EP0657633B1 - Teilgeflutetes Verdampfungskühlsystem - Google Patents

Teilgeflutetes Verdampfungskühlsystem Download PDF

Info

Publication number
EP0657633B1
EP0657633B1 EP94117995A EP94117995A EP0657633B1 EP 0657633 B1 EP0657633 B1 EP 0657633B1 EP 94117995 A EP94117995 A EP 94117995A EP 94117995 A EP94117995 A EP 94117995A EP 0657633 B1 EP0657633 B1 EP 0657633B1
Authority
EP
European Patent Office
Prior art keywords
cooling system
reservoir
condenser
condensate
partially filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94117995A
Other languages
English (en)
French (fr)
Other versions
EP0657633A1 (de
Inventor
Reinhard Mader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0657633A1 publication Critical patent/EP0657633A1/de
Application granted granted Critical
Publication of EP0657633B1 publication Critical patent/EP0657633B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0231Header boxes having an expansion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P3/2271Closed cycles with separator and liquid return
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P2003/2214Condensers
    • F01P2003/2221Condensers of the horizontal type

Definitions

  • the invention relates to a partially flooded vapor cooling system according to the preamble of the first claim.
  • Such a system is known for example from DE-A 40 01 208.
  • the reservoir is located below the condenser. This stipulates a minimum height that cannot always be ensured with today's vehicles.
  • the object of the present invention is to remedy this and to propose an arrangement and configuration for a storage container for liquid condensate in a generic cooling system which is simple in construction and has the least possible outlay for filling and checking the fill level.
  • this object is achieved by the characterizing features of claim 1.
  • this creates a cooling system in the area of the condenser, which is identical to the conventional cooling cooling systems and can therefore be filled. This also reduces the overall height to today's usual dimensions, so that installation problems are minimized.
  • the length of the ventilation line determines the filling level when the internal combustion engine is cold. As a result, the system can be very easily adapted to different cooling system sizes by simply shortening or lengthening the ventilation line.
  • Claim 2 prevents in particular that excessive steam entry into the expansion tank occurs when the condenser is fully charged with steam.
  • FIG. 1 shows an internal combustion engine 1 with an evaporative cooling system. It consists of the cold rooms 2 in the crankcase 3 and the cold rooms 4 in the Lindenkopf 5.
  • a flow line 6 leads from the cylinder head 5 to a steam separator 7.
  • the steam separator 7 is connected to the inlet connection 8 of a cross-flow condenser 9. Accordingly, the condenser 9 has a lateral inlet collecting box 10 and an outlet collecting box 11.
  • a connecting line 12 connects the two header boxes 10 and 11 at their lower end and leads via a return line 13 to a condensate feed pump 14. Before the condensate feed pump 14, the condensate line 15, which branches off from the steam separator 7, opens into the return line 13.
  • the condensate feed pump 14 conveys the liquid condensate via the line 16 into the lower part of the cold rooms 2 in the crankcase 3.
  • the reservoir 17 is arranged in one piece with it. At its lower end there is a passage opening 18 which connects the storage container 17 to the condensate collection box 11.
  • a ventilation line 21 branches off from the storage container 17 via a throttle point 20 and runs in the condensate collection box 11 to level I.
  • the beginning of the ventilation line 21 in area 19 lies at a level II, which below the lower edge of the inlet connector 8 runs into the condenser 9.
  • the storage container 17 has a closure lid 22, which serves to fill the liquid condensate into the storage container. Furthermore, a connecting line 23 branches off from the storage container 17 to the surroundings. So that no dirt from the environment enters this connecting line 23, it has an appropriately designed opening and / or a molecular sieve at its free end. Furthermore, the free end of the connecting line 23 is arranged so that it can be cooled by the wind. This ensures that almost no coolant can escape even in the vapor state.
  • FIG 2 the system of Figure 1 is shown after an initial filling with the coolant pump stopped.
  • the closure cover 22 is opened and condensate is filled in until the condensate in the storage container 17 is above level II.
  • the ventilation line 21 is then completely filled and the condenser 9 with its collecting boxes 10 and 11 is partially filled with condensate.
  • the collecting line 12 and the condensate return line 13 are completely filled with condensate.
  • the condensate in lines 15 and 16 is at the same filling level as the condenser 9.
  • the filling level in line 16 results from the fact that the condensate feed pump 14 does not completely block in the rest position, but rather only represents an increased flow resistance.
  • the arrangement according to FIG. 3 arises when the one filled according to FIG. 2 and through the closure cover 22 closed system, the coolant delivery pump 14 is switched on.
  • the condensate is pumped into the cold rooms 2 and 4 and into the flow line 6 to the steam separator 7. From the steam separator 7, it runs through the line 15 to the condensate return line 13 and thus to the suction side of the condensate feed pump 14. This process displaces the air in the previously unfilled spaces and can escape via the ventilation line 21 and the connecting line 23. As a result, the condensate level in the storage container 17 simultaneously drops to level I, which corresponds to the cold filling level when the internal combustion engine is stopped.
  • liquid condensate i.e. coolant
  • the state in FIG. 4 arises in the cooling system according to FIG. 2 when the internal combustion engine has been started and is operating in the part-load range, that is to say releases heat to the liquid condensate, so that first vapor bubbles can form in the cooling rooms 2 and 4.
  • the running condensate feed pump ensures that the cooling chambers of the internal combustion engine are constantly supplied with liquid condensate. Excess condensate and steam which forms are mixed with liquid condensate are conveyed via the feed line 6 to the steam separator 7, where the steam separates from the liquid coolant. The steam then passes into the inlet port 8 of the condenser 9, where it can condense.
  • the condensate level in the condenser and its collecting tanks drops, so that the ventilation line 21 at its lower end no longer immersed in the condensate.
  • the air displaced by the steam can escape from the condenser into the storage container 17 and from there via the connecting line 23 to the outside. Due to the increasing pressure in the system, the condensate level in the storage container 17 increases slightly above the filling level I.
  • Decreasing engine load also means decreasing vapor bubble formation and increase in the liquid condensate. This also lowers the pressure in the cooling system, so that ambient air can be supplied via the connecting line 23, the reservoir 17, the throttle 20 and the ventilation line 21. This prevents negative pressure in the system. With this load condition, the condensate level in the storage tank drops below fill level I.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung bezieht sich auf ein teilgeflutetes dampfungskühlsystem nach dem Oberbegriff des 1. spruchs.
  • Ein derartiges System ist beispielsweise aus der DE-A 40 01 208 bekannt. Hier ist der Vorratsbehälter unterhalb des Kondensators angeordnet. Dadurch ist eine Mindestbauhöhe vorgegeben, die nicht immer bei heutigen Fahrzeugen sichergestellt werden kann.
  • Aufgabe der vorliegenden Erfindung ist es, hier Abhilfe zu schaffen und eine Anordnung und Ausgestaltung für einen Vorratsbehälter für flüssiges Kondensat bei einem gattungsgemäßen Kühlsystem vorzuschlagen, das einfach im Aufbau ist und einen möglichst geringen Aufwand für die Befüllung und die Kontrolle des Füllstandes aufweist.
  • Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des 1. Anspruchs gelöst. Damit wird vom Aufbau her im Bereich des Kondensators ein Kühlsystem geschaffen, das identisch ist mit den heute üblichen vektionskühlsystemen und so auch befüllt werden kann. Dadurch wird auch die Bauhöhe auf heute übliche Maße reduziert, so daß Einbauprobleme minimiert werden. Die Länge der Be-/Entlüftungsleitung bestimmt hierbei die Befüllhöhe bei kalter Brennkraftmaschine. Dadurch kann das System sehr einfach an unterschiedliche Kühlsystemgrößen angepaßt werden, in dem einzig und allein die Be-/Entlüftungsleitung verkürzt oder verlängert wird. Ein weiterer Vorteil der erfindungsgemäßen Lösung ist darin zu sehen, daß durch die seitliche Anordnung des Vorratsbehälters und seine Anbindung an den Kondensatsammelkasten des Kondensators eine bestmögliche Funktionssicherheit auch bei extremen Fahr- und Fahrzeugzuständen gegeben ist, da immer sichergestellt ist, daß der Kondensatpumpe ausreichend flüssiges Kondensat auf ihrer Saugseite zur Verfügung steht.
  • Die Unteransprüche beschreiben vorteilhafte Weiterbildungen der Erfindung.
  • Durch Anspruch 2 wird insbesondere verhindert, daß ein übermäßiger Dampfeintritt in den Ausgleichsbehälter bei voll beaufschlagtem Kondensator mit Dampf geschieht.
  • Im folgenden wird die Erfindung anhand eines ausgewählten Beispiels näher erläutert. Es stellen dar:
  • Figur 1
    einen schematisierten Querschnitt durch ein teilgeflutetes Verdampfungskühlsystem nach der Erfindung;
    Figur 2
    das System nach Figur 1 bei der Erstbefüllung;
    Figur 3 bis 6
    das System gemäß Figur 1 bei verschiedenen Belastungszuständen.
  • In Figur 1 ist eine Brennkraftmaschine 1 mit dampfungskühlsystem dargestellt. Es besteht aus den Kühlräumen 2 im Kurbelgehäuse 3 sowie den Kühlräumen 4 im linderkopf 5.
  • Vom Zylinderkopf 5 führt eine Vorlaufleitung 6 zu einem Dampfabscheider 7.
  • Der Dampfabscheider 7 ist mit dem Eintrittsstutzen 8 eines Querstromkondensators 9 verbunden. Dementsprechend weist der Kondensator 9 einen seitlichen Einlaufsammelkasten 10 und einen Auslaufsammelkasten 11 auf.
  • Eine Verbindungsleitung 12 verbindet die beiden Sammelkästen 10 und 11 an ihrem unteren Ende und führt über eine Rücklaufleitung 13 zu einer Kondensatförderpumpe 14. Vor der Kondensatförderpumpe 14 mündet in die Rücklaufleitung 13 die Kondensatleitung 15, die vom Dampfabscheider 7 abzweigt.
  • Die Kondensatförderpumpe 14 fördert das flüssige Kondensat über die Leitung 16 in den unteren Teil der Kühlräume 2 im Kurbelgehäuse 3.
  • Seitlich neben dem Kondensatsammelkasten 11 ist in einstückiger Ausbildung mit ihm der Vorratsbehälter 17 angeordnet. An seinem unteren Ende ist eine Durchtrittsöffnung 18 angeordnet, die den Vorratsbehälter 17 mit dem Kondensatsammelkasten 11 verbindet.
  • Von seinem oberen Ende 19 zweigt über eine Drosselstelle 20 eine Be-/Entlüftungsleitung 21 aus dem Vorratsbehälter 17 ab und verläuft im Kondensatsammelkasten 11 bis auf das Niveau I. Der Beginn der Be-/Entlüftungsleitung 21 im Bereich 19 liegt auf einem Niveau II, welches unterhalb der Unterkante des Eintrittsstutzens 8 in den Kondensator 9 verläuft.
  • Der Vorratsbehälter 17 weist einen Verschlußdeckel 22 auf, der zum Einfüllen des flüssigen Kondensats in den Vorratsbehälter dient. Weiterhin zweigt von dem Vorratsbehälter 17 eine Verbindungsleitung 23 zur Umgebung hin ab. Damit kein Schmutz von der Umgebung in diese Verbindungsleitung 23 eintritt, weist sie an ihrem freien Ende eine entsprechend gestaltete Öffnung und/oder ein Molekularsieb auf. Weiterhin ist das freie Ende der Verbindungsleitung 23 so angeordnet, daß es vom Fahrtwind gekühlt werden kann. Dadurch wird sichergestellt, daß nahezu kein Kühlmittel auch im dampfförmigen Zustand entweichen kann.
  • In Figur 2 ist das System nach Figur 1 nach einer Erstbefüllung bei stehender Kühlmittelpumpe dargestellt. Zur Erstbefüllung wird der Verschlußdeckel 22 geöffnet und solange Kondensat eingefüllt, bis im Vorratsbehälter 17 das Kondensat über das Niveau II steht. Hierbei ist dann die Be-/Entlüftungsleitung 21 vollständig sowie der Kondensator 9 mit seinen Sammelkästen 10 und 11 teilweise mit Kondensat gefüllt. Weiterhin sind vollständig mit Kondensat gefüllt die Sammelleitung 12 und die Kondensatrücklaufleitung 13.
  • Auf gleichem Füllniveau wie der Kondensator 9 steht das Kondensat in den Leitungen 15 und 16. Die Füllhöhe in Leitung 16 ergibt sich dadurch, daß die Kondensatförderpumpe 14 nicht vollständig in Ruhestellung sperrt, sondern nur einen erhöhten Durchflußwiderstand darstellt.
  • Die Anordnung nach Figur 3 stellt sich dann ein, wenn bei dem gemäß Figur 2 befüllten und durch den Verschlußdeckel 22 verschlossenen System die Kühlmittelförderpumpe 14 eingeschaltet wird.
  • Hierdurch wird das Kondensat in die Kühlräume 2 und 4 sowie in die Vorlaufleitung 6 bis zum Dampfabscheider 7 gepumpt. Vom Dampfabscheider 7 läuft es durch die Leitung 15 zur Kondensatrücklaufleitung 13 und damit zur Saugseite der Kondensatförderpumpe 14. Durch diesen Vorgang wird die Luft in den vorher ungefüllten Räumen verdrängt und kann über die Be-/Entlüftungsleitung 21 und die Verbindungsleitung 23 entweichen. Dadurch sinkt gleichzeitig der Kondensatstand in dem Vorratsbehälter 17 auf das Niveau I, welches dem Kaltbefüllungsstand bei stehender Brennkraftmaschine entspricht.
  • Wird bei einer Kontrolle des Füllniveaus und stehender Brennkraftmaschine dieses Niveau unterschritten, so muß die Bedienungsperson flüssiges Kondensat, sprich Kühlmittel, nachfüllen.
  • Der Zustand in Figur 4 stellt sich in dem Kühlsystem nach Figur 2 dann ein, wenn die Brennkraftmaschine gestartet worden ist und im Teillastbereich arbeitet, d.h. Wärme an das flüssige Kondensat abgibt, so daß sich erste Dampfblasen in den Kühlräumen 2 und 4 bilden können. Durch die laufende Kondensatförderpumpe wird sichergestellt, daß die Kühlräume der Brennkraftmaschine ständig mit flüssigem Kondensat versorgt werden. Überschüssiges Kondensat sowie sich bildender Dampf mit flüssigem Kondensat vermischt werden über die Vorlaufleitung 6 zum Dampfabscheider 7 gefördert, wo sich der Dampf vom flüssigen Kühlmittel trennt. Der Dampf gelangt dann in den Einlaßstutzen 8 des Kondensators 9, wo er kondensieren kann. Durch die Dampfbildung sinkt der Kondensatstand im Kondensator und seinen Sammelkästen, so daß die Be-/Entlüftungsleitung 21 an ihrem unteren Ende nicht mehr ins Kondensat eintaucht. Dadurch kann die durch den Dampf verdrängte Luft aus dem Kondensator in den Vorratsbehälter 17 entweichen und von dort weiter über die Verbindungsleitung 23 ins Freie. Durch den ansteigenden Druck im System erhöht sich der Kondensatstand im Vorratsbehälter 17 leicht über das Befüllniveau I.
  • Bei Vollast ergibt sich der in Figur 5 dargestellte Zustand. Er unterscheidet sich durch den Lastzustand nach Figur 4 dadurch, daß nunmehr praktisch der gesamte Kondensator 9 von Dampf gefüllt ist. Dadurch sinkt der Kondensatstand im Kondensator 9 weiter, während er sich im Vorratsbehälter 17 weiter erhöht. Aufgrund der Drosselstelle 20 entweicht keiner oder nur wenig Dampf durch die Be-/Entlüftungsleitung 21 in den Vorratsbehälter 17 und weiter in die Verbindungsleitung 23. Aufgrund der Lage ihres Endes im Fahrtwind kondensiert er dort und kann bei abnehmender Motorlast wieder zurückgesaugt werden in den Vorratsbehälter 17.
  • Der Zustand der abnehmenden Last ist in Bild 6 dargestellt. Abnehmende Motorlast bedeutet auch abnehmende Dampfblasenbildung und Zunahme des flüssigen Kondensats Dadurch sinkt auch der Druck im Kühlsystem, so daß über die Verbindungsleitung 23, den Vorratsbehälter 17, die Drossel 20 und die Be-/Entlüftungsleitung 21 Umgebungsluft nachgeführt werden kann. Somit wird Unterdruck im System verhindert. Bei diesem Lastzustand sinkt der Kondensatstand im Vorratsbehälter unter das Befüllniveau I.

Claims (7)

  1. Teilgeflutetes Verdampfungskühlsystem für Brennkraftmaschinen mit einem Kondensator und einem Vorratsbehälter für flüssiges Kondensat, der über eine Verbindungsleitung mit der Umgebung in Verbindung steht,
    dadurch gekennzeichnet, daß der Vorratsbehälter (17) seitlich am Kondensator (9) angeordnet und integraler Bestandteil des Kondensators (9) ist, daß der Vorratsbehälter (17) bis auf den Grund des benachbarten Kondensatsammelkastens (11) reicht, daß in diesem Bereich eine Strömungsverbindung (18) zwischen dem Vorratsbehälter (17) und dem Kondensatsammelkasten (11) vorgesehen ist und daß vom oberen Bereich des Vorratsbehälters (17) eine Be-/Entlüftungsleitung (21) in den benachbarten densatsammelkasten (11) bis auf das Befüllniveau I bei kalter Brennkraftmaschine (1) verläuft.
  2. Teilgeflutetes Verdampfungskühlsystem nach Anspruch 1,
    dadurch gekennzeichnet, daß am Beginn der Be-/Entlüftungsleitung (21) im Vorratsbehälter (17) eine Drosselstelle (20) vorgesehen ist.
  3. Teilgeflutetes Verdampfungskühlsystem nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß der Vorratsbehälter (17) von einem Verschlußdeckel (22) mit Überdruckventil verschlossen ist.
  4. Teilgeflutetes Verdampfungskühlsystem nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß der Kondensator (9) als Querstromkondensator ausgebildet ist.
  5. Teilgeflutetes Verdampfungskühlsystem nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß der Vorratsbehälter (17) zumindest teilweise durchsichtige Außenwände aufweist.
  6. Teilgeflutetes Verdampfungskühlsystem nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß der Beginn der Be-/Entlüftungsleitung (21) unterhalb des Eintrittsstutzens (8) des Dampfes in dem Kondensator (9) liegt.
  7. Teilgeflutetes Verdampfungskühlsystem nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß ein Niveauschalter am Grund des Vorratsbehälters eingebaut ist.
EP94117995A 1993-12-09 1994-11-15 Teilgeflutetes Verdampfungskühlsystem Expired - Lifetime EP0657633B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4341927A DE4341927A1 (de) 1993-12-09 1993-12-09 Teilgeflutetes Verdampfungskühlsystem
DE4341927 1993-12-09

Publications (2)

Publication Number Publication Date
EP0657633A1 EP0657633A1 (de) 1995-06-14
EP0657633B1 true EP0657633B1 (de) 1997-08-13

Family

ID=6504526

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94117995A Expired - Lifetime EP0657633B1 (de) 1993-12-09 1994-11-15 Teilgeflutetes Verdampfungskühlsystem

Country Status (2)

Country Link
EP (1) EP0657633B1 (de)
DE (2) DE4341927A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119993A1 (de) 2008-05-14 2009-11-18 ABB Research Ltd. Zweiphasiger Kühlkreislauf
DE102008033024B4 (de) 2008-07-14 2010-06-10 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Entlüftung eines Kühlmittelkreislaufes einer Brennkraftmaschine und Kühlmittelkreislauf für eine Brennkraftmaschine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2033960A1 (de) * 1970-07-08 1972-01-20 Teledyne Industries, Ine , Los Ange les,Cahf (VStA) Mehrstufiges geschichtetes Dampfkuhl system mit geschlossenem Kreislauf fur Brennkraftmaschinen
FR2532740B1 (fr) * 1982-09-03 1988-02-05 Valeo Echangeur de chaleur, en particulier pour circuit de refroidissement d'un moteur diesel
DE3444273C1 (de) * 1984-12-05 1985-11-28 Bayerische Motoren Werke AG, 8000 München Aus Kunststoff hergestellter Wasserkasten fuer einen Querstrom-Kuehler fuer Brennkraftmaschinen
DE4001208A1 (de) * 1990-01-17 1991-07-18 Bayerische Motoren Werke Ag Verdampfungskuehlsystem fuer eine fluessigkeitsgekuehlte brennkraftmaschine
DE4102853A1 (de) * 1991-01-31 1992-08-06 Freudenberg Carl Fa Verdampfungsgekuehlte verbrennungskraftmaschine
FR2674289B1 (fr) * 1991-03-20 1995-02-17 Valeo Thermique Moteur Sa Dispositif de refroidissement en mode diphasique pour moteur a combustion interne.
DE4122551A1 (de) * 1991-07-08 1993-01-14 Bayerische Motoren Werke Ag Entlueftungsvorrichtung fuer verdampfungskuehlsysteme
FR2691504B1 (fr) * 1992-05-19 1994-07-08 Valeo Thermique Moteur Sa Dispositif de refroidissement d'un moteur thermique comprenant un condenseur.
DE4222913C2 (de) * 1992-07-11 1996-02-01 Bayerische Motoren Werke Ag Verdampfungskühlsystem für eine Brennkraftmaschine
DE4231846C2 (de) * 1992-09-23 1995-04-13 Bayerische Motoren Werke Ag Verdampfungskühlsystem für eine Brennkraftmaschine

Also Published As

Publication number Publication date
DE4341927A1 (de) 1995-06-14
EP0657633A1 (de) 1995-06-14
DE59403722D1 (de) 1997-09-18

Similar Documents

Publication Publication Date Title
WO2002038409A1 (de) Kraftstofftank
DE102008060088B4 (de) Ausgleichsbehälter für eine Kühlanlage
DE3339717C2 (de)
DE4037803A1 (de) Schmier- und/oder kuehloelversorgung fuer eine maschine, insbesondere eine brennkraftmaschine
CH642429A5 (de) Hydraulische vorrichtung zum betaetigen von gaswechselventilen.
DE102005035731A1 (de) Brennkraftmaschine und Schmiersystem dafür
DE3533094A1 (de) Ausgleichsbehaelter fuer kuehlfluessigkeit
DE3532349C2 (de)
DE10310179B4 (de) Ölauffangvorrichtung für eine Brennkraftmaschine, insbesondere für einen Boxermotor
EP1164281B1 (de) Kraftstoff-Förder- und Lüftungssystem
DE102016116542B4 (de) Ansaugkrümmer für Fahrzeuge mit vereinigtem Gasstromkanal
DE102013221447A1 (de) Kühlsystem für ein Kraftfahrzeug
DE10238237A1 (de) Kammerentleerungseinrichtung
DE2044033A1 (de) Flussigkeitskuhler
EP0657633B1 (de) Teilgeflutetes Verdampfungskühlsystem
DE19925773B4 (de) Abgasturbolader mit einem Notöltank
EP0693617B1 (de) Querstromkühler mit Entlüftung
EP0979747A2 (de) Befülleinrichtung
DE2852725A1 (de) Ausgleichsbehaelter fuer kuehlfluessigkeit
EP0393654B1 (de) Kühlsystem
DE4224862C2 (de) Verdampfungskühlsystem für eine Brennkraftmaschine
DE10059369B4 (de) Ausgleichsbehälter
DE102020102882A1 (de) Brennkraftmaschine mit Schmiermittelversorgung
DE4342295A1 (de) Verdampfungskühlsystem für eine Brennkraftmaschine
DE102016106911A1 (de) Lageunabhängiges Ölversorgungssystem, lageunabhängiges Ölrückführungssystem und lageunabhängiges Ölsystem für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19950627

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961104

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970821

REF Corresponds to:

Ref document number: 59403722

Country of ref document: DE

Date of ref document: 19970918

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981109

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981110

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981130

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991115

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051115