EP0662703B1 - Emetteur d'électrons thermo-ionique réglable - Google Patents

Emetteur d'électrons thermo-ionique réglable Download PDF

Info

Publication number
EP0662703B1
EP0662703B1 EP95200013A EP95200013A EP0662703B1 EP 0662703 B1 EP0662703 B1 EP 0662703B1 EP 95200013 A EP95200013 A EP 95200013A EP 95200013 A EP95200013 A EP 95200013A EP 0662703 B1 EP0662703 B1 EP 0662703B1
Authority
EP
European Patent Office
Prior art keywords
layer
layers
emitter
deposited
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95200013A
Other languages
German (de)
English (en)
Other versions
EP0662703A1 (fr
Inventor
Georg Dr. c/o Philips Gärtner
Hans-Jürgen Dr. c/o Philips Lydtin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP0662703A1 publication Critical patent/EP0662703A1/fr
Application granted granted Critical
Publication of EP0662703B1 publication Critical patent/EP0662703B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/15Cathodes heated directly by an electric current
    • H01J1/16Cathodes heated directly by an electric current characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/027Construction of the gun or parts thereof

Definitions

  • the invention relates to a controllable thermionic electron emitter for vacuum electron tubes with an emitting emitter layer and with at least one control layer separated from the emitter layer by an insulating layer, the Insulating layer and the control layers are produced by a deposition process, with all functional elements such as control layers, emitter layer as well as separating insulating layers in succession in the growth direction and are successively deposited on a substrate such that the layers over Solid boundary layers stick together.
  • Such an electron emitter with a single control layer is known from US-A 4,237,209 known.
  • the known cathode grid structure has one single emitting region and also further diffusion barrier layers and BN layers to adjust grid voltages.
  • Electron emitters for vacuum electron tubes must have a high one Electron emission also has sufficient resistance to residual gas poisoning and Show ion bombardment. Depending on the application, high Lifetime demands. In this regard, very small particles are less emitting layers composed as 1 ⁇ m diameter advantageous, which are described in DE-A 42 07 220 or in DE-A 42 06 909.
  • cathode elements With flat displays, numerous cathode elements have to be in close proximity and in precise spatial allocation to be ordered. An adjustment of separate cathode elements e.g. by means of manually operated devices time consuming and in terms of adjustment accuracy problematic.
  • the invention has for its object an electron emitter of the beginning to create the type mentioned, which is dimensionally accurate even with small dimensions is producible, its dimensional accuracy during operation and especially at Temperature changes with a long service life are preserved with little fluctuation and which has a uniform electron emission and a high efficiency.
  • the solution is achieved in that the emitter layer is electrically separated into several controllable areas is divided and that the emitter layer of particles in Size range from 1 to 100 nm is formed, which is generated by laser ablation become.
  • controllable thermionic electron emitters In the case of controllable thermionic electron emitters according to the invention, all are functional elements combined into a monolithic block. A Subsequent connection and adjustment causing inaccuracies functional elements is not required. All layers of the invention Arrangement adhere firmly to one another via solid boundary layers, so that even high thermal loads no impermissible changes in the geometric Cause configuration. Suitable Process for manufacturing such integrated structures are widely known and are e.g. also in IC production used. Even microstructures for matrix-like Multiple cathode arrangements can be made with high dimensional accuracy getting produced. Even layer thicknesses of less than 20 ⁇ m with tolerances of less than 3% easily possible. Lateral distances can also be used between elements of a finely structured multiple cathode for example using known etching processes can be realized exactly.
  • Arrangements according to the invention can be made with one or several independently controllable control layers be built up by what in itself various functions are known to be fulfilled can.
  • Metallic control layers can also act as ion traps be provided.
  • the Control layers can be used to form electrically separately controllable areas can be divided.
  • Arrangements according to the invention offer the possibility that a grid with two separately controllable heating layers can be controlled by cathode spots in a matrix.
  • the individual layers of an arrangement according to the invention are successively deposited on a carrier substrate.
  • a carrier substrate As a carrier substrate, an optionally with serve an insulating layer provided heating element.
  • a preferred method of making a The arrangement according to the invention is characterized in that that the emitter layer before further deposition Layers is provided with a protective layer, which at least the emitting areas of the emitter layer covers and which after the application of all Layers is removed. This will poison the emitting surfaces when applying subsequent layers avoided.
  • the protective layer one the emitting areas of the emitter layer cover aperture, but is preferred Process in which the protective layer covers the entire surface the deposited emitter layer is which in the areas which are as emissive Areas should serve after the deposition of all Layers is removed.
  • a protective layer is preferred made of metal, especially tungsten.
  • the areas of the protective layer to be removed can be through a chemical etching process, especially by ion etching be removed.
  • the protective layer as an excess thickness the emitter layer.
  • the emitter layer of particles in Size range from 1 to 100 nm, which is formed by Laser ablation of a target can be generated.
  • Such Emitter layers result in a particularly uniform Electron emission.
  • the emissions of various surface elements with dimensions of e.g. 1 ⁇ m differ among themselves by no more than 10%.
  • metallurgical or electrophoretic manufactured emitter layers very non-uniform Result in emission densities, e.g. when comparing different surface elements with dimensions of about Distinguish 100 ⁇ m by powers of ten.
  • the insulating layer (s) and / or the protective layer and / or the Control layer (s) applied by a CVD process become. Do you use heated substrates or heat / heat you can do the structure after every single layer Laser ablation deposition to form dense layers are used, especially with pressures ⁇ 0.1 hPa. Particularly suitable emitting layers and processes for their production are in DE-A 42 07 220 and DE-A 42 06 909.
  • Fig. 1 is a controllable thermionic schematically Electron emitter shown for color picture tubes.
  • a heater 1 serves as a support and substrate for the Deposition of the following layers, namely one Insulating layer 2, an emitter layer 3, a protective layer 8, an insulating layer 4, a grid layer 5 and optionally an insulating layer 6 and one Grid layer 7.
  • the insulating layers consist of oxide layers deposited by CVD or LAD, in particular of BeO, ZrO 2 or BaWO 4 , and have a thickness of approximately 80 ⁇ m.
  • the approximately 70 ⁇ m thick emitter layer 3 was deposited as a porous structure from parts with a diameter of less than 1 ⁇ m by LAD.
  • the emitter layer consists, for example, of W + 3 3% BaO or 4 BaO.CaO.Al 2 O 3 and Sc 2 O 3 , in particular 2-3.5% by weight of Sc 2 O 3 .
  • the layer consists of oxide cathode material, in particular of BaO / SrO, doped with Ni particles and with Sc 2 O 3 particles with a proportion of 1 1% by weight, a percolation structure preferably being implemented for BaO / SrO.
  • a grid 13 with the cross-sectional areas 13a and 13b surrounds all emitting areas as a common grid 3a, 3b and 3c.
  • Another common grid can pass through the parts of the grid layer 7 indicated by dashed lines be formed.
  • the cover can be the protective layer 8 replace in certain cases.
  • a protective tungsten layer 8 can also be formed by oxidation and subsequent evaporation are removed. Still is it is possible to make the protective layer 8 from the same material how to apply the emitter layer 3 with such a thickness and later remove it like the poisoning penetrates when applying the subsequent layers. Doing so the emitter layer is initially manufactured with oversize.
  • Analogous to the arrangement explained as an example in FIG. 1 can use modified electron emitters for different types Use cases are made. Especially can have matrix-like structures according to the schematic 2 are formed. There are on a heater 14 parallel emitter strips 15 and Lattice strips 16 arranged above it perpendicularly. By Gaps 17 in the grating strips 16 are emissive Areas 18 free, which with simultaneous electrical Control of the intersecting strips 15 and 16 send out an electron beam.
  • the structure of Fig. 2nd was inventively by successive application of individual layers and subsequent etching processes manufactured.
  • the parts of the emitter strips (for example 19), which should not emit, are or remain in the Contrary to the emitter spots 18 with one not emissive protective layer covered.
  • Matrix-like controls can also be done by two on top of each other arranged heating layers according to FIG. 3 causes become.
  • a carrier 20 were successively Insulating layer 21, a meandering heating conductor 22, a Insulating layer 23, a meandering heating conductor 24, a Insulating layer 25, an electrically conductive layer 26 and an emitter layer with an emitter spot 27 is applied.
  • the heating conductors 22 and 24 are components of heating conductor strips, which consists of numerous arranged in a row similar heating conductors exist.
  • the heating conductor strips, which contain the heating conductors 22 and 24 run analogous to FIG. 2 perpendicular to each other.
  • the emitter surfaces 27 are only emissable if the heating conductors of both Heating conductor strips are energized.
  • the required heating power can be reduced that with additional stand-by heating preheating is provided at about 400 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Solid Thermionic Cathode (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Claims (13)

  1. Emetteur d'électrons thermoïonique réglable pour des tubes électroniques à vide avec une couche d'émetteur émettrice (3, 15, 27) et avec au moins une couche de commande (5) séparée de la couche d'émetteur (3, 15, 27) par une couche isolante (4), la couche isolante (4) et la ou les couches de commande (5) étant fabriquées par un procédé de dépôt, tous les éléments fonctionnels comme la ou les couches de commande (5, 7, 22, 24), la couche émettrice (3, 15, 27) ainsi que les couches isolantes de séparation (2, 4, 6, 21, 23, 25) étant déposées par ordre croissant successivement et l'une après l'autre sur un substrat (1, 20) de telle sorte que les couches adhèrent par l'intermédiaire de couches limites solides,
       caractérisé en ce que la couche émettrice (3, 15, 27) est répartie en plusieurs zones (3a, 3b, 3c) excitables électriquement séparément et que la couche d'émetteur (3, 15, 27) est formée de particules d'un ordre de grandeur de 1 à 100 nm qui sont produites par ablation au laser.
  2. Emetteur d'électrons selon la revendication 1,
       caractérisé en ce qu'au moins deux couches de commande (5, 7, 22, 24) sont prévues.
  3. Emetteur d'électrons selon l'une des revendications 1 ou 2,
       caractérisé en ce qu'une couche de commande est une couche de grille susceptible de conduire électriquement une tension électrique (7, 10, 11, 12, 13, 16).
  4. Emetteur d'électrons selon l'une des revendications 1 à 3,
       caractérisé en ce que deux couches chauffantes excitables séparément (22, 24) sont prévues.
  5. Emetteur d'électrons selon l'une des revendications 1 à 4,
       caractérisé en ce que la ou les couches de commande sont subdivisées en zones (15, 16) excitables électriquement séparément.
  6. Emetteur d'électrons selon l'une des revendications 1 à 5,
       caractérisé en ce que le substrat est un élément chauffant (1) éventuellement doté d'une couche isolante (2).
  7. Procédé de fabrication d'un émetteur d'électrons selon l'une des revendications 1 à 6,
       caractérisé en ce que la couche d'émetteur (3, 15) est dotée avant le dépôt d'autres couches d'une couche de protection (8) qui recouvre au moins les zones émettrices (3a, 3b, 3c, 18) de la couche émettrice et qui est enlevée après l'application de toutes les couches.
  8. Procédé selon la revendication 7,
       caractérisé en ce que la couche de protection est un écran recouvrant les zones émettrices de la couche émettrice.
  9. Procédé selon la revendication 7,
       caractérisé en ce que la couche de protection (8) est une couche déposée sur toute la surface de la couche d'émetteur déposée qui est enlevée après le dépôt de toutes les couches dans les zones qui doivent servir de zones émettrices.
  10. Procédé selon la revendication 9,
       caractérisé en ce que la couche de protection (8) déposée sur toute la surface est une couche métallique, en particulier une couche de tungstène.
  11. Procédé selon l'une des revendications 9 ou 10,
       caractérisé en ce que les zones à enlever de la couche de protection (8) sont à enlever par un procédé de gravure chimique, en particulier par corrosion ionique.
  12. Procédé selon l'une des revendications 9 ou 10,
       caractérisé en ce que la couche de protection (8) déposée sur toute la surface se compose d'une épaisseur excédentaire de la couche émettrice (3).
  13. Procédé selon l'une des revendications 7 à 12,
       caractérisé en ce que la ou les couches isolantes et/ou la couche de protection et/ou la ou les couches de commande sont appliquées par un procédé CVD.
EP95200013A 1994-01-08 1995-01-05 Emetteur d'électrons thermo-ionique réglable Expired - Lifetime EP0662703B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4400353A DE4400353A1 (de) 1994-01-08 1994-01-08 Steuerbarer thermionischer Elektronenemitter
DE4400353 1994-01-08

Publications (2)

Publication Number Publication Date
EP0662703A1 EP0662703A1 (fr) 1995-07-12
EP0662703B1 true EP0662703B1 (fr) 1999-04-07

Family

ID=6507586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95200013A Expired - Lifetime EP0662703B1 (fr) 1994-01-08 1995-01-05 Emetteur d'électrons thermo-ionique réglable

Country Status (4)

Country Link
US (1) US5735720A (fr)
EP (1) EP0662703B1 (fr)
JP (1) JPH07220616A (fr)
DE (2) DE4400353A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69622829T2 (de) * 1995-12-18 2003-04-10 Canon Kk Ladegerät und elektrofotografisches Gerät
DE19647646A1 (de) * 1996-11-18 1998-05-28 Com Case Schadt Ohg Transportable Datenverarbeitungseinrichtung
US6495865B2 (en) * 2001-02-01 2002-12-17 Honeywell International Inc. Microcathode with integrated extractor
US6526975B1 (en) 2001-11-01 2003-03-04 Geal Hyub Chung Disposable gas mask
US6967326B2 (en) * 2004-02-27 2005-11-22 Lucent Technologies Inc. Mass spectrometers on wafer-substrates
US20060240281A1 (en) * 2005-04-21 2006-10-26 Eastman Kodak Company Contaminant-scavenging layer on OLED anodes
DE102006024437B4 (de) * 2006-05-24 2012-08-09 Siemens Ag Röntgenstrahler
KR101368733B1 (ko) * 2007-12-20 2014-03-04 삼성전자주식회사 마이크로 히터를 이용한 열전자방출 장치 및 이의 제조방법
CN101471215B (zh) * 2007-12-29 2011-11-09 清华大学 热电子源的制备方法
CN103703162B (zh) * 2011-08-03 2016-09-07 皇家飞利浦有限公司 用于钡-钪酸盐扩散阴极的靶
WO2015000095A1 (fr) 2013-07-05 2015-01-08 Industrial Technology Research Institute Écran souple et son procédé de fabrication
US11948769B2 (en) * 2022-01-12 2024-04-02 Applied Physics Technologies, Inc. Monolithic heater for thermionic electron cathode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096406A (en) * 1976-05-10 1978-06-20 Varian Associates, Inc. Thermionic electron source with bonded control grid
DE4207220A1 (de) * 1992-03-07 1993-09-09 Philips Patentverwaltung Festkoerperelement fuer eine thermionische kathode

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2883576A (en) * 1955-04-04 1959-04-21 Gen Electric Thermionic valves
US3710161A (en) * 1970-10-30 1973-01-09 Gen Electric Quick-heating impregnated planar cathode
US3843902A (en) * 1972-08-24 1974-10-22 Varian Associates Gridded convergent flow electron gun
US3967150A (en) * 1975-01-31 1976-06-29 Varian Associates Grid controlled electron source and method of making same
US4237209A (en) * 1979-05-09 1980-12-02 The United States Of America As Represented By The Secretary Of The Army Erosion lithography with high-aspect nozzle
US4250428A (en) * 1979-05-09 1981-02-10 The United States Of America As Represented By The Secretary Of The Army Bonded cathode and electrode structure with layered insulation, and method of manufacture
DE4113085A1 (de) * 1991-04-22 1992-10-29 Philips Patentverwaltung Verfahren zur herstellung eines gluehkathodenelements
DE4206909A1 (de) * 1992-03-05 1993-09-09 Philips Patentverwaltung Thermionisch emittierendes kathodenelement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096406A (en) * 1976-05-10 1978-06-20 Varian Associates, Inc. Thermionic electron source with bonded control grid
DE4207220A1 (de) * 1992-03-07 1993-09-09 Philips Patentverwaltung Festkoerperelement fuer eine thermionische kathode

Also Published As

Publication number Publication date
JPH07220616A (ja) 1995-08-18
DE4400353A1 (de) 1995-07-13
US5735720A (en) 1998-04-07
EP0662703A1 (fr) 1995-07-12
DE59505543D1 (de) 1999-05-12

Similar Documents

Publication Publication Date Title
DE69430568T3 (de) Flacher bildschirm mit innerer tragstruktur
DE69334065T2 (de) SELBSTTRAGENDE FLäCHE ANZEIGEVORRICHTUNG
DE69838985T2 (de) Gemusterte widerstand für eine elektronenemittierende vorrichtung und herstellungsverfahren dafür
DE4132151C2 (de) Bildanzeigegerät
DE2413942C3 (de) Verfahren zur Herstellung von Dunnfilm-Feldemissions-Elektronenquellen
DE69633054T2 (de) Abstandshalterstruktur für eine flache anzeigevorrichtung und herstellungsverfahren dafür
DE69835013T2 (de) Herstellung einer elektronenemittierenden vorrichtung mit leiterähnlicher emitterelektrode
DE69333555T2 (de) Flache Feldemissionskathode anwendende flache Anzeigevorrichtung mit Triodenstruktur
EP0662703B1 (fr) Emetteur d'électrons thermo-ionique réglable
DE69814664T2 (de) Feldemissionsvorrichtungen
DE2539234A1 (de) Feldemissionsgeraet und verfahren zu seiner herstellung
DE1957247C3 (de) Bildröhre
DE2536363B2 (de) Dünnschicht-Feldelektronenemissionsquelle und Verfahren zu ihrer Herstellung
DE69730195T2 (de) Bilderzeugungsgerät
EP0048839A1 (fr) Ecran de visualisation plat, procédés pour sa fabrication et son utilisation
DE3106368A1 (de) Plasma-anzeige
EP0012920B1 (fr) Ecran luminescent pour tubes indicateurs d'image et procédé pour sa fabrication
DE19621570A1 (de) Feldemissions-Elektronenquelle und Verfahren zu deren Herstellung
DE69936098T2 (de) Struktur und herstellungsverfahren einer flachanzeigevorrichtung mit einem abstandhalter mit einer in längsrichtung segmentierten wandelektrode
EP0031921A1 (fr) Dispositif d'affichage à décharge à gaz comportant au moins un cadre d'écartement limitant l'espace de post-accélération
DE2653812A1 (de) Flache bildwiedergaberoehre
DE2243716A1 (de) Einstrahl-farbfernsehwiedergaberoehre
EP0010222B1 (fr) Plaque de commande pour un écran plat à plasma de reproduction d'image
EP0013365A1 (fr) Pièce d'écartement dans un dispositif d'affichage à décharge à gaz
DE69836561T2 (de) Schutz von elektronenemittierenden elementen vor der entfernung von überflüssigen emittierenden material, während der herstellung einer elektronen-emissionsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19960112

17Q First examination report despatched

Effective date: 19961126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59505543

Country of ref document: DE

Date of ref document: 19990512

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990504

ET Fr: translation filed
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20020923

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030317

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST