EP0761977B1 - Rotor aus hochtemperaturbeständige Verbundwerkstoff, insbesondere mit kleinem Diameter und sein Herstellungsverfahren - Google Patents

Rotor aus hochtemperaturbeständige Verbundwerkstoff, insbesondere mit kleinem Diameter und sein Herstellungsverfahren Download PDF

Info

Publication number
EP0761977B1
EP0761977B1 EP96401835A EP96401835A EP0761977B1 EP 0761977 B1 EP0761977 B1 EP 0761977B1 EP 96401835 A EP96401835 A EP 96401835A EP 96401835 A EP96401835 A EP 96401835A EP 0761977 B1 EP0761977 B1 EP 0761977B1
Authority
EP
European Patent Office
Prior art keywords
turbine
blades
fiber preform
preform
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96401835A
Other languages
English (en)
French (fr)
Other versions
EP0761977A1 (de
Inventor
Jean-Pierre Maumus
Guy Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0761977A1 publication Critical patent/EP0761977A1/de
Application granted granted Critical
Publication of EP0761977B1 publication Critical patent/EP0761977B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/34Rotor-blade aggregates of unitary construction, e.g. formed of sheet laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • F05D2230/53Building or constructing in particular ways by integrally manufacturing a component, e.g. by milling from a billet or one piece construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49325Shaping integrally bladed rotor

Definitions

  • the present invention relates to turbines, and more particularly those intended to operate at high temperatures, typically higher at 1000 ° C.
  • these turbines are made of metal, generally made up of several elements assembled by welding.
  • GB 813 133-A which shows a set of two metal parts, one molded with a flange, a hub, and blades formed integrally with the flange, and the other molded in the form of a flange, the two parts being assembled by screw-nut at their axis.
  • the sensitivity of the metal to thermal shock can cause formation of cracks or deformations. This results in imbalances in the rotating mass favoring a reduction in the service life of the turbines and their drive motors.
  • significant thermal shock can occur, especially when injected massive cold gas, to quickly lower the temperature inside an oven to reduce the duration of treatment cycles.
  • thermostructural composites In order to avoid problems with metals, other materials have already been proposed for making turbines, in particular materials thermostructural composites. These materials generally consist of a fibrous reinforcement texture, or preform, densified by a matrix and are characterized by their mechanical properties which make them suitable for constituting elements by their ability to maintain these properties up to temperatures high.
  • thermostructural composite materials are carbon-carbon composites (C-C) consisting of a fiber reinforcement carbon and a carbon matrix, and ceramic matrix composites (CMC) consisting of a carbon fiber or ceramic reinforcement and a matrix ceramic.
  • thermostructural composite materials Compared to metals, thermostructural composite materials have the essential advantages of much lower density and high stability at high temperatures. The reduction in mass and the elimination of risk of creep can allow high speeds of rotation and, thereby, very high ventilation rates without requiring oversizing of the drive bodies. In addition, thermostructural composite materials have a very high resistance to thermal shock.
  • Thermostructural composite materials therefore have important performance advantages, but their use is limited in because of their fairly high cost. In addition to the materials used, the cost comes from essentially difficulties encountered in making fibrous preforms, especially when the parts to be manufactured have complex shapes, which is the case of turbines, and the duration of the densification cycles.
  • an object of the present invention is to propose an architecture turbine particularly suitable for its production in composite material thermostructural in order to benefit from the advantages of this material but at a cost manufacturing as reduced as possible.
  • the turbine is for its essential part formed of only two pieces, which simplifies assembly, and each piece is made from a fibrous preform having a simple shape.
  • the second piece since it simply forms a flange, so that the second fibrous preform can be constituted by a plate.
  • the first piece it is produced by machining from a first preform constituted by a plate.
  • the first fibrous preform is machined in the consolidated state, partially densified, and densification by the matrix is continued after machining.
  • small turbine diameter here we mean a turbine whose diameter of the outer ring does not not exceed about 500 mm.
  • the turbine is assembled only by mutual tightening of the first room and the second room at their central parts. It was found that this single tightening ensures the assembly of the turbine in all configurations of operation, thanks to the rigidity of the composite material. This is all the more true that the diameter of the turbine is smaller. So there is no need to do use of screw type clamping elements penetrating the two parts. It's about an important advantage because, otherwise, the screws used should have been made of material composite, to withstand high temperatures and have a coefficient of expansion thermal compatible with that of the assembled parts, which would have increased the cost significantly.
  • the fibrous preforms are made using techniques known per se. So the first fiber preform, as well as the second, can be made from a flat stack of strata with a fibrous texture two-dimensional and bonding of the strata together by needling.
  • the first fibrous preform can be produced from a winding of a two-dimensional fibrous texture strip in superimposed layers and bonding of layers together by needling.
  • the invention relates to a turbine which has a first and a second part, each made in one monobloc part, the first part forming a first flange and blades which delimit circulation passages between an inner ring and a outer crown, while the second piece forms a second flange applied against the blades of the first part, the first and the second part each being made of thermostructural composite material.
  • Figure 1 illustrates in section a turbine 10 comprising two parts monoblocks 20, 30 of thermostructural composite material assembled by clamping mutual on a shaft 12.
  • the material of the parts 20 and 30 is for example a carbon-carbon composite material (C-C) or a composite material with ceramic matrix such as a C-SiC composite material (fiber reinforcement carbon and silicon carbide matrix).
  • the part 20 ( Figures 1 to 3) comprises a plurality of blades 22 which are located on an internal face 24 a of an annular flange 24 in the form of a disc.
  • the blades 22 extend between the outer circumference and the inner circumference of the flange 24, substantially perpendicular thereto.
  • the heels 22 has blades 22 are connected to a central part forming a hub 26 whose internal diameter is substantially less than that of the flange 24.
  • the hub 26 also has a thickness less than the length of the blades 22, and is spaced from the flange 24, along the axis A of the turbine, so that the external face 24 b of the flange, on the one hand, and the external face 26 b of the hub with the longitudinal edges 22 b of the blades 22, on the other hand, form the opposite faces of the part 20.
  • the part 30 constitutes an annular flange in the form of a disc, the outer diameter is equal to that of the flange 24 and whose inner diameter is equal to that of hub 26.
  • the part 30 is applied against the external face 26 b of the hub 26 and against the longitudinal edges 22 b of the blades 22.
  • the mutual tightening of the parts 20 and 30 is carried out by blocking between a shoulder 12 a of the shaft 12 and a ring 14, by means of a nut 15.
  • the suction by the turbine is carried out from the space 16 which is located between the flange 24 and the hub 26, and is surrounded by the inner ring 17 of the turbine at the feet of the blades 22.
  • the suction fluid is ejected through the outer ring 19 of the turbine at the blade ends 22, after circulation through the passages 18 delimited by the blades 22 and the flanges 24 and 30.
  • thermostructural composite material means that the only clamping force at the central parts of parts 20 and 30 is sufficient to maintain assemblies, including during turbine operation, no detachment not observed. As already indicated, this is all the more true since the present invention applies preferably to small turbines diameter, that is to say an outside diameter not exceeding about 500 mm.
  • the surfaces of the hub 26 and of the flange 30 on which the shoulder 12 a and the ring 14 are supported have a frustoconical shape, as do the corresponding faces of the shoulder 12 a and of the ring 14.
  • These frustoconical bearing faces have substantially coincident vertices located on the axis A of the turbine. In this way, thermal expansion differences between, on the one hand, the parts 20 and 30 and, on the other hand, the shaft 12 and the ring 14, will result in a slip, without destructive effect.
  • the part 20 is made from a structure fibrous plaque-shaped 200 (phase 41).
  • a structure is manufactured by example by flat stacking of layers of two-dimensional fibrous texture, such as sheet of wires or cables, fabric, ..., and connection of the strata together by needling.
  • a method of manufacturing such fibrous structures is described in document FR-A-2 584 106.
  • a first preform 201 of annular shape is cut in the plate 200, the dimensions of the preform 201 being chosen as a function of those of the part 20 to be produced (phase 42).
  • the preform 201 is subjected to a first densification step by the matrix of the thermostructural composite material to be produced (phase 43). Densification is made so as to consolidate the preform, that is to say to link between them the fibers of the preform sufficiently to allow handling and the machining of the consolidated preform. Densification is carried out in a known manner per se by chemical vapor infiltration, or by liquid, that is to say impregnation with a precursor of the matrix in the liquid state and transformation of the precursor.
  • the consolidated preform is subjected to a first machining phase at during which the blades are formed from one face of the preform (phase 44), then to a second machining phase during which it is hollowed out in its center from the opposite side, so as to form the suction zone in leaving the hub part (phase 45).
  • the consolidated and machined preform 202 is then subjected to one or more several densification cycles until the desired degree of densification is obtained by the matrix (phase 46).
  • phase 47 The preform thus finally densified is subjected to a final machining to bring it to the precise dimensions of part 20 (phase 47).
  • the preform of the part 20 is made from a cylindrical fibrous structure 200 'produced by winding a strip of two-dimensional fibrous texture in layers superimposed on a mandrel and bonding of the layers together by needling (phase 51).
  • a method for manufacturing fibrous structures of this type is described in the document FR-A-2 584 107.
  • Preforms 201 'of annular shape are cut in the cylindrical structure 200 ′ along radial planes (phase 52).
  • Each preform 201 ′ is then treated in the same way as the preform 201 of FIG. 4.
  • the part 30 is made from a fibrous structure in the form of a plate 300.
  • This structure is for example manufactured by flat stacking of layers of two-dimensional fibrous texture and connection of the strata together by needling (phase 61).
  • a preform 301 of annular shape is cut from the plate 300, the dimensions of the preform being chosen as a function of those of the part 30 to perform (phase 62).
  • the preform 301 is densified by the matrix, the densification being performed by chemical vapor or liquid infiltration (phase 63).
  • the densified preform is subjected to final machining in order to be brought at the dimensions of part 30 (phase 64).
  • the turbine 110 of FIG. 7 is formed essentially of two parts 120, 130 of thermostructural composite material. It is distinguished from the turbine of Figure 1 in that in the part 120, the blades 122 have a decreasing height between the inner ring 117 and the outer ring 119 of the turbine. This decreasing height compensates for the fact that the width of the passages 118 bordered by the blades 122 crosses between the inner ring and the outer ring, so that the inlet and outlet sections of the passages 118 are substantially equal.
  • the 130 applied against the flange part 120 has then a disk-shaped in its central part 130 has applied against the hub 126 and a frustoconical shape in its circumferential portion applied against the blades 122.
  • the flange 130 it is possible to start from a preform disc-shaped annular fibrous which is formed into the desired shape by means of of a tool, and consolidated by partial densification while being maintained in the tools. After consolidation, the preform can be removed from the tooling in order to continue densification.
  • the present invention applies more particularly turbines with relatively small diameters.
  • the flow of the turbine can be increased or decreased, for a given diameter, by increasing or reducing the height of the passages, that is to say the thickness of the turbine.
  • the loss of material during the machining of the blades being all the greater as their height is higher, it is preferable for cost reasons to limit the thickness of the turbine, for example by not exceeding about 100 mm.
  • a solution to increase the flow then consists in coupling two 10 ', 10 "turbines on the same axis as illustrated in Figure 8.
  • Each turbine 10 ', 10 “includes two one-piece pieces of thermostructural composite material, a first part 20 ', 20 “forming blades 22', 22", flange 24 ', 24 “and hub 26', 26 “, and a second part 30 ', 30" forming a flange.
  • the turbine 10 ′ is similar to the turbine 10 in FIG. 1, while the 10 "turbine is distinguished by the arrangement of the blades. Indeed, the arrangement of the blades 22 "on the part 20" is symmetrical with respect to a radial plane of the arrangement of blades 22 'on part 20'. In this way, when the turbines 10 ', 10 " are joined by mutual contact between the external faces of the flanges 24 ', 24 ", the blades 22 ', 22 "define circulation passages oriented in the same way around the axis common to the turbines.
  • the parts 20 ', 30', 30 "and 20" are assembled by mutual tightening on a common shaft 12 'between a shoulder 12' a and a ring 14 ', by means of a nut 15'.
  • the surfaces of the hubs 26 'and 26 "on which the shoulder 12' a and the ring 14 'rest have a frustoconical shape, as do the corresponding faces of the shoulder 12' a and of the ring 14 '.
  • An additional ring 14 "of triangular section is interposed between the flanges 30 'and 30", the surfaces of these bearing on the ring 14 "having a frustoconical shape.
  • the frustoconical bearing surfaces of the flange 30 'on the ring 14 "and of the hub 26' on the shoulder 12 ' a have substantially coincident vertices situated on the axis of the turbines, as do the bearing surfaces of the flange 30 "on the ring 14" and the hub 26 "on the ring 14 '. In this way, dimensional variations of thermal origin between the parts of the turbines, on the one hand, and the shaft and the clamping rings, on the other hand, can be compensated for by sliding parallel to the frustoconical bearing surfaces, in the same way as with the turbine 10 in FIG. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (16)

  1. Verfahren zur Herstellung einer Turbine, die eine Mehrzahl von Schaufeln aufweist, die zwischen zwei Scheiben angeordnet sind, wobei die Schaufeln und die Scheiben aus einem thermostrukturellen Verbundwerkstoff bestehen, wobei gemäß diesem Verfahren:
    (a) ein erstes Teil als einstückiges Teil aus thermostrukturellem Verbundwerkstoff hergestellt wird, wobei dieses erste Teil eine erste Scheibe und die Schaufeln bildet, indem die folgenden Schritte durchgeführt werden:
    Herstellen eines ersten Faser-Vorformlings in Gestalt einer Platte, die äußere Abmessungen aufweist, die in Abhängigkeit von denjenigen des herzustellenden ersten Teils gewählt sind,
    wenigstens teilweises Verdichten des ersten Faser-Vorformlings durch eine Matrix, so daß der Vorformling wenigstens verfestigt wird, und
    Bearbeiten des ersten, wenigstens teilweise verdichteten Faser-Vorformlings, um ihm die Gestalt des ersten Teils zu verleihen;
    (b) ein zweites Teil hergestellt wird, das die zweite Scheibe bildet, wobei dieses als einstückiges Teil aus thermostrukturellem Verbundwerkstoff durch Fertigung eines zweiten Faser-Vorformlings, durch dessen Verdichten durch eine Matrix und durch Bearbeitung, um die zweite Scheibe zu bilden, hergestellt wird, und
    (c) die Turbine dadurch zusammengebaut wird, daß das zweite Teil an den Schaufeln des ersten Teils angebracht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der erste Faser-Vorformling in dem verfestigten, teilweise verdichteten Zustand bearbeitet wird und daß die Verdichtung durch die Matrix nach Bearbeitung weiterverfolgt wird.
  3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Bearbeitung des ersten Faser-Vorformlings in Gestalt der wenigstens teilweise verdichteten Platte die Herstellung der Schaufeln durch Bearbeitung ausgehend von einer Seite der Platte und die Herstellung einer Ansaugzone durch Ausmulden eines mittleren Bereichs der Platte ausgehend von der entgegengesetzten Seite aufweist, wobei eine mittlere Nabe gelassen wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der erste Faser-Vorformling dadurch hergestellt wird, daß von einer flachen Stapelung von Schichten eines zweidimensionalen Faser-Gebildes ausgegangen wird und daß die Schichten untereinander durch Nadelung verbunden werden.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der erste Faser-Vorformling dadurch hergestellt wird, daß von einer Wicklung eines Bandes eines zweidimensionalen Faser-Gebildes in übereinandergelegten Lagen ausgegangen wird und daß die Lagen untereinander durch Nadelung verbunden werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der zweite Faser-Vorformling dadurch hergestellt wird, daß von einer flachen Stapelung von Schichten eines zweidimensionalen Faser-Gebildes ausgegangen wird und daß die Schichten untereinander durch Nadelung verbunden werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Turbine einzig und allein durch gegenseitiges Zusammendrücken des ersten Teils und des zweiten Teils auf dem Niveau ihrer mittleren Bereiche zusammengebaut wird.
  8. Turbine, die ein erstes Teil und ein zweites Teil aufweist, wobei jedes Teil als ein einstückiges Teil hergestellt ist und das erste Teil (20) eine erste Scheibe (24) und Schaufeln (22) bildet, die Strömungspassagen zwischen einem Innenkranz (17) und einem Außenkranz (19) begrenzen, während das zweite Teil eine zweite Scheibe (30) bildet, die an den Schaufeln (22) des ersten Teils angebracht ist,
    dadurch gekennzeichnet, daß das erste Teil und das zweite Teil aus einem thermostrukturellen Verbundwerkstoff hergestellt sind.
  9. Turbine nach Anspruch 8, dadurch gekennzeichnet, daß das erste Teil (20) und das zweite Teil (30) einzig und allein durch gegenseitiges Zusammendrücken auf dem Niveau ihrer mittleren Bereiche zusammengebaut sind.
  10. Turbine nach einem der Ansprüche 8 und 9, dadurch gekennzeichnet, daß bei dem ersten Teil sich die Schaufeln (22) zwischen dem Außenumfang und dem Innenumfang und von einer Seite eines ringförmigen, scheibenförmigen Bereichs, der die erste Scheibe (24) bildet, erstrecken und auf dem Niveau ihrer Füße mit einem eine Nabe (26) bildenden, mittleren Bereich verbunden sind.
  11. Turbine nach Anspruch 10, dadurch gekennzeichnet, daß der die Nabe (26) bildende, mittlere Bereich eine Dicke unterhalb der Breite der Schaufeln (22) aufweist.
  12. Turbine nach einem der Ansprüche 10 und 11, dadurch gekennzeichnet, daß bei dem ersten Teil der die ringförmige Scheibe (24) bildende Bereich und der die Nabe (26) bildende Bereich sich an zwei einander entgegengesetzten Seiten des Teils befinden.
  13. Turbine nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß bei dem ersten Teil der die Nabe (26) bildende, mittlere Bereich einen Innendurchmesser aufweist, der unterhalb desjenigen des die Scheibe (24) bildenden, ringförmigen Bereichs liegt.
  14. Turbine nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, daß das erste Teil (20) und das zweite Teil (30) durch gegenseitiges Zusammendrücken zusammengebaut sind, das auf die jeweilige, zu dem ersten Teil und dem zweiten Teil zugehörige Auflagefläche auf dem Niveau ihrer mittleren Bereiche ausgeübt wird, wobei diese Auflageflächen eine kegelstumpfförmige Gestalt mit Scheiteln aufweisen, die im wesentlichen vereinigt und in der Achse der Turbine angeordnet sind.
  15. Turbine nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, daß die Schaufeln (22) eine abnehmende Höhe zwischen dem Innenkranz und dem Außenkranz derart aufweisen, daß Passagen mit Austrittsquerschnitten im wesentlichen gleich zu Eintrittsquerschnitten begrenzt werden.
  16. Turbine nach einem der Ansprüche 8 bis 15, dadurch gekennzeichnet, daß sie mehrere koaxiale Anordnungen aufweist, von denen jede ein erstes Teil (20', 20") und ein zweites Teil (30', 30") aufweist, die einzig und allein durch gegenseitiges Zusammendrücken auf dem Niveau ihrer mittleren Bereiche zusammengebaut sind.
EP96401835A 1995-08-30 1996-08-28 Rotor aus hochtemperaturbeständige Verbundwerkstoff, insbesondere mit kleinem Diameter und sein Herstellungsverfahren Expired - Lifetime EP0761977B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9510205A FR2738303B1 (fr) 1995-08-30 1995-08-30 Turbine en materiau composite thermostructural, en particulier a petit diametre, et procede pour sa fabrication
FR9510205 1995-08-30

Publications (2)

Publication Number Publication Date
EP0761977A1 EP0761977A1 (de) 1997-03-12
EP0761977B1 true EP0761977B1 (de) 2001-01-17

Family

ID=9482159

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96401835A Expired - Lifetime EP0761977B1 (de) 1995-08-30 1996-08-28 Rotor aus hochtemperaturbeständige Verbundwerkstoff, insbesondere mit kleinem Diameter und sein Herstellungsverfahren

Country Status (8)

Country Link
US (2) US5775878A (de)
EP (1) EP0761977B1 (de)
JP (1) JP3484299B2 (de)
DE (1) DE69611582T2 (de)
ES (1) ES2155178T3 (de)
FR (1) FR2738303B1 (de)
RU (1) RU2141564C1 (de)
UA (1) UA28036C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008990B (zh) * 2012-12-10 2015-06-03 成都锦江电子系统工程有限公司 一种微型多维精密切削加工方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI101565B1 (fi) * 1997-01-17 1998-07-15 Flaekt Oy Haihdutinpuhallin ja sen siipipyörä
FI101564B1 (fi) 1997-01-17 1998-07-15 Flaekt Oy Korkeapainepuhallin
DE19708825C2 (de) * 1997-03-05 2001-11-15 Deutsch Zentr Luft & Raumfahrt Vorrichtung zum Fördern eines Mediums
US6511294B1 (en) 1999-09-23 2003-01-28 General Electric Company Reduced-stress compressor blisk flowpath
US6261056B1 (en) 1999-09-23 2001-07-17 Alliedsignal Inc. Ceramic turbine nozzle including a radially splined mounting surface
US6270310B1 (en) 1999-09-29 2001-08-07 Ford Global Tech., Inc. Fuel pump assembly
US6524070B1 (en) 2000-08-21 2003-02-25 General Electric Company Method and apparatus for reducing rotor assembly circumferential rim stress
DE10042700C2 (de) * 2000-08-31 2002-10-17 Mtu Friedrichshafen Gmbh Verfahren zur plastischen Verformung einer Nabenbohrung eines schnelllaufenden Turbomaschinenteils
US6471474B1 (en) 2000-10-20 2002-10-29 General Electric Company Method and apparatus for reducing rotor assembly circumferential rim stress
US6663343B1 (en) 2002-06-27 2003-12-16 Sea Solar Power Inc Impeller mounting system and method
DE10233199A1 (de) * 2002-07-22 2004-02-05 Dürr Systems GmbH Turbinenmotor eines Rotationszerstäubers
JP4504860B2 (ja) * 2005-04-05 2010-07-14 株式会社丸山製作所 遠心送風機用の羽根車
US20070096589A1 (en) * 2005-10-31 2007-05-03 York Michael T Electric machine rotor fan and pole retention feature
US7687952B2 (en) * 2006-03-30 2010-03-30 Remy Technologies, L.L.C. Brushless alternator with stationary shaft
CN100374686C (zh) * 2006-08-14 2008-03-12 吴法森 聚能脉冲式蒸汽轮机
JP4432989B2 (ja) * 2007-03-16 2010-03-17 ソニー株式会社 遠心羽根車、ファン装置及び電子機器
IT1394295B1 (it) * 2009-05-08 2012-06-06 Nuovo Pignone Spa Girante centrifuga del tipo chiuso per turbomacchine, componente per tale girante, turbomacchina provvista di tale girante e metodo di realizzazione di tale girante
IT1397058B1 (it) 2009-11-23 2012-12-28 Nuovo Pignone Spa Stampo per girante centrifuga, inserti per stampo e metodo per costruire una girante centrifuga
IT1397057B1 (it) 2009-11-23 2012-12-28 Nuovo Pignone Spa Girante centrifuga e turbomacchina
DE102010011486A1 (de) * 2010-03-16 2011-09-22 Bosch Mahle Turbo Systems Gmbh & Co. Kg Rotor für eine Ladeeinrichtung
TWM398514U (en) * 2010-09-07 2011-02-21 Chun-Chieh Chen A sort of transmission
ITCO20110064A1 (it) 2011-12-14 2013-06-15 Nuovo Pignone Spa Macchina rotante comprendente un rotore con una girante composita ed un albero metallico
ITCO20130067A1 (it) 2013-12-17 2015-06-18 Nuovo Pignone Srl Girante con elementi di protezione e compressore centrifugo
WO2015122799A1 (ru) * 2014-02-11 2015-08-20 Михаил Валерьевич КОШЕЧКИН Газотурбинная установка
JP5884844B2 (ja) * 2014-02-21 2016-03-15 株式会社ノーリツ 給湯装置
US9933185B2 (en) * 2014-02-24 2018-04-03 Noritz Corporation Fan and water heater provided with the same, and impeller and water heater provided with the same
US11643948B2 (en) * 2019-02-08 2023-05-09 Raytheon Technologies Corporation Internal cooling circuits for CMC and method of manufacture
CN111975290B (zh) * 2020-07-23 2022-02-25 哈尔滨电气动力装备有限公司 核电主泵叶轮安装工艺

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB813133A (en) * 1956-08-09 1959-05-06 Ralph Edgar Smart Improvements in and relating to pump impellers
GB553747A (en) * 1940-12-17 1943-06-03 Johann Fullemann Improvements in and relating to impellers for blowers
FR1143291A (fr) * 1954-12-24 1957-09-27 Thomson Houston Comp Francaise Montage d'une roue à aubes
US3285187A (en) * 1965-11-05 1966-11-15 Msl Ind Inc Impeller for use in centrifugal pump or blower and a method of manufacture thereof
US3730641A (en) * 1972-03-10 1973-05-01 Flint & Walling Inc Centrifugal pumps
US3905723A (en) * 1972-10-27 1975-09-16 Norton Co Composite ceramic turbine rotor
US3845903A (en) * 1973-08-15 1974-11-05 Dunham Bush Inc One piece radial vane diffuser and method of manufacturing the same
JPS5679602U (de) * 1979-11-22 1981-06-27
US4355954A (en) * 1980-07-18 1982-10-26 The Maytag Company Pump impeller
US4465434A (en) * 1982-04-29 1984-08-14 Williams International Corporation Composite turbine wheel
JPS59196901A (ja) * 1983-04-25 1984-11-08 Ebara Corp セラミツク製密閉形羽根車
FR2584106B1 (fr) * 1985-06-27 1988-05-13 Europ Propulsion Procede de fabrication de structures tridimensionnelles par aiguilletage de couches planes de materiau fibreux superposees et materiau fibreux utilise pour la mise en oeuvre du procede
FR2584107B1 (fr) * 1985-06-27 1988-07-01 Europ Propulsion Procede de fabrication de structures de revolution tridimensionnelles par aiguilletage de couches de materiau fibreux et materiau utilise pour la mise en oeuvre du procede
US4862763A (en) * 1984-01-09 1989-09-05 Ltv Aerospace & Defense Company Method and apparatus for manufacturing high speed rotors
US4634344A (en) * 1984-08-03 1987-01-06 A. R. Wilfley And Sons, Inc. Multi-element centrifugal pump impellers with protective covering against corrosion and/or abrasion
JPS61109608A (ja) * 1984-11-01 1986-05-28 Mitsubishi Heavy Ind Ltd 羽根車の加工方法
DE4022467C3 (de) * 1990-07-14 1995-08-31 Vdo Schindling Förderaggregat, insbesondere zur Förderung von Kraftstoff
JPH05865A (ja) * 1991-03-15 1993-01-08 Nissan Motor Co Ltd タービン部品およびその製造方法
FR2703111B1 (fr) * 1993-03-25 1995-06-30 Ozen Sa Rotor pour pompe comportant deux pieces assemblees par soudure, obtenues par moulage par injection de materiaux thermoplastiques, et procede de fabrication d'un tel rotor .
US5348442A (en) * 1993-08-18 1994-09-20 General Motors Corporation Turbine pump
JPH07223875A (ja) * 1994-02-14 1995-08-22 Ishikawajima Harima Heavy Ind Co Ltd 繊維強化セラミックス複合材の製造方法
US5531633A (en) * 1994-03-24 1996-07-02 Ingersoll-Rand Company Method of machining a metal workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008990B (zh) * 2012-12-10 2015-06-03 成都锦江电子系统工程有限公司 一种微型多维精密切削加工方法

Also Published As

Publication number Publication date
JP3484299B2 (ja) 2004-01-06
DE69611582T2 (de) 2001-08-23
US5775878A (en) 1998-07-07
DE69611582D1 (de) 2001-02-22
FR2738303A1 (fr) 1997-03-07
UA28036C2 (uk) 2000-10-16
EP0761977A1 (de) 1997-03-12
ES2155178T3 (es) 2001-05-01
JPH09125901A (ja) 1997-05-13
US6029347A (en) 2000-02-29
FR2738303B1 (fr) 1997-11-28
RU2141564C1 (ru) 1999-11-20

Similar Documents

Publication Publication Date Title
EP0761977B1 (de) Rotor aus hochtemperaturbeständige Verbundwerkstoff, insbesondere mit kleinem Diameter und sein Herstellungsverfahren
EP0761978B1 (de) Rotor aus thermostrukturellem Verbundmaterial, insbesondere mit grossem Diameter und sein Herstellungsverfahren
EP2077183B1 (de) Verbundflansch mit Verarbeitungsteil
EP3298246B1 (de) Turbinenringanordnung, die eine unterschiedliche wärmeausdehnung erlaubt
EP2349688B1 (de) Verbundmaterial turbomotorleitschaufel und herstellungsverfahren dafür
EP2245204B1 (de) Verfahren zur herstellung von teilen mit einem einsatz aus einem metallmatrixverbundmaterial
FR2707902A1 (fr) Procédé de fabrication de composants de réacteur renforcés de fibres.
EP1408237A1 (de) Turbomolekularpumpe
EP0657554B1 (de) Verfahren zur Herstellung eines ringförmigenfaserverstärkten Metallkörpers
FR2936178A1 (fr) Assemblage de pieces en titane et en acier par soudage diffusion
CA2940565A1 (fr) Secteur de stator pour turbomachine et son procede de fabrication
EP2961590B1 (de) Spritzgiesswerkzeug zur herstellung eines rotierenden teils aus einem verbundstoff mit externen flanschen, insbesondere für ein gasturbinengehäuse
EP3927529B1 (de) Reparatur oder wiederaufnahme der herstellung eines verbundwerkstoffteils mit faseriger dreidimensionaler gewebter verstärkung
FR2951400A1 (fr) Piece structurale en materiau composite renforcee localement et procede de realisation d'une telle piece
FR2688445A1 (fr) Forme de depart ou ebauche pour la fabrication de revetements ou de pieces metalliques renforces par des fibres, et procede pour sa fabrication.
FR2970266A1 (fr) Procede de fabrication d'une piece metallique annulaire monobloc a insert de renfort en materiau composite, et piece obtenue
EP3331657B1 (de) Verfahren zur herstellung eines teils aus verbundstoff
FR2975317A1 (fr) Procede de fabrication par soudage diffusion d'une piece monobloc pour une turbomachine
FR2952943A1 (fr) Rouleau composite de ligne de recuit
EP4401956A1 (de) Leitschaufel aus verbundmaterial mit einer metallverstärkung und verfahren zur herstellung einer solchen leitschaufel
EP4076794B1 (de) Verfahren zur herstellung eines schaufelrades einer turbomaschine aus keramikverstärktem verbundwerkstoff
FR3033279A1 (fr) Outillage de support et de moulage et procede de realisation de pieces de revolution en materiau composite
EP0993939A1 (de) Verfahren zur Herstellung dünner, leichter und starrer Metallwerstücken
EP2483431B1 (de) Förderrolle einer hochtemperatur-glühstrecke
WO2014170586A1 (fr) Outillage de maintien, chargement et installation pour la densification de préformes poreuses de révolution

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19970505

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MO

17Q First examination report despatched

Effective date: 19990510

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 69611582

Country of ref document: DE

Date of ref document: 20010222

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010330

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2155178

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040719

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040723

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040728

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040809

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050828

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050829