EP0664024A1 - Vorrichtung zur berechnung des quotienten zweier rationaler zahlen - Google Patents

Vorrichtung zur berechnung des quotienten zweier rationaler zahlen

Info

Publication number
EP0664024A1
EP0664024A1 EP94914346A EP94914346A EP0664024A1 EP 0664024 A1 EP0664024 A1 EP 0664024A1 EP 94914346 A EP94914346 A EP 94914346A EP 94914346 A EP94914346 A EP 94914346A EP 0664024 A1 EP0664024 A1 EP 0664024A1
Authority
EP
European Patent Office
Prior art keywords
reciprocal
multiplier
input
dividend
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94914346A
Other languages
English (en)
French (fr)
Inventor
Siegfried Hecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0664024A1 publication Critical patent/EP0664024A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/535Dividing only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2101/00Indexing scheme relating to the type of digital function generated
    • G06F2101/12Reciprocal functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/535Indexing scheme relating to groups G06F7/535 - G06F7/5375
    • G06F2207/5354Using table lookup, e.g. for digit selection in division by digit recurrence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/535Indexing scheme relating to groups G06F7/535 - G06F7/5375
    • G06F2207/5356Via reciprocal, i.e. calculate reciprocal only, or calculate reciprocal first and then the quotient from the reciprocal and the numerator

Definitions

  • the invention relates to a device for digitally calculating the quotient from a rational dividend and a rational divisor, having a multiplier which is provided with two factor inputs and an output, and a reciprocal value calculator which has one input and one Output has, where b n times the reciprocal of the value of the input is present and n is an integer and b is a natural number and greater than 1.
  • Serial multiplication takes place analogously to the written procedure known from mathematics teaching.
  • a parallel multiplier can be found, for example, in the book “Semiconductor Circuit Technology” by U. Tietze and Ch. Schenk, 3rd edition, Springer-Verlag, Berlin Heidelberg New York, 1974, pages 546 to 549. Its advantage is the computing time, which is greatly reduced compared to serial multipliers, since only a single work cycle is required to determine the result.
  • parallel dividers with equivalent advantages are not known due to the necessary shifting operations.
  • a disadvantage of the known dividing units is the relatively high computing time requirement which results primarily from the conversion into mantissa and exponent, the initialization and the shifting of positions.
  • the invention is based on the problem of designing a device for the digital calculation of the quotient of two rational numbers in such a way that the computing time requirement is reduced.
  • the object is achieved in that the divisor is present at the input of the reciprocal calculator, that the output of the reciprocal calculator is connected to a factor input, that at the other factor input the product from the divide and b "n is applied, and that the value of the output of the multiplier is reproduced as a result.
  • the main idea of the invention is to use a reciprocal arithmetic unit to determine b n times the reciprocal of the divisor.
  • the intermediate result provided by the reciprocal value calculator is multiplied by a multiplier by the product of the actual dividends and the reciprocal of the number b n called the general dividend.
  • the general dividend is 1, so that the reciprocal of the divisor is first determined and then multiplied by the dividend.
  • Another multiplier for calculating the product of the reciprocal of the general dividend and the dividend can, of course, be omitted if n is zero.
  • the integer n is positive, by an intermediate result suitable for further processing and having a sufficient number of digits to achieve.
  • the choice of the base depends on the concrete implementation of the reciprocal value calculator and is chosen in such a way that a minimal computing time results.
  • the dividend to be processed by the multiplier must first be multiplied by the reciprocal of the general divider, ie b ⁇ n , for one of 1 different general dividends. This task can be carried out, for example, by a further multiplication unit.
  • the advantages of the invention consist primarily in the fact that the reciprocal value formation and the multiplication have a computing time expenditure which is reduced compared to a division.
  • the subsequent multiplication has a computing time requirement which is negligible compared to a division. If whole numbers are divided without calculating a fraction of a decimal point, the conversion into a mantissa and into an exponent can be omitted by using a suitable general dividend with a further saving in computing time.
  • the base b of the general dividend is expediently 2 for a binary reciprocal value calculator; if it uses the octal system, it is recommended to set b to 8.
  • a decimal reciprocal arithmetic unit 10 is appropriate, while 16 is preferred if it works in hexadecimal.
  • This inexpensive choice minimizes the computing time because the internal dividend is very simple for the division that carries out the reciprocal arithmetic unit. All that is required is a 1 in the place (n + 1) of the internal dividend, while the remaining digits are set to 0. If n is 3, for example, the fourth digit is set to 1 regardless of the base b. If the basis is adapted to the arithmetic work, the calculation of the
  • the division with an arithmetic unit according to the invention only includes a very simplified division of the general dividend by the divisor, a shift in the dividend by n digits and a multiplication, which leads to a considerably shorter computing time.
  • a conventional, serial-working calculator is proposed as the reciprocal calculator, since such devices are already known and commercially available.
  • Serial multipliers are also common, but preference is given to the use of a multiplier operating in parallel, which is built up from a corresponding number of full adders and logic gates and, since the multiplication requires only a single work cycle, has a minimal computing time requirement.
  • the divisor is applied to the input (3) of the reciprocal arithmetic unit (1), which calculates the quotient from the general dividend (4) and the divisor.
  • General dividend (4) is 1 or an integer power of 2, 8, 10 or 16 in order to achieve a result at the output (6) of the reciprocal value calculator (1) that exploits the maximum number of digits.
  • a factor input (8) of the multiplier (2) is connected to the output of the reciprocal calculator (1), the product of the dividend and the reciprocal of the general divisor is at the other factor input (5).
  • the correct quotient of dividend and divisor which is shorter than the prior art, is available for further use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Complex Calculations (AREA)

Abstract

Vorgeschlagen wird eine Vorrichtung zur digitalen Berechnung des Quotienten aus einem rationalen Dividenden und einem rationalen Divisor, mit einem Multiplizierwerk, das mit zwei Faktoreneingängen sowie einem Ausgang versehen ist, und einem Kehrwertrechenwerk, das einen Eingang und einen Ausgang aufweist, wobei am Ausgang das bn-fache des Reziproken des Wertes des Eingangs anliegt und n eine ganze Zahl und b eine natürliche Zahl und größer als 1 ist, bei der der Divisor am Eingang (3) des Kehrwertrechenwerks (1) anliegt, der Ausgang (6) des Kehrwertrechenwerks (1) mit einem Faktoreneingang (8) verbunden ist, am anderen Faktoreneingang (5) das Produkt aus dem Dividenden und b-n anliegt, und der Wert des Ausgangs (7) des Multiplizierwerks (2) als Resultat wiedergegeben wird.

Description

Vorrichtung zur Berechnung des Quotienten
zweier rationaler Zahlen
Die Erfindung bezieht sich auf eine Vorrichtung zur digitalen Berechnung des Quotienten aus einem ra¬ tionalen Dividenden und einem rationalen Divisor, mit einem Multiplizierwerk, das mit zwei Faktoren¬ eingängen sowie einem Ausgang versehen ist, und ei¬ nem Kehrwertrechenwerk, das einen Eingang und einen Ausgang aufweist, wobei am Ausgang das bn-fache des Reziproken des Wertes des Eingangs anliegt und n eine ganze Zahl und b eine natürliche Zahl und grö¬ ßer als 1 ist.
Rechenmaschinen, Elektronenrechner, Computer und andere bekannte, digital den Quotienten zweier ra- tionaler Zahlen bestimmende Geräte arbeiten nach einer dem bekannten schriftlichen Divisionsverfah¬ ren analogen Prozedur. Sie ist beispielsweise dem Buch "Informatik, eine einführende Übersicht, 1. Teil" von F. Bauer und G. Goos, 3. Auflage, Sprin- ger-Verlag, Berlin Heidelberg New York 1982, S. 276 bis 278, entnehmbar und sowohl für Binär- als auch für Dezimalzahlen geeignet. In einer binären Realisation werden drei Speicher, zwei Verschiebe- Schaltnetze, ein Additionswerk und zur Bildung von Stellenkomplementen geeignete Gatter benötigt. Ist ein rationales Ergebnis, also auch die Berechnung der Nachkommastellen des Quotienten erforderlich, oder werden rationale Zahlen dividiert, schlagen Bauer und Goos, aaO, S. 286f vor, die Zahlen in eine normalisierte Darstellung zu überführen, d.h. in eine Mantisse und einen Exponenten umzurechnen. Die Mantissen werden dividiert und die Exponenten subtrahiert, um den Quotienten zu erhalten.
Zur Multiplikation sind zwei unterschiedliche Ver¬ fahren bekannt. Eine serielle Multiplikation er¬ folgt analog der schriftlichen, aus dem Mathematik- Unterricht bekannten Prozedur. Ein parallel arbei¬ tender Multiplizierer ist beispielsweise dem Buch "Halbleiter-Schaltungstechnik" von U. Tietze und Ch. Schenk, 3. Auflage, Springer-Verlag, Berlin Heidelberg New York, 1974, Seite 546 bis 549 ent- nehmbar. Sein Vorteil besteht in der gegenüber se¬ riellen Multiplizierern stark reduzierten Rechen¬ zeit, da zur Ermittlung des Ergebnisses nur ein einziger Arbeitstakt erforderlich ist. Äquivalente Vorteile aufweisende Paralleldividierer sind jedoch aufgrund der notwendigen Verschiebungsoperationen nicht bekannt.
Als nachteilig ist bei den bekannten Dividierwerken der vornehmlich aus der Umrechnung in Mantisse und Exponent, der Initialisierung und den Stellenver¬ schiebungen resultierende, relativ hohe Rechenzeit¬ bedarf anzusehen.
Ausgehend vom Stande der Technik liegt der Erfin- düng das Problem zugrunde, eine Vorrichtung zur di¬ gitalen Berechnung des Quotienten zweier rationaler Zahlen derart zu gestalten, daß der Rechenzeitbe¬ darf reduziert ist. Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß der Divisor am Eingang des Kehrwertrechenwerks anliegt, daß der Ausgang des Kehrwertrechenwerks mit einem Faktoreneingang verbunden ist, daß am an¬ deren Faktoreneingang das Produkt aus dem Dividen¬ den und b"n anliegt, und daß der Wert des Ausgangs des Multiplizierwerks als Resultat wiedergegeben wird.
Der Kerngedanke der Erfindung besteht in der Ver¬ wendung eines Kehrwertrechenwerkε, um das bn-fache des Reziproken des Divisors zu ermitteln. Das vom Kehrwertrechenwerk gelieferte Zwischenergebnis wird durch ein Multiplizierwerk mit dem Produkt aus dem eigentlichen Dividenden und dem Reziproken der als Generaldividend bezeichneten Zahl bn multipliziert. Im einfachsten Fall (d.h. falls n = 0 ist) beträgt der Generaldividend 1, so daß zunächst der Kehrwert des Divisors ermittelt und anschließend mit dem Di¬ videnden multipliziert wird. Ein weiterer Multipli¬ zierer zur Berechnung des Produkts aus dem Rezipro¬ ken des Generaldividenden und dem Dividenden kann, falls n null ist, selbstverständlich entfallen. Um ganze Zahlen mit großen Beträgen unter Einsparung der Umrechnung in eine Mantisse und einen Exponen¬ ten verarbeiten zu können, ist bevorzugt, durch das Kehrwertrechenwerk nicht den Kehrwert des Divisors, sondern das bn-fache des Kehrwerts zu bestimmen.
Die ganze Zahl n ist bei großen Divisoren positiv, um ein zur Weiterverarbeitung geeignetes, eine aus¬ reichende Stellenzahl aufweisendes Zwischenergebnis zu erzielen. Die Wahl der Basis hängt von der kon¬ kreten Implementation des Kehrwertrechenwerks ab und wird derart gewählt, daß eine minimale Rechen¬ zeit resultiert. Um das korrekte Ergebnis zu erhal- ten, muß bei einem von 1 verschiedenen Generaldivi¬ denden der vom Multiplizierwerk zu verarbeitende Dividend zunächst mit dem Reziproken des Generaldi¬ videnden, also b~n multipliziert werden. Diese Auf¬ gabe kann beispielsweise durch ein weiteres Multi- plizierwerk ausgeführt werden.
Die Vorteile der Erfindung bestehen vornehmlich darin, daß die Kehrwertbildung und die Multiplika¬ tion einen gegenüber einer Division reduzierten Re- chenzeitaufwand aufweisen. Die nachfolgende Multi¬ plikation weist einen gegenüber einer Division ver¬ nachlässigbaren Rechenzeitbedarf auf. Werden ganze Zahlen ohne Berechnung eines Nachkommateils divi¬ diert, kann die Umrechnung in eine Mantisse und in einen Exponenten durch die Verwendung eines geeig¬ neten Generaldividenden unter einer weiteren Ein¬ sparung von Rechenzeit entfallen.
Die Basis b des Generaldividenden beträgt bei einem binär arbeitenden Kehrwertrechenwerk zweckmäßiger¬ weise 2; verwendet es das Oktalsystem, ist empfoh¬ len, b gleich 8 zu setzen. Für ein dezimales Kehr¬ wertrechenwerk bietet sich 10 an, während 16 bevor¬ zugt ist, falls es sedezimal arbeitet. Durch diese günstige Wahl wird die Rechenzeit minimiert, weil für die Division, die das Kehrwertrechenwerk aus¬ führt, der interne Divident sehr einfach wird. Es ist lediglich erforderlich eine 1 an die Stelle (n+1) des internen Dividenden anzulegen, wärend die übrigen Stellen auf 0 gesetzt werden. Beträgt n beispielsweise 3 wird unabhängig von der Basis b die vierte Stelle auf 1 gesetzt. Bei einer dem Re- chenwerk angepaßten Basis ist die Berechnung des
Produkts aus dem Dividenden und dem Reziproken des Generaldividenden ebenso leicht uns schnell durch¬ führbar, da es ausreicht den Multiplikatoreneingang des Multiplizierwerks mit einem um die n entspre- chende Stellenzahl verschobenen Dividenden zu be¬ aufschlagen. Falls n positiv ist, muß der Dividend unter Nachziehen von 0 nach rechts verschoben wer¬ den, bei negativen n erfolgt eine Verschiebung nach links.
Demzufolge beinhaltet die Division mit einem erfin¬ dungsgemäßen Rechenwerk im Gegensatz zur konventio¬ nellen Division lediglich eine sehr vereinfachte Division des Generaldividenden durch die Divisor, eine Verschiebung des Dividenden um n Stellen und eine Multiplikation, was zu einer erheblich gerin¬ geren Rechenzeit führt.
Als Kehrwertrechenwerk ist ein konventionelles, se- riell arbeitendes vorgeschlagen, da derartige Vor¬ richtungen bereits bekannt und kommerziell erhält¬ lich sind. Auch serielle Multiplizierwerke sind ge¬ bräuchlich, bevorzugt ist jedoch die Verwendung ei¬ nes parallel arbeitenden Multiplizierers, der aus einer entsprechenden Anzahl an Volladdierern und logischen Gattern aufgebaut ist und, da die Multi¬ plikation nur einen einzigen Arbeitstakt erfordert, einen minimalen Rechenzeitbedarf aufweist. Um eine diskrete Verdrahtung des Kehrwertrechen¬ werks und des Multiplizierwerks einzusparen, ist empfohlen, einen derartige Werke enthaltenden Mi¬ kroprozessor einzusetzen, und den Kehrwert des Di¬ visors und anschließend den Quotienten zu berech¬ nen.
Weitere Einzelheiten, Merkmale und Vorteile der Er¬ findung lassen sich dem nachfolgenden Beschrei¬ bungsteil entnehmen, in dem anhand der Zeichnung ein Ausführungsbeispiel der Erfindung näher erläu¬ tert wird.
Sie zeigt in schematischer Darstellung eine erfin¬ dungsgemäße Vorrichtung zur digitalen Berechnung des Quotienten aus einem rationalen Divisor und ei¬ nem rationalen Dividenden.
Der Divisor liegt am Eingang (3) des Kehrwertre¬ chenwerks (1) an, das den Quotienten aus dem Gene- raldividenden (4) und dem Divisor berechnet. Der
Generaldividend (4) ist 1 oder eine ganzzahlige Po¬ tenz von 2, 8, 10 oder 16, um ein die maximale Stellenzahl ausschöpfendes Ergebnis am Ausgang (6) Kehrwertrechenwerks (1) zu erreichen. Ein Faktoren- eingang (8) des Multiplizierwerks (2) ist mit dem Ausgang des Kehrwertrechenwerks (1) verbunden, das Produkt aus dem Dividenden und dem Reziproken des Generaldivisors liegt am anderen Faktoreneingang (5) an. Am Ausgang (7) des Multiplizierwerks (2) steht der korrekte, gegenüber dem Stande der Tech¬ nik in verkürzter Rechenzeit erhaltene Quotient aus Dividend und Divisor zur weiteren Verwendung be¬ reit.

Claims

P A T E N T A N S P R Ü C H E
1. Vorrichtung zur digitalen Berechnung des Quoti¬ enten aus einem rationalen Dividenden und einem ra¬ tionalen Divisor, mit einem Multiplizierwerk, das mit zwei Faktoreneingängen sowie einem Ausgang ver¬ sehen ist, und einem Kehrwertrechenwerk, das einen Eingang und einen Ausgang aufweist, wobei am Aus¬ gang das bn-fache des Reziproken des Wertes des Eingangs anliegt und n eine ganze Zahl und b eine natürliche Zahl und größer als 1 ist, dadurch ge¬ kennzeichnet, daß der Divisor am Eingang (3) des Kehrwertrechenwerks (1) anliegt, daß der Ausgang (6) des Kehrwertrechenwerks (1) mit einem Faktoreneingang (8) verbunden ist, daß am anderen Faktoreneingang (5) das Produkt aus dem Dividenden und b~n anliegt, und daß der Wert des Ausgangs (7) des Multiplizierwerks (2) als Resultat wiedergegeben wird.
2. Vorrichtung nach Anspruch l, dadurch gekenn- zeichnet, daß das Kehrwertrechenwerk (1) und das Multiplizierwerk (2) binär arbeiten und daß b gleich 2 ist.
3. Vorrichtung nach Anspruch 1, dadurch gekenn¬ zeichnet, daß das Kehrwertrechenwerk (1) und das Multiplizierwerk (2) oktal arbeiten und daß b gleich 8 ist.
4. Vorrichtung nach Anspruch 1, dadurch gekenn¬ zeichnet, daß das Kehrwertrechenwerk (1) und das Multiplizierwerk (2) dezimal arbeiten und daß b gleich 10 ist.
5. Vorrichtung nach Anspruch 1, dadurch gekenn- zeichnet, daß das Kehrwertrechenwerk (1) und das Multiplizierwerk (2) sedezimal arbeiten und daß b gleich 16 ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Kehrwertrechenwerk (1) seriell und das Multiplizierwerk (2) seriell oder parallel arbeitet.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Kehrwertrechenwerk (1) und das Multiplizierwerk (2) in einem Mikropro¬ zessor angeordnet sind.
EP94914346A 1993-05-12 1994-05-10 Vorrichtung zur berechnung des quotienten zweier rationaler zahlen Withdrawn EP0664024A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19934315898 DE4315898A1 (de) 1993-05-12 1993-05-12 Vorrichtung zur Berechnung des Quotienten zweier rationaler Zahlen
DE4315898 1993-05-12
PCT/DE1994/000562 WO1994027212A1 (de) 1993-05-12 1994-05-10 Vorrichtung zur berechnung des quotienten zweier rationaler zahlen

Publications (1)

Publication Number Publication Date
EP0664024A1 true EP0664024A1 (de) 1995-07-26

Family

ID=6487935

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94914346A Withdrawn EP0664024A1 (de) 1993-05-12 1994-05-10 Vorrichtung zur berechnung des quotienten zweier rationaler zahlen

Country Status (3)

Country Link
EP (1) EP0664024A1 (de)
DE (1) DE4315898A1 (de)
WO (1) WO1994027212A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011177A1 (de) * 2010-03-12 2011-09-15 Universität Hamburg Vorrichtungsunterstütztes Berechnen von Gleichungssystemen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504478A (ja) * 1989-04-10 1992-08-06 モトローラ・インコーポレーテッド 整数割り算回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9427212A1 *

Also Published As

Publication number Publication date
DE4315898A1 (de) 1994-11-17
WO1994027212A1 (de) 1994-11-24

Similar Documents

Publication Publication Date Title
DE2246968C2 (de) Einrichtung zur Multiplikation zweier Gleitkommazahlen
Aiken et al. Proposed automatic calculating machine
DE3020767C2 (de) Schaltungsanordnung zur Restklassen-Multiplikation
DE1549508C3 (de) Anordnung zur Übertragsberechnung mit kurzer Signallaufzeit
EP1499954B1 (de) Berechnung eines ergebnisses einer modularen multiplikation
DE3434777C2 (de)
DE2826773A1 (de) Verfahren und schaltungsanordnung zum feststellen der wertigkeit von ziffern in arithmetischen operationen mit dezimalrechnern
EP0628183A1 (de) Schaltungsanordnung zum digitalen multiplizieren von integer-zahlen
DE2039228A1 (de) Verfahren und Vorrichtung zum Konvertieren und Stellenwert-Verschieben von Zahlsignalen unterschiedlicher Codes in einer Datenverarbeitungsanlage
WO1994027212A1 (de) Vorrichtung zur berechnung des quotienten zweier rationaler zahlen
DE1549395C3 (de) Elektronischer Kleinrechner, insbesondere Tischrechner
DE3889746T2 (de) Zähler.
DE3312796C2 (de)
DE1222290B (de) Binaere Recheneinrichtung zur Bildung und Akkumulation von Produkten
DE2312128A1 (de) Schaltungsanordnung zur bestimmung des dualen logarithmus einer binaerzahl
EP1508087B1 (de) Verfahren und integrierte schaltung zur durchführung einer multiplikation modulo m
DE69534097T2 (de) Booth-Multiplizierer für trigonometrische Funktionen
DE3700740A1 (de) Linearapproximationsumformschaltung
DE4223999C1 (en) Digital multiplication circuit using canonically signed digit code - has multiplexer converted and added to two's-complement value to generate reduced partial products that are added
EP0752130A1 (de) Multiplizierer mit geringer laufzeit
WO1999045462A1 (de) Datenpfad für signalverarbeitungsprozessoren
DE2140386A1 (de) Digitalrechengerat
DE102014200465A1 (de) Vorrichtung und Verfahren zur Bestimmung eines Schätzwertes des Logarithmus einer Eingangsgröße
DE2432979A1 (de) Einrichtung zum multiplizieren und addieren von komplexen zahlen
DE1190700B (de) Arithmetische Einheit fuer einen programmgesteuerten Digitalrechner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19970120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19970731