EP0663366B1 - Intelligent verteilte Steuerung für Aufzüge - Google Patents

Intelligent verteilte Steuerung für Aufzüge Download PDF

Info

Publication number
EP0663366B1
EP0663366B1 EP94120379A EP94120379A EP0663366B1 EP 0663366 B1 EP0663366 B1 EP 0663366B1 EP 94120379 A EP94120379 A EP 94120379A EP 94120379 A EP94120379 A EP 94120379A EP 0663366 B1 EP0663366 B1 EP 0663366B1
Authority
EP
European Patent Office
Prior art keywords
car
processing units
nodes
elevators
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94120379A
Other languages
English (en)
French (fr)
Other versions
EP0663366A1 (de
Inventor
Denis D. Shah
Richard D. Gerhardson
Edward L. Chou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP0663366A1 publication Critical patent/EP0663366A1/de
Application granted granted Critical
Publication of EP0663366B1 publication Critical patent/EP0663366B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • B66B1/14Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements
    • B66B1/18Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements with means for storing pulses controlling the movements of several cars or cages

Definitions

  • the present invention relates to a new and improved intelligent distributed control for elevators, comprising a plurality of elevators arranged in conventional manner for servicing a plurality of floors of a building, including a group controller, with hall call registering devices disposed at each of the floors to originate hall calls for up and down service at each of said floors, for exchanging signals with each of said elevators and for controlling the operation of said elevators in response to said hall calls and in response to signals received from said elevators, further including for each of said elevators a car with car calls registering devices for service required by passengers therein, a car drive for providing and arresting the motion of said car, and a car controller for providing signals indicative of conditions of said car, for controlling said car motion means to cause said car to move in a selected up or down direction and to stop in response to said signals indicative of conditions of said car and to signals received from said group controller means whereby said group controller means comprises a signal processor means responsive to said signals indicative of conditions of each of said cars for providing for each car, upon generation of a hall call an evaluation calculation and
  • an elevator controller has been a centralized system, in which the operations are controlled by one intelligent station in the system. This station may be located in the machine room, inside or on top of the cab etc.
  • This computation of the operating costs takes place in the costs computation algorithm according to a special costs formula, wherein the readjusted bonus and penalty point factors act multiplicatively on a six term partial costs sum.
  • the prior art uses a computer as a centralized control for an elevator group of three elevators A,B,C and is operated without car calls but exclusively by target calls.
  • the different elements of the elevator group are connected to the controlling computer by a bus system:
  • the elevator bus, the car bus and the floor bus form a threefold bus system which is connected to the computer by a special interface.
  • the centralized computer can be of any suitable configuration such as a separate computer for each elevator car with one of the computers also controlling the group functions, a single computer for the whole elevator group or a single computer for two or more elevator groups. Common to all these computer configurations is a more or less centralized control.
  • a major disadvantage of this type of system configuration is that despite the use of a bus system substantial wiring effort is required. Wiring from distant locations in the system to a centralized location must be done. Not only is this process expensive, but it can also be error prone and tedious. Another disadvantage of such a system is that it requires enormous efforts for software development, testing and maintenance.
  • the elevator system is increased, i.e., when the numbers of floors and cars are increased the centralized computer and other elevator control apparatuses may be overloaded. In this case, the load is unbalanced and the computer processing efficiency for the total system is poor. With a single centralized station for elevator control there is no possibility for distributing and averaging the load of control functions and data processing.
  • control according to the invention shall be so structured to display increased system efficiency and reliabilty for all functions relating to bank service.
  • This problem is solved according to the invention by the means as characterized in the version of the independent claim.
  • DPUs distributed processing units
  • a first advantage can be seen in the modularity and configurability of distributed control.
  • An elevator control based on DPUs is localizing the processing according to functions. This will produce a control in which the processing for a function is performed locally, in the respective portion of the control system.
  • different functions can be added simply by adding the necessary hardware and DPUs. This will make it easier to build up a system with the desired features without affecting other DPUs, thus the modularity and configurability. This also makes it easier to add more functions in the future on a given job with a minimum amount of engineering work.
  • control system is devided into different modules, each performing a defined set of tasks.
  • development and maintenance of the control system is simplified due to its modular nature.
  • each module can be developed independently and concurrently to reduce the overall system development time. This reduces time to market, development costs and simplifies software maintenance. It has also been proved, that the system according to the invention exhibits an improved overall reliability and safety because there is no single point of failure and degraded operation modes are possible.
  • the elevators of an elevator group are designated by A, B and C, wherein a car 2 is guided in an elevator shaft 1 for each elevator and is driven in a known manner by a hoist motor 3 by way of a hoisting cable 4 to serve sixteen floors E1 to E16.
  • Each drive 3 is controlled by a drive control whereby the target value generation, the regulating functions and the start-stop initiation are all realized by means of an industrial computer 5.
  • Measuring and adjusting elements 6 are connected to the industrial computer 5 by a first interface IF1 and an elevator bus 7.
  • Each car includes a load measuring device 8 to determine when passengers enter and leave the elevator car, a call indicating device 9 signalling the respective operational state Z of the car, a stop indicator 10 and a car operating panel 11.
  • the devices 8, 9, 10 and 11 are connected through a car bus 12 with the computer 5.
  • Car calls are recorded in the elevator cars A, B and C by suitable push button arrays incorporated in the car-operating panel 11. They are then serialized and transmitted by way of the car bus 12 and the interface CIF to the industrial computer 5 along with any other car-related information.
  • call registering devices 8 in the form of suitable push-buttons 13 such as an "up” hall call push button 14 located at the lowest floor E1, a "down" hall call push button 15 located at the highest floor E16 and "up” and "down” hall call push buttons 16 located at each of the intermediate floors E2 to E15.
  • the hall calls are serialized and transmitted by way of the floor bus 17 and the input interface ICF to the industrial computer 5, where they are allocated for service to the individual cars 2 in the sense of a demanded function profile by the use of a special hall call allocation algorithm.
  • Fig. 2 shows the elevator control system based on distributed control concepts. It uses Neuron Chip based local operating networks (Lonworks) by Echelon Corporation which is a new technology promissing better opportunities for creating lower cost distributed control systems with unique means of implementing distributed control algorithms.
  • the underlying pricipal of the technology involves creation of a system with Distributed Processing Units (DPU's). These DPU's possess intelligence to sense and control local devices and send updates to other DPU's in the system. All distributed processing units DPU operate automatically, independently and autonomously under management of software stored in each of them. They are simply connected to each other via one or more available communications media 18 thereby sharing a common, message-based communication protocoll.
  • DPU's Distributed Processing Units
  • Each DPU of such a system has intelligence, not only to transmit messages between different points within the system, but also for performing control algorithms.
  • the necessity of having a centralized processor can be eliminated.
  • the control system is made up of several intelligent DPU's which are connected to each other by a communications medium 18.
  • the number of DPU's varies depending on the requirements of the control system, which need not be arranged on the number of elevators and floors, but on the required processing capacity. However, the functions performed by any given DPU does not change.
  • floor processing units FPU Located on three floors E1, E2, E3 there are floor processing units FPU in the corridor fixture boxes 20 of each floor E1, E2, E3 and in the fire control center 21.
  • car processing units CPU for door operations, position indicator, landing system and car call features.
  • group processing units GPU and signalling processing units SPU located at the machine room 22.
  • the floor processing units FPU and the car processing units CPU perform functions associated with its sensor devices and its actuator devices and perform the necessary control functions. In addition to this, they broadcast the latest states of the critical devices to inform other DPU's in the system. The information thus received by other DPU's along with their local device states is used in making control decisions that it is responsible for.
  • the group processing units GPU include mainly hall call assignment functions, whereas the signalling processing units SPU relate to transmission functions for interprocess communication.
  • a completely modular system can be created with distributed control functions. An example of how a typical elevator operation is carried out by such a system is described with reference to Fig. 2. If a corridor call button 25 at 3rd floor is pressed by a passenger, the floor processing unit FPUa located in the corridor fixture box 20 at that floor recognizes it and latches it, if an elevator A,B,C is in service. This information is then transmitted to a first group processing unit GPUa in the machine room 22.
  • Group processing unit GPUa is responsible for performing the evaluation calculation for determining hall call assignments to cars 2 and for performing group management of the cars 2 on the basis of the evaluation calculation result by controlling the drive unit 26 which in turn controls the movement of the elevators A,B,C.
  • the group processing unit GPUa initiates commands to move the assigned elevator, which in this case shall be elevator A, towards the 3rd floor.
  • the car processing unit CPUc which monitors the landing system, updates other distributed processing units DPU's as the elevator A passes the floors E1.
  • the floor processing unit on the third floor FPUa changes the position indicator 27 to the appropriate floor position and direction.
  • the first group processing unit GPUa also receives the landing system update from the car processing unit CPUc and based on this information, it decides whether to continue the travel or to stop at the next floor. If the next floor is the target floor, the second group processing unit GPUb changes the commands to the drive unit 26 so as to stop at that floor. Once the elevator has began its slowdown, the second group processing unit GPUb broadcasts this information over the network. When the floor processing unit on the third floor FPUa receives this information, it cancels the corridor call being answered and at the same time turns on the hall lantern 28 for it.
  • the group processing unit GPUb gets an update from the landing system car processing unit CPUc whereby the drive unit 26 is commanded to stop the elevator there and the second group processing unit GPUb is informing the door processing units CPUa and CPUb that the elevator has been stopped at the target floor.
  • CPUa and CPUb which are responsible for controlling door operation, command the doors to open and then to close after a pre-defined time. With all this, the demand at the 3rd floor is completed.
  • the described typical elevator operation involves the exchange of data between the various distributed processing units DPUs. To this end signaling processing units SPUa, SPUb,...
  • a completely modular system can be created without a need for a central processing unit as designated with 5 in Fig. 1.
  • tasks become much simpler and the load balance may be averaged. This simplicity is directly reflected in the system development cycle, and the ease of maintenance.
  • For load averaging a distributed processing unit which has a heavy load may be temporarily exempt from process execution in practice. If even one of the group processing units GPUa, GPUb, ... is operational group control can be performed, thereby assuring reliability in this respect. Therefore, high reliability and high system efficiency will be achieved through cooperative distributed control implemented by the individual distributed processing units DPU.
  • Fig. 3 illustrates the neural network structure used to implement the distributed control for elevator dispatching and back-up architecture.
  • a multi car dispatching model was selected by applying neuron MC 143150 chip for the low cost and performance.
  • the car to be allocated to a hall call is selected on the basis of the results obtained using the neural net corresponding to the neurons of the lasted brain.
  • the neural net includes an input layer, an output layer and an intermediate layer provided between the input and output layers.
  • weighting factors are applied in combining signals from the nodes of the input layer and in distributing signals to the output nodes.
  • the weighting factors are variable and are appropriately changed and corrected through learning so as to achieve a more adequate car allocation. Different sets of learning factors may be applied at different times or under different detected conditions of passenger loading.
  • the learning may be performed using the back propagation method.
  • the back propagation is a method of correcting the weighting factors using errors between the output data of the network and desired output data created from surveyed data or control objective values.
  • Each main node contains its own Estimated Time of Arrival-software to perform token ring algorithm for the car to car communication and the back-up architecture as designed. Both guarantee the reliability for the bank service.
  • the nodes A0,B0,C0,D0,... are the main nodes (MC143150) for all bank cars
  • nodes A1,A2,A3,... are the auxiliary nodes (MC143120) for each car
  • Each main node contains its own ETA-calculation software to perform Token Ring algorithm for the car to car communication to guarantee the reliability for bank service rather than just have one node calculate ETA.
  • Neuron Network Management also assures the concurrancy of the signal transmission among the auxiliary nodes A1,A2,A3,... to the main nodes A0,B0,C0,....
  • the 3150 chip provides 64 KB for user program and goes through network common port 34 to communicate with other nodes.
  • Each node pair 35 consists of a main node and a backup node. It begins for incoming data and also follows for outgoing data by a multiplexer 36.
  • the consistency check software constantly sends out signals to check the network common port 34 and the application I/O port 37 of the main node. If an error is found, a signal is sent out to select the backup node Aa,Ba,Ca,... from the node pair 35 for the data communication.
  • all the nodes have their own identifications, even the backup nodes Aa,Ba,Ca,... . All the related nodes are able to look for backup nodes when a common error occurred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Transplanting Machines (AREA)
  • Exchange Systems With Centralized Control (AREA)
  • Mushroom Cultivation (AREA)
  • Harvester Elements (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Claims (6)

  1. Intelligente verteilte Steuerung für Aufzüge (A, B, C), die folgendes umfaßt: mehrere auf herkömmliche Weise angeordnete Aufzüge (A, B, C) zum Bedienen mehrerer Stockwerke (E1, E2, ...) eines Gebäudes mit
    einer Gruppensteuerung (GPU) mit auf jedem der Stockwerke angeordneten Stockwerkrufregistriereinrichtungen (13) zum Senden von Stockwerkrufen zur Aufwärtsfahrt und Abwärtsfahrt auf jedem der Stockwerke (E1, E2, ...) zum Austauschen von Signalen mit jedem der Aufrüge (A, B, C) und zum Steuern des Betriebs der Aufrüge (A, B, C) als Reaktion auf die Stockwerkrufe und als Reaktion auf von den Aufzügen (A, B, C) erhaltene Signale, weiterhin mit einer Kabine (2) für jeden der Aufzüge (A, B, C), einem Kabinenantrieb (3) zum Bereitstellen und Anhalten der Bewegung der Kabine (2) und einer Kabinensteuerung zum Liefern von den Zustand der Kabine (2) anzeigenden Signalen zum Steuern der Kabinenbewegung, Mitteln, um zu bewirken, daß die Kabine (2) sich in einer ausgewählten Aufwärts- oder Abwärtsrichtung bewegt,
    und die Kabine (2) als Reaktion auf den Zustand der Kabine (2) anzeigende Signale und auf von der Steuerung erhaltene Signale anzuhalten,
    wodurch
    die Gruppensteuerung (GPU) einen Signalprozessor (SPU) umfaßt, der auf den Zustand jeder der Kabinen (2) anzeigende Signale reagiert, um bei Erzeugung eines Stockwerkrufs für jede Kabine (2) eine Bewertungsberechnung zu liefern, und auf der Grundlage des Ergebnisses der Bewertungsberechnung eine optimale Aufzugkabine (2) gewählt und zur Beantwortung des Stockwerkrufs abgeschickt wird,
    gekennzeichnet
    dadurch, daß die Steuerung verteilte Verarbeitungseinheiten (DPU) umfaßt und vorzugsweise als neuronales Netz aufgebaut ist, mit Eingabe-, Zwischen- und Ausgabeschicht, wodurch die Knotenpunkte des neuronalen Netzes durch die verteilten Verarbeitungseinheiten (DPU) realisiert werden,
    durch auf den Stockwerken (E1, E2, ...) angeordnete Stockwerkverarbeitungseinheiten (FPUa, FPUb, ...) zum Steuern der Korridorinstallationskästen (20) jedes Stockwerks (E1, E2, ...) und autonomen Eingabe/Ausgabe von dem Stockwerk (E1, E2, ...) zugeordneten Informationen,
    durch in jeder Kabine (2) der Aufzüge (A, B, ...) angeordnete Kabinenverarbeitungseinheiten (CPUa, CPUb, ...) zum Steuern jeder Kabine (2) und autonomen Eingabe/Ausgabe von dieser Kabine (2) zugeordneten Informationen,
    durch in dem Maschinenraum (22) angeordnete Gruppenverarbeitungseinheiten (GPUa, GPUb, ...) zum Ausführen der Bewertungsberechnung zum Bestimmen der Stockwerkrufzuweisungen zu Kabinen (2) und zum Ausführen des Gruppenmanagements der Kabinen (2) auf der Grundlage eines Ergebnisses der Bewertungsberechnung; und
    durch eine oder mehrere Signalverarbeitungseinheiten (SPUa, SPUb, ...), die vorgesehen sind, um zu bewirken, daß die Gruppenverarbeitungseinheiten (GPUa, GPUb, ...) und die Stockwerkverarbeitungseinheiten (FPUa, FPUb, ...) miteinander kommunizieren.
  2. Intelligente verteilte Steuerung nach Anspruch 1, dadurch gekennzeichnet,
    daß in jeder Kabine (2) eine erste Türverarbeitungseinheit (CPUa) zum Betrieb der Vordertür, eine zweite Türverarbeitungseinheit (CPUb) zum Betrieb der Hintertür, eine Landesystemverarbeitungseinheit (CPUc) für das Landesystem, eine Positionsverarbeitungseinheit (CPUd) zur Positionsanzeige und eine Kabinenrufverarbeitungseinheit (CPUe) für Kabinenrufmerkmale vorgesehen sind.
  3. Intelligente verteilte Steuerung nach Anspruch 1, dadurch gekennzeichnet,
    daß der Einrichtungszustand seriell zu den verschiedenen verteilten Verarbeitungseinheiten (DPU) innerhalb des Systems übertragen wird.
  4. Intelligente verteilte Steuerung nach Anspruch 1, dadurch gekennzeichnet,
    daß die Zwischenschicht erste Gewichtungsfaktoren zwischen den einzelnen Knotenpunkten der Eingabeschicht und den einzelnen Knotenpunkten der Zwischenschicht und zweite Gewichtungsfaktoren zwischen den einzelnen Knotenpunkten der Zwischenschicht und den einzelnen Knotenpunkten der Ausgabeschicht enthält.
  5. Intelligente verteilte Steuerung nach Anspruch 1, dadurch gekennzeichnet,
    daß das neuronale Netz Hauptknotenpunkte (A0, B0, C0, ...) und Hilfsknotenpunkte (A1, A2, A3, ...) enthält, wodurch jeder Hauptknotenpunkt (A0, B0, C0, ...) parallel zu einem Reserveknotenpunkt (Aa, Ba, Ca, ...) angeschlossen ist.
  6. Intelligente verteilte Steuerung nach Anspruch 1, dadurch gekennzeichnet,
    daß jeder Hauptknotenpunkt (A0, B0, C0, ...) seine eigene ETA-Software enthält, um einen Token-Ring-Algorithmus für die Kabine-Kabine-Kommunikation auszuführen.
EP94120379A 1994-01-12 1994-12-22 Intelligent verteilte Steuerung für Aufzüge Expired - Lifetime EP0663366B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18030694A 1994-01-12 1994-01-12
US180306 1994-01-12

Publications (2)

Publication Number Publication Date
EP0663366A1 EP0663366A1 (de) 1995-07-19
EP0663366B1 true EP0663366B1 (de) 1999-08-04

Family

ID=22659966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94120379A Expired - Lifetime EP0663366B1 (de) 1994-01-12 1994-12-22 Intelligent verteilte Steuerung für Aufzüge

Country Status (8)

Country Link
EP (1) EP0663366B1 (de)
JP (1) JP3734287B2 (de)
AT (1) ATE182856T1 (de)
BR (1) BR9500056A (de)
CA (1) CA2139704C (de)
CZ (1) CZ6695A3 (de)
DE (1) DE69419891T2 (de)
FI (1) FI946148A (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383237B2 (en) 1998-05-01 2008-06-03 Health Discovery Corporation Computer-aided image analysis
US9126806B2 (en) 2009-11-10 2015-09-08 Otis Elevator Company Elevator system with distributed dispatching
CN111071891A (zh) * 2019-12-19 2020-04-28 上海新时达电气股份有限公司 一种报警处理方法和五方远程对讲终端

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1084289C (zh) * 1996-10-29 2002-05-08 三菱电机株式会社 电梯的控制装置
EP0870717B1 (de) * 1996-10-29 2003-03-19 Mitsubishi Denki Kabushiki Kaisha Steuervorrichtung für aufzüge
EP1170241B2 (de) 1999-10-22 2009-12-09 Mitsubishi Denki Kabushiki Kaisha Aufszugssteuerung
KR100436693B1 (ko) * 2000-04-12 2004-06-22 미쓰비시덴키 가부시키가이샤 엘리베이터의 통신제어장치
GB2364991B (en) * 2000-05-05 2004-05-26 Read Holdings Ltd Lift control system
US6439349B1 (en) 2000-12-21 2002-08-27 Thyssen Elevator Capital Corp. Method and apparatus for assigning new hall calls to one of a plurality of elevator cars
AU2002243783B2 (en) * 2001-01-23 2007-07-19 Health Discovery Corporation Computer-aided image analysis
JP4139819B2 (ja) * 2005-03-23 2008-08-27 株式会社日立製作所 エレベータの群管理システム
ES2391233T3 (es) 2007-08-06 2012-11-22 Thyssenkrupp Elevator Capital Corporation Control para limitar la presión timpánica de un pasajero de ascensor y método para lo mismo
FI122988B (fi) * 2011-08-26 2012-09-28 Kone Corp Hissijärjestelmä
CN116567561A (zh) * 2022-01-29 2023-08-08 奥的斯电梯公司 用于处理呼梯请求的分布式处理系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246633A (en) * 1975-10-13 1977-04-13 Tomen Kk Floating device of messer shield excavator
US4350226A (en) * 1981-05-27 1982-09-21 Otis Elevator Company Elevator floor stop look-ahead
US4766978A (en) * 1987-10-16 1988-08-30 Westinghouse Electric Corp. Elevator system adaptive time-based block operation
JPH01275388A (ja) * 1988-04-26 1989-11-06 Mitsubishi Electric Corp エレベータ制御装置
JP2573726B2 (ja) * 1990-06-19 1997-01-22 三菱電機株式会社 エレベータ制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383237B2 (en) 1998-05-01 2008-06-03 Health Discovery Corporation Computer-aided image analysis
US9126806B2 (en) 2009-11-10 2015-09-08 Otis Elevator Company Elevator system with distributed dispatching
CN111071891A (zh) * 2019-12-19 2020-04-28 上海新时达电气股份有限公司 一种报警处理方法和五方远程对讲终端

Also Published As

Publication number Publication date
CZ6695A3 (en) 1995-09-13
BR9500056A (pt) 1995-11-07
CA2139704C (en) 2005-04-26
CA2139704A1 (en) 1995-07-13
ATE182856T1 (de) 1999-08-15
FI946148A (fi) 1995-07-13
DE69419891D1 (de) 1999-09-09
JPH07215606A (ja) 1995-08-15
JP3734287B2 (ja) 2006-01-11
DE69419891T2 (de) 2000-03-09
EP0663366A1 (de) 1995-07-19
FI946148A0 (fi) 1994-12-29

Similar Documents

Publication Publication Date Title
EP0663366B1 (de) Intelligent verteilte Steuerung für Aufzüge
US4363381A (en) Relative system response elevator call assignments
US8172043B2 (en) Elevator cross-dispatching system with inter group relative system response (IRSR) dispatching
CA2042971C (en) Group control for lifts with double cages with immediate allocation of target calls
EP0032000B1 (de) Dynamische Neueinschätzung für Aufzugrufzuteilung
US5884729A (en) Apparatus and method for controlling a plurality of elevator cars
CA1216084A (en) Group control for elevators with double cabins
JPH04226287A (ja) 階床の呼び入力位置に応じて目的の呼びを即時割当てるエレベータ用群制御装置
JP3251595B2 (ja) エレベータの制御装置
CN1065509C (zh) 用多舱室电梯改善拥挤时的服务
CN101139059B (zh) 电梯的群管理控制装置
CN106516917A (zh) 电梯系统
US5272287A (en) Elevator car and riser transfer
WO2021166468A1 (ja) エレベーター制御装置及びエレベーター制御方法
US5848669A (en) Apparatus for efficiently managing a plurality of elevators
JP7359340B1 (ja) エレベーターシステム及びエレベーターのかご割り当て方法
JPH055747B2 (de)
JP2666997B2 (ja) エレベータの群管理制御装置
JPH03177276A (ja) エレベータの群管理制御装置
WO1981001548A1 (en) Relative contiguous elevator call assignment
EP0586190A1 (de) Rettungsverfahren für ein Aufzugssystem
KR970000992B1 (ko) 엘리베이터 군관리제어장치
JPH0789677A (ja) エレベータの群管理制御方法
FI94120C (fi) Menetelmä ja laitteisto hissiryhmän ohjaukseen
JPH06255903A (ja) エレベータの群管理制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

17P Request for examination filed

Effective date: 19951218

17Q First examination report despatched

Effective date: 19980331

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REF Corresponds to:

Ref document number: 182856

Country of ref document: AT

Date of ref document: 19990815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69419891

Country of ref document: DE

Date of ref document: 19990909

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101214

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20111220

Year of fee payment: 18

Ref country code: FR

Payment date: 20120105

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111222

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 182856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121222

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121222

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69419891

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121222

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121222

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102