehenden Lagerteil befinden. Die Filterkörper müssen dabei in der Wand des äußeren Lagerteils angebracht sein.

Claims (8)

  1. Drehanoden-Röntgenröhre mit einem Gleitlager, das einen feststehenden (4) und einen drehbaren Lagerteil (3) umfaßt, von deren einander zugewandten Oberflächen eine ein Rillenmuster (43 ... 46) aufweist, wobei zwischen den beiden Lagerteilen ein Lagerspalt gebildet wird, der zumindest im Bereich des Rillenmusters (43 ... 46) mit einem Schmiermittel gefüllt ist,
    dadurch gekennzeichnet, daß in wenigstens einem der beiden Lagerteile (3,4) in einem Bereich außerhalb des Rillenmusters (43 ... 46) ein vom Schmiermittel nicht benetzbarer Filterkörper (31 ... 33) vorgesehen ist, über den der Lagerspalt mit dem Vakuumraum der Röntgenröhre in Verbindung steht.
  2. Drehanoden-Röntgenröhre nach Anspruch 1,
    dadurch gekennzeichnet, daß der Filterkörper (31 ... 33) durch einen mit Bohrungen versehenen Körper gebildet wird.
  3. Drehanoden-Röntgenröhre nach Anspruch 1,
    dadurch gekennzeichnet, daß als Filterkörper (31 ... 33) ein offenporiger Sinterkörper dient.
  4. Drehanoden-Röntgenröhre nach Anspruch 1,
    dadurch gekennzeichnet, daß der Filterkörper (31 ... 33) durch ein Netz- oder ein Drahtgeflecht gebildet wird.
  5. Drehanoden-Röntgenröhre nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die dem Lagerspalt zugewandte Oberfläche des Filterkörpers (31 ... 33) so ausgestaltet ist, daß sie von dem Schmiermittel benetzbar ist.
  6. Röntgenröhre nach Anspruch 1,
    dadurch gekennzeichnet, daß wenigstens ein Rand eines Rillenmusters über ein Kapillarsystem (47, 48) mit dem Filterkörper (31 ... 33) in Verbindung steht.
  7. Drehanoden-Röntgenröhre nach Anspruch 1,
    dadurch gekennzeichnet, daß zwei im Abstand voneinander angeordnete Rillenmuster (44, 45) zur Aufnahme radialer Lagerkräfte vorgesehen sind und daß der Filterkörper (31,32) zwischen diesen Rillenmustern angeordnet ist.
  8. Drehanoden-Röntgenröhre nach Anspruch 1,
    dadurch gekennzeichnet, daß ein Rillenmuster (43) zur Aufnahme axialer Lagerkräfte vorgesehen ist und daß in dem von diesem Rillenmuster umschlossenen Zentrum ein Filterkörper (33) angeordnet ist.
EP95200159A 1994-02-02 1995-01-24 Drehanoden-Röntgenröhre mit einem Gleitlager Expired - Lifetime EP0666585B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4403116 1994-02-02
DE4403116A DE4403116A1 (de) 1994-02-02 1994-02-02 Drehanoden-Röntgenröhre mit einem Gleitlager

Publications (2)

Publication Number Publication Date
EP0666585A1 true EP0666585A1 (de) 1995-08-09
EP0666585B1 EP0666585B1 (de) 1997-04-09

Family

ID=6509260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95200159A Expired - Lifetime EP0666585B1 (de) 1994-02-02 1995-01-24 Drehanoden-Röntgenröhre mit einem Gleitlager

Country Status (4)

Country Link
US (1) US5559852A (de)
EP (1) EP0666585B1 (de)
JP (1) JP3711292B2 (de)
DE (2) DE4403116A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19614221A1 (de) * 1996-04-10 1997-10-16 Siemens Ag Entgasungskanal für Flüssigmetall-Gleitlager
DE19614333A1 (de) * 1996-04-11 1997-10-23 Siemens Ag Radialgleitlager
DE19614334C1 (de) * 1996-04-11 1997-12-11 Siemens Ag Gleitlager
US7127035B2 (en) 2001-08-29 2006-10-24 Kabushiki Kaisha Toshiba Rotary anode type X-ray tube
DE102009031530A1 (de) * 2009-07-02 2011-01-13 Siemens Aktiengesellschaft Gleitlager für hohe Drehgeschwindigkeiten eines Anodentellers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377658B1 (en) 2001-07-27 2002-04-23 General Electric Company Seal for liquid metal bearing assembly
US6940947B1 (en) * 2002-09-05 2005-09-06 Varian Medical Systems Technologies, Inc. Integrated bearing assembly
JP2009081069A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 回転陽極型x線管
CN102928276B (zh) * 2012-11-07 2014-04-30 李可文 一种熔融石英毛细管合成包裹体标样的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479198A1 (de) * 1990-10-05 1992-04-08 Kabushiki Kaisha Toshiba Drehanoden-Röntgenröhre
EP0552808A1 (de) * 1992-01-24 1993-07-28 Kabushiki Kaisha Toshiba Verfahren zur Herstellung einer Drehanoden-Röntgenröhre

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1024235C (zh) * 1990-10-05 1994-04-13 株式会社东芝 旋转阳极型x射线管

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479198A1 (de) * 1990-10-05 1992-04-08 Kabushiki Kaisha Toshiba Drehanoden-Röntgenröhre
EP0552808A1 (de) * 1992-01-24 1993-07-28 Kabushiki Kaisha Toshiba Verfahren zur Herstellung einer Drehanoden-Röntgenröhre

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19614221A1 (de) * 1996-04-10 1997-10-16 Siemens Ag Entgasungskanal für Flüssigmetall-Gleitlager
DE19614221C2 (de) * 1996-04-10 2000-05-31 Siemens Ag Entgasung von Flüssigmetall-Gleitlager
DE19614333A1 (de) * 1996-04-11 1997-10-23 Siemens Ag Radialgleitlager
DE19614334C1 (de) * 1996-04-11 1997-12-11 Siemens Ag Gleitlager
DE19614333C2 (de) * 1996-04-11 1999-07-22 Siemens Ag Radialgleitlager
US7127035B2 (en) 2001-08-29 2006-10-24 Kabushiki Kaisha Toshiba Rotary anode type X-ray tube
DE102009031530A1 (de) * 2009-07-02 2011-01-13 Siemens Aktiengesellschaft Gleitlager für hohe Drehgeschwindigkeiten eines Anodentellers

Also Published As

Publication number Publication date
DE59500164D1 (de) 1997-05-15
EP0666585B1 (de) 1997-04-09
JP3711292B2 (ja) 2005-11-02
JPH07226177A (ja) 1995-08-22
US5559852A (en) 1996-09-24
DE4403116A1 (de) 1995-08-03

Similar Documents

Publication Publication Date Title
EP2509718B1 (de) Kartuschenkolben
EP0666585B1 (de) Drehanoden-Röntgenröhre mit einem Gleitlager
DE69124179T2 (de) Drehanoden-Röntgenröhre
DE2432967C3 (de) Aseptisches Ventil
EP0578314B1 (de) Gleitlager für eine Drehanoden-Röntgenröhre
DE19935014A1 (de) Abgedichtetes Wälzlager
EP0378273B1 (de) Drehanoden-Röntgenröhre mit einem Gleitlager, insbesondere Spiralrillenlager
DE69118473T2 (de) Drehanoden-Röntgenröhre
DE3842034A1 (de) Drehanoden-roentgenroehre mit fluessigem schmiermittel
DE2650021C3 (de) Parallel- und innenachsige Rotationskolbenmaschine
DE60201040T2 (de) Drehanoden-Röntgenröhre
DE2337667C3 (de) VakuumgreifVorrichtung
DE102012013726B4 (de) Vorrichtung zum Kühlen bandförmiger Substrate
WO2005038277A1 (de) Gleitlager für eine welle
EP0195313B1 (de) Vorrichtung zum Verfüllen von evakuierten Hohlräumen in Material bzw. in Körpern
DE3245454A1 (de) Transformator mit gesteuertem kuehlfluessigkeitsstrom
DE3926678C2 (de) Schließ- und Regelorgan für ein metallurgisches Gefäß
DE2753264A1 (de) Steuerscheibenventil, insbesondere fuer den sanitaerbereich
DE2733161C3 (de) Dichtungskörper zur Verwendung in einer Bohrung und Verfahren zu seiner Herstellung
DE19510066A1 (de) Verfahren zum Befüllen eines Flüssigmetall-Gleitlagers
DE102013109882A1 (de) Dichtstruktur zum Abdichten eines Prozessraums, Prozessraum mit einer solchen Dichtstruktur sowie Verfahren zum Abdichten eines Prozessraums unter Verwendung der Dichtstruktur
EP0050302A1 (de) Dichtvorsatz für ein Pendellagergehäuse
DE2945817C2 (de)
DE2742254A1 (de) Extrudierter formkoerper aus pulverfoermigen materialien sowie verfahren zu seiner herstellung
EP1277968B1 (de) Entlüftungsverschluss für nach aussen entlüftete Kolbenspeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19960209

17Q First examination report despatched

Effective date: 19960327

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970409

REF Corresponds to:

Ref document number: 59500164

Country of ref document: DE

Date of ref document: 19970515

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970623

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030317

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST