EP0657554B1 - Verfahren zur Herstellung eines ringförmigenfaserverstärkten Metallkörpers - Google Patents

Verfahren zur Herstellung eines ringförmigenfaserverstärkten Metallkörpers Download PDF

Info

Publication number
EP0657554B1
EP0657554B1 EP94402806A EP94402806A EP0657554B1 EP 0657554 B1 EP0657554 B1 EP 0657554B1 EP 94402806 A EP94402806 A EP 94402806A EP 94402806 A EP94402806 A EP 94402806A EP 0657554 B1 EP0657554 B1 EP 0657554B1
Authority
EP
European Patent Office
Prior art keywords
fibre
preforms
accordance
metal
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94402806A
Other languages
English (en)
French (fr)
Other versions
EP0657554A1 (de
Inventor
Jean-Claude Berthelemy
Daniel Georges Girault
Gilles Jean-Michel Bessenay
Ludovic Edmond Camille Molliex
Gérard Philippe Gauthier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0657554A1 publication Critical patent/EP0657554A1/de
Application granted granted Critical
Publication of EP0657554B1 publication Critical patent/EP0657554B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F17/00Jacketing or reinforcing articles with wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/36Making machine elements wheels; discs with blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/761Making machine elements elements not mentioned in one of the preceding groups rings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • C22C47/064Winding wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • C22C47/068Aligning wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/20Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/14Geometry two-dimensional elliptical
    • F05B2250/141Geometry two-dimensional elliptical circular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S72/00Metal deforming
    • Y10S72/70Deforming specified alloys or uncommon metal or bimetallic work

Definitions

  • the invention relates to a method comprising a forging. insulated and used to obtain circular parts internally reinforced with fibers on a or several selected parts of their section.
  • the invention also relates to obtaining reinforcing fiber preforms implemented in this process. These circular pieces as well obtained are used in particular as sketches for the realization of rotors with high resistance / mass ratio such turbomachine rotors used in aeronautics.
  • the turbomachine rotors have a general shape of revolution around an axis of rotation and they involve their periphery or laterally a plurality of blades making compressor or turbine office. These rotors rotate generally at high speed and are subject to significant requests coming mainly from the centrifugal force, but also machine vibrations and accidental ingestion of foreign bodies.
  • this patent proposes also to compress and weld the reinforcement article directly in the part to to reinforce.
  • the preforms are each consisting of a single fiber wound in a flat spiral. This process allows remarkable regularity the radius of curvature of the fiber, for better ring resistance.
  • Fiber can be held in position before pressing by bands or radiating wires passing alternately below and above the fibers to be maintained, in the manner threads of a fabric.
  • This delicate solution to implement work also has the disadvantage of waving the fibers and thereby reduce their ability to withstand a tensile force.
  • patent EP 0 490 629 proposes to engrave a spiral groove in strip in matrix material, depositing the fiber in the groove and to keep this fiber in position by spraying a binder organic or by plasma projection of metal from the matrix, this which constitutes a preform containing both fiber and of the matrix metal.
  • This solution no longer presents as previously the disadvantage of waving the fibers, but it is costly and difficult to implement, because the grooves into which the fiber is to be introduced have that a very small width, ring is then made by hot compression, with temperature and pressure sufficient for the metal to penetrate between the fibers and get soda around them. If an organic binder is used it is destroyed by pyrolysis during the temperature rise, this binder being chosen to leave a minimum of residue carbonaceous after pyrolysis.
  • the rings can also be hooped on the rotors. This solution ensures excellent cohesion between the ring and the rotor, but has the disadvantage of putting the ring in tensile preload, which reduces its ability to hold the rotor.
  • the rotor geometry must be arranged to receive the ring.
  • the reinforcement rings can also be slid over the periphery of the rotors or inserted into machined grooves in these rotors, then brazed or welded by a means any rotor.
  • This solution ensures excellent cohesion of the reinforcement ring with the rest of the rotor, but has the disadvantage of imposing two cycles on the fibers thermal, which increases their degradation.
  • the silicon carbide SiC often used to make reinforcing fibers can react at high temperatures with the matrix metal. To reduce this phenomenon, fibers can be covered with a layer of carbon, but this diffuse layer itself in the metal of the matrix and in changes the metallurgical structure. The reaction of matter fiber with the matrix is therefore only delayed.
  • the grooves are closed by a cover coming into contact with the preforms and protruding from these grooves. Isothermal forging being carried out in the axial direction, this cover makes it possible to start forging isothermal by compression of the preforms.
  • This cover will preferably in a material having a temperature of isothermal forging close to or slightly higher than that of the material of the part, said material also being weldable to said material of the part.
  • Isothermal forging in an axial direction is combined with isothermal radial forging in order to obtain a practically isostatic compression, that is to say homogeneous in all directions, said isostatic compression improving the homogeneity of the welding of the fibrous area with the rest of the part.
  • Forging radial is obtained by centrifugal pressure from inside the room.
  • the preforms comprise both fiber and filler metal, this filler metal having an isothermal forging temperature close to or slightly lower than that of the metal of the part and being weldable with the metal of the part.
  • This spaces left between preforms and the walls of the grooves will advantageously filled with powdered filler metal.
  • the preforms will advantageously be a stack of slices of fibers wound in single-layer spirals and matrix metal strips.
  • the forging die isotherm is annular with an L-shaped section of which the opening faces outward.
  • This matrix is surrounded by a belt made of a material with low coefficient of thermal expansion and an expansion mandrel is arranged in its central part.
  • An annular piston enters between the vertical wall of the L-shaped matrix and the belt, to allow the forging of the part.
  • the hardening of the coating is just enough to avoid its crushing during winding. So the turns joined against each other during winding under the effect of fiber tension, which ensures cohesion of the preform after it leaves the winding mandrel.
  • Fiber preforms can be economically produced using a device including a coil fiber feed, a binder solution tank, a device for drying the coated fiber such as a heated tube by an electrical resistance, as well as a mandrel comprising two flat and parallel flanges with equal hearing or slightly greater than the diameter of the coated fiber.
  • This process which is the subject of the present invention should not not be confused with the processes of obtaining rings of reinforcement such as that described in the patent FR 2 607 071 already cited.
  • This process which is the subject of the invention consists of including fibrous structures of reinforcement in rooms while reserving material to perform the functions of the part, and to compress then these fibrous structures inside the room during the forging of said part.
  • the process object of the present invention thus has the advantage of realizing in a single thermal cycle the compression of the preforms and the intimate bond, similar to welding, of the reinforced zone by the fibers with the rest of the material of the piece as well than isothermal and practically isostatic forging of this part.
  • the elimination of a thermal cycle protects the reinforcing fibers and allows more economical production of parts.
  • the process also offers great latitude in the choice of areas to be strengthened. We can indeed have these areas different parts of the room section, such as the center, periphery or flanks. We will distribute the material of the part according to the functions to be performed. For example, in the case of a turbomachine rotor with axial circulation of the fluid, we will provide material at the periphery to the machining of the blades and on the flanks for the machining of flanges for connection to the other stages of the machine, and also for example for machining sealing labyrinths or grooves for fixing balancing weights.
  • the process is also economical because it avoids a cycle thermal as well as the precise machining of the reinforcement ring and housing intended to receive it on the part.
  • the making the preforms is also particularly simple.
  • the blank 3 is placed on its side 5 in a machine 31 itself arranged on the lower plate 32 of a press hydraulic.
  • a piston 33 enters the matrix and transmits on the surface 18 of the plug 14 the pressure 34 exerted parallel to axis 2 by the upper plate of the press not shown in Figure 1.
  • the bottom 15 of the plug 14 presses under the effect of the pressure 34 the preforms 12, causing creep and agglomeration of the filler metal between the fibers.
  • the total height of the preforms 12 decreases and the plug 14 enters the groove until the surface 20 of the protrusion 19 comes into contact with the flank 4 of the blank 3.
  • the pressure 34 is exerted axially over the entire material of ring 1 which gradually takes shape imposed by the die 31 and the piston 33. In practice, the deformation of cover 14 begins before compression complete preforms 12.
  • the metal of the blank 3 Under the effect of the pressure 34, the metal of the blank 3, the filler metal powder introduced into spaces 13 and the filler metal preforms 12 finish filling completely the space between the fibers, come into contact mutual and weld together, thus achieving the compression of fibers and metal during forging isotherm of the ring.
  • a filler metal having near or slightly insulated forging temperatures lower than that of the blank metal, so that the solder and filler metal have more plasticity important which facilitates the penetration of metal between the fibers.
  • This filler metal must obviously be weldable with that of the room.
  • the metals of the part, preforms and powder may be the same, but it is not a necessity.
  • the metal of the plug 14 will preferably have a temperature of isothermal forging close to or above the temperature of forging the metal of the blank 3 and the filler metal of the preforms 12, so that it is a little less plastic than them to improve the pressing of the preforms 12 at the bottom of the groove 8, and in particular to start the compression of the preforms 12 before isothermal forging proper of ring 1.
  • the rough metals 3 and plug 14, as well as the filler metal of the preforms 12 and powder are identical, which improves the homogeneity and the resistance of the ring 1.
  • a radial pressure 36 combined with the pressure axial 34, in order to generate inside the room a isostatic pressure, i.e. uniform in all directions.
  • This isostatic pressure improves the welding of the metal of the blank 3 and of the plug 14 around the preforms 12 and reduces the amount of filler metal powder to be introduced into spaces 13, which improves the homogeneity of the ring 1.
  • the piston 33 is supported on the plug 14 by its surface 37.
  • This surface 37 has an extra thickness 38 having the same shape as depression 23 but the height of the allowance 38 is less than the depth of the depression 23.
  • This displacement of material gives the grains of metal an elongated shape called fiberizing which increases its resistance.
  • the isothermal forging device of the ring 1 includes a matrix 31 placed on the lower plate 32 a press, a piston 33 on which the upper plate not shown of the press exerts an axial pressure 34, said piston 33 entering said matrix 31, and means 35 exerting a centrifugal pressure 36 on the matrix 31.
  • the die 31 has a annular shape around axis 2 with an L-shaped section of which the opening faces upwards and outwards.
  • the horizontal branch 41 of the L is at the bottom and forms by its upper surface the bottom 42 of the matrix 31.
  • the vertical branch 43 of the L is turned towards the axis geometric 2 and constitutes the vertical wall 44 of the matrix 31.
  • the matrix 31 is delimited radially towards axis 2 by a concave cylindrical surface 45 centered on axis 2.
  • the means 35 for exerting centrifugal pressure 36 will advantageously be a radially expandable mandrel made of a material with a high coefficient of expansion thermal, the expansion being obtained by heating said mandrel 35.
  • the mandrel 35 is delimited radially towards outside by a cylindrical surface 46 and fits inside the cylindrical surface 45 of the wall vertical 44 with reduced clearance between surfaces 45 and 46.
  • the present device also includes a shaped belt 47 cylindrical centered on axis 2 and resting by one of its sides 48 on the lower plate 32 of the press.
  • the belt 47 has a cylindrical inner wall 49 and concave centered on the axis 2 which surrounds the matrix 31, which is found opposite the vertical wall 44 and which delimits radially outward the space in which is forged the ring 1.
  • the annular piston 33 is also inserted between the wall 44 of the matrix 31 and the wall 49 of the belt.
  • This belt 47 is made of a resistant material and with a low coefficient of thermal expansion by example in carbon fibers. This belt 47 prevents radial expansion of the blank 3 and the plug 14 during the isothermal forging, which improves the efficiency of the centrifugal pressure 36 while maintaining the fibers for prevent their constraint.
  • the rotor is made of TA6V titanium alloy and coated silicon carbide reinforcing fibers SiC of a carbon deposit. Isothermal forging takes place at 950 ° C under a pressure of 600 bars for 50 minutes.
  • Reinforcement fiber 60 is taken from a spool feed 61.
  • the fiber 60 plunges into a tank 62 containing a bath 63 of liquid organic binder, passes around a return pulley 64 immersed in solution 63 and emerges from this solution 63 coated with a certain amount binder solution.
  • the fiber 60 then passes through the drying hub 65, through example a heated tube with an electrical resistance, so to harden the coating of organic binder while it retaining sufficient ability to stick to fibers neighbors.
  • the fiber 66 thus coated then bypasses a pulley of reference 67 and is wound on the mandrel 68 to constitute the 12A fiber preform.
  • the thickness of the coating is determined by the viscosity and therefore the concentration and temperature of solution 63, while its degree of drying and therefore its hardness are determined by the intensity of the heating in the heating tube 65 and the duration of the passage of the fiber in this tube 65.
  • the mandrel 68 rotates around the geometric axis of rotation 69.
  • This mandrel 68 has two circular flanges 70 arranged on either side of a circular hub 71, thus that a not shown means of positioning and drive in rotation around the axis 69 of said flanges 70 and said hub 71.
  • the two flanges 70 each have a lateral face 72 flat and radial, said faces 72 being opposite one of the other to form an annular groove 73 open on the periphery 74 of the mandrel and delimited internally by the hub 71.
  • the faces 72 are connected to the periphery 74 of the mandrel 68 by a radius 75, so as not to risk tearing coating 76 of fibers 60.
  • the coated fiber 6 is wound in a spiral in the groove 73 to form the 12A fiber preform.
  • the space formed between the turns being equal to twice the thickness of the coating 76 of the fiber 60.
  • the spacing of the faces 72 is equal to or slightly greater than the diameter of the coated fibers 66, and the diameter of the hub 71 is equal to the inside diameter of the fiber preform 12A at achieve.
  • one of the flanges 70 is removable to allow the 12A preform to be removed as well wound, and the hub 71 has the shape of a truncated cone, the small diameter is turned on the side of the removable flange 70, to facilitate the removal of the preform 12A.
  • coating 76 The drying of coating 76 must be sufficient for this coating 76 can acquire a hardness allowing it to not not deform significantly during winding, but not too much, however. Therefore, the tension of the fiber 66 during winding on the mandrel 68 causes sticking adjacent turns of coated fiber 66 along the line of contact 77 between these turns. This bonding ensures the cohesion of the preform during its withdrawal from the mandrel, during its transport, and during its introduction into the groove annular 8 of the blank 3 of the rotor.
  • the faces 72 and the periphery of the hub 71 are made of a material hard and non-adhesive such as Teflon.
  • the concentration and the temperature of the organic binder bath 63, the heating of the coated fiber 66 and the tension of said coated fiber 66 can be determined by current experiments for those skilled in the art.
  • the binder bath 63 is a polymethyl methacrylate solution of general chemical formula (CH 2 C (CH 3 ) (CO 2 CH 3 ) -) n (commonly called PMMA) in acetone .
  • PMMA is pyrolyzable between 400 ° C and 600 ° C.
  • one step from one hour to 2 hours approximately is carried out around 500 ° to pyrolyze the binder and eliminate the gases resulting from this pyrolysis.
  • Stacking of 12A fiber preforms and washers 12B filler metal is quite compact. Therefore, and in order to facilitate the evacuation of gases produced by the pyrolysis of binder, we prefer to perforate the metal washers 12B input separating the 12A fiber preforms. In order not modify the respective proportions of fiber and metal, and also so as not to risk bringing the fibers into contact of two neighboring preforms 12A through the perforations of the washers 12B, these perforations will preferably be performed without removing material, for example using with a metal tip or a blade.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)

Claims (16)

  1. Verfahren zur Herstellung eines kreisrunden faserverstärkten Werkstücks aus Metall mit folgenden Arbeitsschritten:
    Herstellen eines Rohlings (3) des Werkstücks (1),
    Herstellen wenigstens einer Nut (8) in dem Rohling (3), wobei diese Nut (8) ringförmig und zumindest in axialer Richtung offen ist,
    Herstellen von Vorformen (12) aus Fasern und Auftragsmetall,
    Einbringen der Vorformen (12) aus Fasern und Auftragsmetall in die Nut (8),
    Verschließen der Nut (8) mit einem Deckel (14), der mit den Vorformen (12) in Kontakt kommt und aus der Nut (8) hervorsteht, wobei dieser Deckel (14) aus einem Metall hergestellt ist, dessen isothermische Schmiedetemperatur in der Nähe oder über derjenigen des Auftragsmetalls der Vorformen (12) liegt,
    Schmieden des Rohlings (3) in axialer Richtung, um gleichzeitig das Komprimieren der Vorform (12), das Verschweißen der komprimierten Vorformen (12) mit dem Rest des Werkstücks (1) und das Schmieden des Werkstücks (1) zu bewirken,
       dadurch gekennzeichnet,
    daß das Schmieden des Rohlings (3) ein isothermisches Schmieden in axialer Richtung ist, kombiniert mit einem radial zentrifugalen isothermisches Schmieden, um eine praktisch isostatische Komprimierung zu erzielen.
  2. Verfahren zur Herstellung eines kreisrunden faserverstärkten Werkstücks aus Metall nach Anspruch 1, dadurch gekennzeichnet, daß die zwischen den Vorformen (12) und der Nut (8) verbleibenden Zwischenräume (13) mit einem mit dem Metall des Werkstücks verschweißbaren Pulver ausgefüllt werden.
  3. Verfahren zur Herstellung eines kreisrunden faserverstärkten Werkstücks aus Metall nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Pulver und das Auftragsmetall der Vorformen (12) isothermische Schmiedetemperaturen haben, in der Nähe oder unter derjenigen des Metalls des Rohlings (3) liegen,
  4. Verfahren zur Herstellung eines kreisrunden faserverstärkten Werkstücks aus Metall nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß während des Arbeitsschritts des isothermischen Schmiedens ein Fließen von Metall des Ringes (1) in einer radialen Richtung auf wenigstens eine Flanke (18) des Werkstücks (1) herbeigeführt wird.
  5. Verfahren zur Herstellung eines kreisrunden faserverstarkten Werkstücks aus Metall nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Rohling (3) von einem Gürtelring (47) umschlossen ist, der einen niedrigen Wärmeausdehnungskoeffizienten hat.
  6. Verfahren zur Herstellung eines kreisrunden faserverstarkten Werkstücks aus Metall nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,
    daß Faservorformen (12A) hergestellt werden, die von den Vorformen (12B) aus Auftragsmetall getrennt sind, wobei die Faservorformen (12A) und die Vorformen (12B) aus Auftragsmetall jeweils die Form einer flachen Scheibe mit ausgespartem Zentrum haben,
    und daß die Faservorformen (12A) und Metallvorformen (12B) einander abwechselnd in der Nut (8) gestapelt werden, so daß jede Metallvorform (12B) zwei Faservorformen (12A) voneinander trennt.
  7. Verfahren zur Herstellung eines kreisrunden faserverstärkten Werkstücks aus Metall nach Anspruch 6, dadurch gekennzeichnet, daß die Metallvorformen (12B) ohne Materialverlust perforiert werden.
  8. Verfahren zur Herstellung eines kreisrunden faserverstarkten Werkstücks aus Metall nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Herstellung der Faservorformen (12A) in erster Linie folgende Arbeitsschritte umfaßt:
    Beschichten der Faser (60) mit einer Bindemittelschicht,
    Aufwickeln der so beschichteten Faser (66) auf einen Wickeldorn (68).
  9. Verfahren zur Herstellung eines kreisrunden faserverstarkten Werkstücks aus Metall nach Anspruch 8, dadurch gekennzeichnet, daß das Aufwickeln der beschichteten Faser (66) auf den Wickeldorn (68) in einer einzigen ebenen und radialen Lage erfolgt.
  10. Verfahren zur Herstellung eines Kreisrunden faserverstärkten Werkstücks aus Metall nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß das Beschichten der Faser (60) durch Eintauchen der Faser (60) in eine Losung eines organischen Bindemittels (63) durchgeführt wird, gefolgt von einem Trocknungsvorgang.
  11. Verfahren zur Herstellung eines kreisrunden faserverstärkten Werkstucks aus Metall nach Anspruch 10, dadurch gekennzeichnet, daß die Losung (63) aus in Azeton gelöstem Polymethylmetachrylat der chemischen Formel (CH2C(CH3)(CO2CH3)-n besteht.
  12. Vorrichtung zum isothermischen Schmieden für die Durchführung des Herstellverfahrens nach einem der Ansprüche 1 bis 11,
       gekennzeichnet durch
    eine ringförmige Matrize (31) mit einem L-förmigen Querschnitt, dessen horizontaler Schenkel den Boden (42) der Matrize (31) bildet und dessen vertikaler Schenkel (43) der geometrischen Achse (2) der Matrize (31) zugekehrt ist und deren vertikale Wandung (44) bildet,
    einen Gürtelring (47), der die Matrize (31) umschließt und aus einem Material mit niedrigem Wärmeausdehnungskoeffizienten hergestellt ist,
    einen ringförmigen Kolben (33), der zwischen die vertikale Wandung (44) der Matrize (31) und den Gürtelring (47) eindringt, um die vertikale Preßkraft (34) zu übertragen,
    ein in radialer Richtung ausdehnbares Futter (35), das im Innern der vertikalen Wandung (44) angeordnet ist und während des isothermischen Schmiedens den zentrifugalen Druck (36) auf die vertikale Wandung (44) ausübt.
  13. Vorrichtung zur Durchführung des Herstellverfahrens nach einem der Ansprüche 1 bis 11, gekennzeichnet durch eine Spule (61) für die Zuführung der Faser (60), eine Wanne (62), die ein Bad des Bindemittels (63) enthält, eine Trocknungsvorrichtung (65) und einen Wickeldorn (68) zum Aufwickeln der beschichteten Faser (66).
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der Wickeldorn (68) einen Kern (71) aufweist, der von zwei ebenen und zur geometrischen Rotationsachse (69) des Wickeldorns (68) radialen Flanschen (70) flankiert wird, wobei diese Flansche (70) einen Abstand voneinander haben, der gleich oder geringfügig größer ist als der Durchmesser der beschichteten Faser (66), und wobei wenigstens einer der Flansche (70) abnehmbar ist, um das Herausnehmen der gewonnenen Vorform (12A) zu ermöglichen.
  15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der Kern (71) des Wickeldorns (68) die Form eines Kegelstumpfes hat, dessen kleinerer Durchmesser auf der Seite des abnehmbaren Flansches (70) liegt, um das Herausnehmen der Vorform (12A) zu erleichtern.
  16. Vorrichtung nach einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, daß die Oberflächen (72) der Flansche (70), die mit der beschichteten Faser (66) in Berührung kommen, aus einem harten und nichthaftenden Material, wie Teflon, bestehen.
EP94402806A 1993-12-08 1994-12-07 Verfahren zur Herstellung eines ringförmigenfaserverstärkten Metallkörpers Expired - Lifetime EP0657554B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9314698A FR2713662B1 (fr) 1993-12-08 1993-12-08 Procédé d'obtention d'une pièce circulaire métallique renforcée par des fibres.
FR9314698 1993-12-08

Publications (2)

Publication Number Publication Date
EP0657554A1 EP0657554A1 (de) 1995-06-14
EP0657554B1 true EP0657554B1 (de) 2000-08-02

Family

ID=9453678

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94402806A Expired - Lifetime EP0657554B1 (de) 1993-12-08 1994-12-07 Verfahren zur Herstellung eines ringförmigenfaserverstärkten Metallkörpers

Country Status (5)

Country Link
US (2) US5562245A (de)
EP (1) EP0657554B1 (de)
JP (1) JP3194678B2 (de)
DE (1) DE69425418T2 (de)
FR (1) FR2713662B1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741383B1 (fr) * 1995-11-22 1997-12-12 Snecma Procede de fabrication d'un rotor composite a matrice metallique
GB9619890D0 (en) * 1996-09-24 1996-11-06 Rolls Royce Plc A method of making a fibre reinforced metal component
US5968671A (en) * 1997-10-31 1999-10-19 Joseph; Brian E. Brazed composites
US6178799B1 (en) 1999-10-12 2001-01-30 The Boeing Company Forming press and method for shaping angle-section workpieces
EP1099774B1 (de) * 1999-11-04 2006-04-05 AVIO S.p.A. Verfahren zur Herstellung eines Bauteiles aus Verbundwerkstoff
US7153555B2 (en) * 2000-02-15 2006-12-26 Travel Tags, Inc. Plastic objects including lenticular lens sheets
GB0327044D0 (en) * 2003-11-18 2004-04-07 Rolls Royce Plc A method of manufacturing a fibre reinforced metal matrix composite article and a cassette for use therein
DE102004001262B4 (de) * 2004-01-08 2007-03-01 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Ablegen von Fasern in Ausnehmungen, insbesondere bei der Herstellung von MMC-Bauteilen
US7842375B2 (en) * 2005-05-17 2010-11-30 Rolls-Royce Corporation Fiber retention system for metal matrix composite preform
GB0515211D0 (en) 2005-07-23 2005-08-31 Rolls Royce Plc A method of making titanium components
FR2925895B1 (fr) * 2007-12-28 2010-02-05 Messier Dowty Sa Procede de fabrication d'une piece metallique renforcee de fibres ceramiques
FR2925897B1 (fr) * 2007-12-28 2010-07-30 Messier Dowty Sa Procede de fabrication de pieces avec insert en materiau composite a matrice metallique
HU227362B1 (en) * 2008-04-29 2011-04-28 Contitech Rubber Ind Kft Procedure for manufacturing fibre reinforced hoses
US8727203B2 (en) 2010-09-16 2014-05-20 Howmedica Osteonics Corp. Methods for manufacturing porous orthopaedic implants
CA3042636C (en) * 2011-12-05 2021-06-15 Stephen A. Johnson Linear friction welding apparatus and method
CN102581557A (zh) * 2012-02-23 2012-07-18 滁州安迈达特种铝业有限公司 冰箱门把手的无缝堵头加工工艺
EP2638986B1 (de) 2012-03-13 2019-05-08 TRUMPF Werkzeugmaschinen GmbH + Co. KG Verfahren zum Herstellen eines Faser-Metall-Verbundwerkstücks und Werkzeugmaschine
GB201700614D0 (en) * 2017-01-13 2017-03-01 Rolls Royce Plc A method of manufacturing a component
CN114918542B (zh) * 2022-03-04 2024-04-19 南京理工大学 一种高强铝合金的纳米颗粒增强激光填粉焊接方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2226863A1 (de) * 1972-06-02 1973-12-20 Felten & Guilleaume Kabelwerk Verfahren zur herstellung von durch einlagen von faserstrukturen verstaerkten metallwerkstoffen
US4012824A (en) * 1973-06-06 1977-03-22 Felten & Guilleaume Kabelwerke Ag Reinforced article and method of making the same
FR2366904A1 (fr) * 1976-10-11 1978-05-05 Armines Procede et appareillage pour la fabrication de tubes en materiaux composites
JPS57155336A (en) * 1981-03-20 1982-09-25 Honda Motor Co Ltd Production of fiber-reinforced composite body
US4782992A (en) * 1986-11-21 1988-11-08 Textron Inc. Method of forming articles
JP2545277B2 (ja) * 1988-11-18 1996-10-16 本田技研工業株式会社 コンロッドの閉塞鍛造装置
ES2185614T3 (es) * 1989-07-19 2003-05-01 Calgene Llc Factores transcripcionales de tejidos de ovarios.
US5184769A (en) * 1989-07-26 1993-02-09 Avco Corporation Tooling and method for consolidating a filamentary reinforced metal matrix composite
JP2659848B2 (ja) * 1990-05-29 1997-09-30 三菱重工業株式会社 短繊維系frmの等温鍛造法
US5337940A (en) * 1990-12-11 1994-08-16 Woods Harlan L Composite preform and method of manufacturing fiber reinforced composite
US5098011A (en) * 1990-12-14 1992-03-24 Mcdonnell Douglas Corporation Method and tooling for fabricating monolithic metal or metal matrix composite structures
US5213252A (en) * 1992-05-15 1993-05-25 The United States Of America As Represented By The Secretary Of The Air Force Method to produce selectively reinforced titanium alloy articles
FR2715883B1 (fr) * 1994-02-10 1996-03-29 Snecma Procédé d'obtention d'une pièce circulaire métallique renforcée par des fibres.

Also Published As

Publication number Publication date
US5562245A (en) 1996-10-08
JP3194678B2 (ja) 2001-07-30
FR2713662B1 (fr) 1996-01-12
EP0657554A1 (de) 1995-06-14
US5642851A (en) 1997-07-01
DE69425418D1 (de) 2000-09-07
DE69425418T2 (de) 2001-03-15
JPH07197108A (ja) 1995-08-01
FR2713662A1 (fr) 1995-06-16

Similar Documents

Publication Publication Date Title
EP0657554B1 (de) Verfahren zur Herstellung eines ringförmigenfaserverstärkten Metallkörpers
EP0761977B1 (de) Rotor aus hochtemperaturbeständige Verbundwerkstoff, insbesondere mit kleinem Diameter und sein Herstellungsverfahren
EP2245204B1 (de) Verfahren zur herstellung von teilen mit einem einsatz aus einem metallmatrixverbundmaterial
EP0667207B1 (de) Verfahren zur Herstellung eines kreisförmigen faserverstärkten metallischen Teils
FR2619331A1 (fr) Procede de fabrication de rotors a ailettes integrales, notamment pour moteurs a turbine a gaz
FR2607071A1 (fr) Procede de formage d'articles renforces par filaments et articles ainsi formes
FR2652611A1 (fr) Disque de turbine constitue de deux alliages.
FR2661128A1 (fr) Procede et dispositif pour consolider un corps en materiau composite.
CA2600274C (fr) Procede ameliore de preparation de composites a matrice metallique et dispositif de mise en oeuvre d'un tel procede
EP0761978A1 (de) Rotor aus thermostrukturellem Verbundmaterial, insbesondere mit grossem Diameter und sein Herstellungsverfahren
EP0831154B1 (de) Herstellungsverfahren eines faserverstärkten metallischen Teils
FR2688445A1 (fr) Forme de depart ou ebauche pour la fabrication de revetements ou de pieces metalliques renforces par des fibres, et procede pour sa fabrication.
FR2666262A1 (fr) Procede de fabrication d'une piece metallique renforcee par des fibres.
FR2850741A1 (fr) Procede de fabrication d'un panneau de refroidissement actif en materiau composite thermostructural
FR2707902A1 (fr) Procédé de fabrication de composants de réacteur renforcés de fibres.
FR3041889A1 (fr) Procede de fabrication additive comprenant une etape de pressage isostatique a chaud
FR2550978A1 (fr) Procede d'application de revetements de surface sur des articles
EP1859897B1 (de) Verfahren zur Herstellung einer Gasturbinenrotorscheibe
EP0836899A1 (de) Verfahren zur Herstellung einer hohlen Turbinenschaufel
EP1527842B1 (de) Verfahren zur Herstellung eines Artikels aus einem faserverstärktem Verbundmetal
FR2970266A1 (fr) Procede de fabrication d'une piece metallique annulaire monobloc a insert de renfort en materiau composite, et piece obtenue
EP2504462B1 (de) Verfahren zur herstellung eines verbundmetallteils mit inneren verstärkungselementen in faserform
FR3085130A1 (fr) Procede de fabrication d’un panneau pour nacelle d’ensemble propulsif d’aeronef
FR2723868A1 (fr) Procede d'obtention d'une piece circulaire metallique a aubes
FR2663872A1 (fr) Fabrication de tubes a l'aide d'un mandrin reutilisable.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19971020

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 22C 47/06 A, 7C 22C 47/20 B, 7C 22C 49/11 B, 7F 01D 21/04 B, 7B 23P 15/00 B, 7B 21K 1/76 B

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000802

REF Corresponds to:

Ref document number: 69425418

Country of ref document: DE

Date of ref document: 20000907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120517 AND 20120523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121122

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121122

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131209

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69425418

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69425418

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131207