EP0761977B1 - High temperature composite material impellor, particularly of small diameter, and its manufacturing method - Google Patents

High temperature composite material impellor, particularly of small diameter, and its manufacturing method Download PDF

Info

Publication number
EP0761977B1
EP0761977B1 EP96401835A EP96401835A EP0761977B1 EP 0761977 B1 EP0761977 B1 EP 0761977B1 EP 96401835 A EP96401835 A EP 96401835A EP 96401835 A EP96401835 A EP 96401835A EP 0761977 B1 EP0761977 B1 EP 0761977B1
Authority
EP
European Patent Office
Prior art keywords
turbine
blades
fiber preform
preform
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96401835A
Other languages
German (de)
French (fr)
Other versions
EP0761977A1 (en
Inventor
Jean-Pierre Maumus
Guy Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0761977A1 publication Critical patent/EP0761977A1/en
Application granted granted Critical
Publication of EP0761977B1 publication Critical patent/EP0761977B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/34Rotor-blade aggregates of unitary construction, e.g. formed of sheet laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • F05D2230/53Building or constructing in particular ways by integrally manufacturing a component, e.g. by milling from a billet or one piece construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49325Shaping integrally bladed rotor

Definitions

  • the present invention relates to turbines, and more particularly those intended to operate at high temperatures, typically higher at 1000 ° C.
  • these turbines are made of metal, generally made up of several elements assembled by welding.
  • GB 813 133-A which shows a set of two metal parts, one molded with a flange, a hub, and blades formed integrally with the flange, and the other molded in the form of a flange, the two parts being assembled by screw-nut at their axis.
  • the sensitivity of the metal to thermal shock can cause formation of cracks or deformations. This results in imbalances in the rotating mass favoring a reduction in the service life of the turbines and their drive motors.
  • significant thermal shock can occur, especially when injected massive cold gas, to quickly lower the temperature inside an oven to reduce the duration of treatment cycles.
  • thermostructural composites In order to avoid problems with metals, other materials have already been proposed for making turbines, in particular materials thermostructural composites. These materials generally consist of a fibrous reinforcement texture, or preform, densified by a matrix and are characterized by their mechanical properties which make them suitable for constituting elements by their ability to maintain these properties up to temperatures high.
  • thermostructural composite materials are carbon-carbon composites (C-C) consisting of a fiber reinforcement carbon and a carbon matrix, and ceramic matrix composites (CMC) consisting of a carbon fiber or ceramic reinforcement and a matrix ceramic.
  • thermostructural composite materials Compared to metals, thermostructural composite materials have the essential advantages of much lower density and high stability at high temperatures. The reduction in mass and the elimination of risk of creep can allow high speeds of rotation and, thereby, very high ventilation rates without requiring oversizing of the drive bodies. In addition, thermostructural composite materials have a very high resistance to thermal shock.
  • Thermostructural composite materials therefore have important performance advantages, but their use is limited in because of their fairly high cost. In addition to the materials used, the cost comes from essentially difficulties encountered in making fibrous preforms, especially when the parts to be manufactured have complex shapes, which is the case of turbines, and the duration of the densification cycles.
  • an object of the present invention is to propose an architecture turbine particularly suitable for its production in composite material thermostructural in order to benefit from the advantages of this material but at a cost manufacturing as reduced as possible.
  • the turbine is for its essential part formed of only two pieces, which simplifies assembly, and each piece is made from a fibrous preform having a simple shape.
  • the second piece since it simply forms a flange, so that the second fibrous preform can be constituted by a plate.
  • the first piece it is produced by machining from a first preform constituted by a plate.
  • the first fibrous preform is machined in the consolidated state, partially densified, and densification by the matrix is continued after machining.
  • small turbine diameter here we mean a turbine whose diameter of the outer ring does not not exceed about 500 mm.
  • the turbine is assembled only by mutual tightening of the first room and the second room at their central parts. It was found that this single tightening ensures the assembly of the turbine in all configurations of operation, thanks to the rigidity of the composite material. This is all the more true that the diameter of the turbine is smaller. So there is no need to do use of screw type clamping elements penetrating the two parts. It's about an important advantage because, otherwise, the screws used should have been made of material composite, to withstand high temperatures and have a coefficient of expansion thermal compatible with that of the assembled parts, which would have increased the cost significantly.
  • the fibrous preforms are made using techniques known per se. So the first fiber preform, as well as the second, can be made from a flat stack of strata with a fibrous texture two-dimensional and bonding of the strata together by needling.
  • the first fibrous preform can be produced from a winding of a two-dimensional fibrous texture strip in superimposed layers and bonding of layers together by needling.
  • the invention relates to a turbine which has a first and a second part, each made in one monobloc part, the first part forming a first flange and blades which delimit circulation passages between an inner ring and a outer crown, while the second piece forms a second flange applied against the blades of the first part, the first and the second part each being made of thermostructural composite material.
  • Figure 1 illustrates in section a turbine 10 comprising two parts monoblocks 20, 30 of thermostructural composite material assembled by clamping mutual on a shaft 12.
  • the material of the parts 20 and 30 is for example a carbon-carbon composite material (C-C) or a composite material with ceramic matrix such as a C-SiC composite material (fiber reinforcement carbon and silicon carbide matrix).
  • the part 20 ( Figures 1 to 3) comprises a plurality of blades 22 which are located on an internal face 24 a of an annular flange 24 in the form of a disc.
  • the blades 22 extend between the outer circumference and the inner circumference of the flange 24, substantially perpendicular thereto.
  • the heels 22 has blades 22 are connected to a central part forming a hub 26 whose internal diameter is substantially less than that of the flange 24.
  • the hub 26 also has a thickness less than the length of the blades 22, and is spaced from the flange 24, along the axis A of the turbine, so that the external face 24 b of the flange, on the one hand, and the external face 26 b of the hub with the longitudinal edges 22 b of the blades 22, on the other hand, form the opposite faces of the part 20.
  • the part 30 constitutes an annular flange in the form of a disc, the outer diameter is equal to that of the flange 24 and whose inner diameter is equal to that of hub 26.
  • the part 30 is applied against the external face 26 b of the hub 26 and against the longitudinal edges 22 b of the blades 22.
  • the mutual tightening of the parts 20 and 30 is carried out by blocking between a shoulder 12 a of the shaft 12 and a ring 14, by means of a nut 15.
  • the suction by the turbine is carried out from the space 16 which is located between the flange 24 and the hub 26, and is surrounded by the inner ring 17 of the turbine at the feet of the blades 22.
  • the suction fluid is ejected through the outer ring 19 of the turbine at the blade ends 22, after circulation through the passages 18 delimited by the blades 22 and the flanges 24 and 30.
  • thermostructural composite material means that the only clamping force at the central parts of parts 20 and 30 is sufficient to maintain assemblies, including during turbine operation, no detachment not observed. As already indicated, this is all the more true since the present invention applies preferably to small turbines diameter, that is to say an outside diameter not exceeding about 500 mm.
  • the surfaces of the hub 26 and of the flange 30 on which the shoulder 12 a and the ring 14 are supported have a frustoconical shape, as do the corresponding faces of the shoulder 12 a and of the ring 14.
  • These frustoconical bearing faces have substantially coincident vertices located on the axis A of the turbine. In this way, thermal expansion differences between, on the one hand, the parts 20 and 30 and, on the other hand, the shaft 12 and the ring 14, will result in a slip, without destructive effect.
  • the part 20 is made from a structure fibrous plaque-shaped 200 (phase 41).
  • a structure is manufactured by example by flat stacking of layers of two-dimensional fibrous texture, such as sheet of wires or cables, fabric, ..., and connection of the strata together by needling.
  • a method of manufacturing such fibrous structures is described in document FR-A-2 584 106.
  • a first preform 201 of annular shape is cut in the plate 200, the dimensions of the preform 201 being chosen as a function of those of the part 20 to be produced (phase 42).
  • the preform 201 is subjected to a first densification step by the matrix of the thermostructural composite material to be produced (phase 43). Densification is made so as to consolidate the preform, that is to say to link between them the fibers of the preform sufficiently to allow handling and the machining of the consolidated preform. Densification is carried out in a known manner per se by chemical vapor infiltration, or by liquid, that is to say impregnation with a precursor of the matrix in the liquid state and transformation of the precursor.
  • the consolidated preform is subjected to a first machining phase at during which the blades are formed from one face of the preform (phase 44), then to a second machining phase during which it is hollowed out in its center from the opposite side, so as to form the suction zone in leaving the hub part (phase 45).
  • the consolidated and machined preform 202 is then subjected to one or more several densification cycles until the desired degree of densification is obtained by the matrix (phase 46).
  • phase 47 The preform thus finally densified is subjected to a final machining to bring it to the precise dimensions of part 20 (phase 47).
  • the preform of the part 20 is made from a cylindrical fibrous structure 200 'produced by winding a strip of two-dimensional fibrous texture in layers superimposed on a mandrel and bonding of the layers together by needling (phase 51).
  • a method for manufacturing fibrous structures of this type is described in the document FR-A-2 584 107.
  • Preforms 201 'of annular shape are cut in the cylindrical structure 200 ′ along radial planes (phase 52).
  • Each preform 201 ′ is then treated in the same way as the preform 201 of FIG. 4.
  • the part 30 is made from a fibrous structure in the form of a plate 300.
  • This structure is for example manufactured by flat stacking of layers of two-dimensional fibrous texture and connection of the strata together by needling (phase 61).
  • a preform 301 of annular shape is cut from the plate 300, the dimensions of the preform being chosen as a function of those of the part 30 to perform (phase 62).
  • the preform 301 is densified by the matrix, the densification being performed by chemical vapor or liquid infiltration (phase 63).
  • the densified preform is subjected to final machining in order to be brought at the dimensions of part 30 (phase 64).
  • the turbine 110 of FIG. 7 is formed essentially of two parts 120, 130 of thermostructural composite material. It is distinguished from the turbine of Figure 1 in that in the part 120, the blades 122 have a decreasing height between the inner ring 117 and the outer ring 119 of the turbine. This decreasing height compensates for the fact that the width of the passages 118 bordered by the blades 122 crosses between the inner ring and the outer ring, so that the inlet and outlet sections of the passages 118 are substantially equal.
  • the 130 applied against the flange part 120 has then a disk-shaped in its central part 130 has applied against the hub 126 and a frustoconical shape in its circumferential portion applied against the blades 122.
  • the flange 130 it is possible to start from a preform disc-shaped annular fibrous which is formed into the desired shape by means of of a tool, and consolidated by partial densification while being maintained in the tools. After consolidation, the preform can be removed from the tooling in order to continue densification.
  • the present invention applies more particularly turbines with relatively small diameters.
  • the flow of the turbine can be increased or decreased, for a given diameter, by increasing or reducing the height of the passages, that is to say the thickness of the turbine.
  • the loss of material during the machining of the blades being all the greater as their height is higher, it is preferable for cost reasons to limit the thickness of the turbine, for example by not exceeding about 100 mm.
  • a solution to increase the flow then consists in coupling two 10 ', 10 "turbines on the same axis as illustrated in Figure 8.
  • Each turbine 10 ', 10 “includes two one-piece pieces of thermostructural composite material, a first part 20 ', 20 “forming blades 22', 22", flange 24 ', 24 “and hub 26', 26 “, and a second part 30 ', 30" forming a flange.
  • the turbine 10 ′ is similar to the turbine 10 in FIG. 1, while the 10 "turbine is distinguished by the arrangement of the blades. Indeed, the arrangement of the blades 22 "on the part 20" is symmetrical with respect to a radial plane of the arrangement of blades 22 'on part 20'. In this way, when the turbines 10 ', 10 " are joined by mutual contact between the external faces of the flanges 24 ', 24 ", the blades 22 ', 22 "define circulation passages oriented in the same way around the axis common to the turbines.
  • the parts 20 ', 30', 30 "and 20" are assembled by mutual tightening on a common shaft 12 'between a shoulder 12' a and a ring 14 ', by means of a nut 15'.
  • the surfaces of the hubs 26 'and 26 "on which the shoulder 12' a and the ring 14 'rest have a frustoconical shape, as do the corresponding faces of the shoulder 12' a and of the ring 14 '.
  • An additional ring 14 "of triangular section is interposed between the flanges 30 'and 30", the surfaces of these bearing on the ring 14 "having a frustoconical shape.
  • the frustoconical bearing surfaces of the flange 30 'on the ring 14 "and of the hub 26' on the shoulder 12 ' a have substantially coincident vertices situated on the axis of the turbines, as do the bearing surfaces of the flange 30 "on the ring 14" and the hub 26 "on the ring 14 '. In this way, dimensional variations of thermal origin between the parts of the turbines, on the one hand, and the shaft and the clamping rings, on the other hand, can be compensated for by sliding parallel to the frustoconical bearing surfaces, in the same way as with the turbine 10 in FIG. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

La présente invention concerne les turbines, et plus particulièrement celles destinées à fonctionner à des températures élevées, typiquement supérieures à 1 000°C.The present invention relates to turbines, and more particularly those intended to operate at high temperatures, typically higher at 1000 ° C.

Un domaine d'application de telles turbines est le brassage des gaz ou la ventilation dans des fours ou installations similaires utilisés pour réaliser des traitements physico-chimiques à températures élevées, le milieu ambiant étant par exemple constitué de gaz neutres ou inertes.One field of application of such turbines is the mixing of gases or ventilation in ovens or similar installations used to carry out physico-chemical treatments at high temperatures, the ambient environment being example consisting of neutral or inert gases.

De façon habituelle, ces turbines sont en métal, généralement constituées de plusieurs éléments assemblés par soudage. On peut toutefois relever le document GB 813 133-A qui montre un ensemble de deux pièces métalliques, l'une moulée avec un flasque, un moyeu, et des aubes formées intégralement avec le flasque, et l'autre moulée sous forme d'un flasque, les deux pièces étant assemblées par vis-écrou au niveau de leur axe.Usually, these turbines are made of metal, generally made up of several elements assembled by welding. We can however note GB 813 133-A which shows a set of two metal parts, one molded with a flange, a hub, and blades formed integrally with the flange, and the other molded in the form of a flange, the two parts being assembled by screw-nut at their axis.

L'utilisation de métal entraíne plusieurs inconvénients. Ainsi, la masse élevée des parties tournantes requiert des lignes d'arbres importantes et des moteurs très puissants et impose de toute façon une limitation de la vitesse de rotation. S'ajoute une limitation en température du fait du risque de fluage du métal.The use of metal has several drawbacks. So the mass high rotating parts requires large shaft lines and very powerful engines and in any case imposes a speed limitation rotation. A temperature limitation is added due to the risk of creep of the metal.

De plus, la sensibilité du métal aux chocs thermiques peut entraíner la formation de criques ou des déformations. Il en résulte des déséquilibres de la masse tournante favorisant une diminution de la durée de vie des turbines et de leurs moteurs d'entraínement. Or, dans les applications évoquées plus haut, des chocs thermiques importants peuvent se produire, notamment en cas d'injection massive d'un gaz froid, pour faire baisser rapidement la température à l'intérieur d'un four en vue de réduire la durée de cycles de traitement.In addition, the sensitivity of the metal to thermal shock can cause formation of cracks or deformations. This results in imbalances in the rotating mass favoring a reduction in the service life of the turbines and their drive motors. However, in the applications mentioned above, significant thermal shock can occur, especially when injected massive cold gas, to quickly lower the temperature inside an oven to reduce the duration of treatment cycles.

Afin d'éviter les problèmes rencontrés avec les métaux, d'autres matériaux ont déjà été proposés pour réaliser des turbines, en particulier des matériaux composites thermostructuraux. Ces matériaux sont généralement constitués d'une texture de renfort fibreux, ou préforme, densifiée par une matrice et sont caractérisés par leurs propriétés mécaniques qui les rendent aptes à constituer des éléments structuraux et par leur capacité à conserver ces propriétés jusqu'à des températures élevées. Des exemples usuels de matériaux composites thermostructuraux sont les composites carbone-carbone (C-C) constitués d'un renfort en fibres de carbone et d'une matrice en carbone, et les composites à matrice céramique (CMC) constitués d'un renfort en fibres de carbone ou céramique et d'une matrice céramique.In order to avoid problems with metals, other materials have already been proposed for making turbines, in particular materials thermostructural composites. These materials generally consist of a fibrous reinforcement texture, or preform, densified by a matrix and are characterized by their mechanical properties which make them suitable for constituting elements by their ability to maintain these properties up to temperatures high. Common examples of thermostructural composite materials are carbon-carbon composites (C-C) consisting of a fiber reinforcement carbon and a carbon matrix, and ceramic matrix composites (CMC) consisting of a carbon fiber or ceramic reinforcement and a matrix ceramic.

Par rapport aux métaux, les matériaux composites thermostructuraux présentent les avantages essentiels d'une densité bien inférieure et d'une grande stabilité aux températures élevées. La diminution de masse et la suppression du risque de fluage peuvent autoriser des vitesses de rotation élevées et, par là même, de très forts débits de ventilation sans demander un surdimensionnement des organes d'entraínement. En outre, les matériaux composites thermostructuraux présentent une très grande résistance aux chocs thermiques.Compared to metals, thermostructural composite materials have the essential advantages of much lower density and high stability at high temperatures. The reduction in mass and the elimination of risk of creep can allow high speeds of rotation and, thereby, very high ventilation rates without requiring oversizing of the drive bodies. In addition, thermostructural composite materials have a very high resistance to thermal shock.

Les matériaux composites thermostructuraux présentent donc des avantages importants au plan des performances, mais leur emploi est limité en raison de leur coût assez élevé. Outre les matières utilisées, le coût provient essentiellement des difficultés rencontrées pour réaliser des préformes fibreuses, notamment lorsque les pièces à fabriquer ont des formes complexes, ce qui est le cas des turbines, et de la durée des cycles de densification.Thermostructural composite materials therefore have important performance advantages, but their use is limited in because of their fairly high cost. In addition to the materials used, the cost comes from essentially difficulties encountered in making fibrous preforms, especially when the parts to be manufactured have complex shapes, which is the case of turbines, and the duration of the densification cycles.

Aussi, un but de la présente invention est de proposer une architecture de turbine particulièrement adaptée à sa réalisation en matériau composite thermostructural afin de bénéficier des avantages de ce matériau mais avec un coût de fabrication aussi réduit que possible.Also, an object of the present invention is to propose an architecture turbine particularly suitable for its production in composite material thermostructural in order to benefit from the advantages of this material but at a cost manufacturing as reduced as possible.

Selon un de ses aspects, la présente invention a pour objet un procédé de fabrication d'une turbine comprenant une pluralité de pales disposées entre deux flasques annulaires et délimitant des passages de circulation entre une couronne intérieure et une couronne extérieure, les pales et les flasques étant en matériau composite thermostructural, procédé selon lequel :

  • (a) on réalise une première pièce en une seule partie monobloc en matériau composite thermostructural formant un premier flasque et les pales en mettant en oeuvre les étapes consistant à :
    • fabriquer une première préforme fibreuse sous forme de plaque ayant des dimensions externes choisies en fonction de celles de la première pièce à réaliser,
    • densifier la première préforme fibreuse par une matrice de façon au moins partielle, de sorte que la préforme soit au moins consolidée, et
    • usiner la première préforme fibreuse au moins partiellement densifiée pour lui donner la forme de la première pièce ;
  • (b) on réalise une deuxième pièce formant le deuxième flasque en une seule partie monobloc en matériau composite thermostructural par fabrication d'une deuxième préforme fibreuse, densification de celle-ci par une matrice, et usinage pour former le deuxième flasque, et
  • (c) on assemble la turbine en appliquant la deuxième pièce contre les pales de la première pièce.
  • According to one of its aspects, the subject of the present invention is a process for manufacturing a turbine comprising a plurality of blades arranged between two annular flanges and delimiting circulation passages between an inner ring and an outer ring, the blades and side plates being of thermostructural composite material, process according to which:
  • (a) a first part is produced in a single monobloc part made of thermostructural composite material forming a first flange and the blades by implementing the steps consisting in:
    • manufacture a first fibrous preform in the form of a plate having external dimensions chosen as a function of those of the first part to be produced,
    • densifying the first fibrous preform with a matrix at least partially, so that the preform is at least consolidated, and
    • machining the first at least partially densified fiber preform to give it the shape of the first part;
  • (b) a second part is formed forming the second flange in a single monobloc part made of thermostructural composite material by manufacturing a second fibrous preform, densification of the latter by a matrix, and machining to form the second flange, and
  • (c) the turbine is assembled by applying the second part against the blades of the first part.
  • Ainsi, la turbine est pour sa partie essentielle formée de seulement deux pièces, ce qui simplifie l'assemblage, et chaque pièce est réalisée à partir d'une préforme fibreuse ayant une forme simple. Il en est ainsi pour la deuxième pièce, puisqu'elle forme simplement un flasque, de sorte que la deuxième préforme fibreuse peut être constituée par une plaque. Quant à la première pièce, elle est réalisée par usinage à partir d'une première préforme constituée par une plaque. De préférence, la première préforme fibreuse est usinée à l'état consolidé, partiellement densifié, et la densification par la matrice est poursuivie après usinage.Thus, the turbine is for its essential part formed of only two pieces, which simplifies assembly, and each piece is made from a fibrous preform having a simple shape. This is so for the second piece, since it simply forms a flange, so that the second fibrous preform can be constituted by a plate. As for the first piece, it is produced by machining from a first preform constituted by a plate. Preferably, the first fibrous preform is machined in the consolidated state, partially densified, and densification by the matrix is continued after machining.

    L'usinage de la première pièce entraíne des pertes substantielles de matière, de sorte que la présente invention convient plus particulièrement, bien que non exclusivement, pour des turbines de petit diamètre. Par turbine de petit diamètre, on entend ici une turbine dont le diamètre de la couronne extérieure ne dépasse pas environ 500 mm.The machining of the first part leads to substantial losses of material, so that the present invention is more particularly suitable, although that not exclusively, for small diameter turbines. By small turbine diameter, here we mean a turbine whose diameter of the outer ring does not not exceed about 500 mm.

    Selon une autre particularité avantageuse du procédé conforme à l'invention, la turbine est assemblée uniquement par serrage mutuel de la première pièce et de la deuxième pièce au niveau de leurs parties centrales. Il a été constaté que ce seul serrage assure l'assemblage de la turbine dans toutes configurations de fonctionnement, grâce à la rigidité du matériau composite. Ceci est d'autant plus vrai que le diamètre de la turbine est plus petit. Il n'est donc pas nécessaire de faire appel à des éléments de serrage du type vis pénétrant dans les deux pièces. Il s'agit d'un avantage important car, sinon, la visserie utilisée aurait dû être en matériau composite, pour tenir aux températures élevées et avoir un coefficient de dilatation thermique compatible avec celui des pièces assemblées, ce qui aurait alourdi le coût de façon significative.According to another advantageous feature of the process according to the invention, the turbine is assembled only by mutual tightening of the first room and the second room at their central parts. It was found that this single tightening ensures the assembly of the turbine in all configurations of operation, thanks to the rigidity of the composite material. This is all the more true that the diameter of the turbine is smaller. So there is no need to do use of screw type clamping elements penetrating the two parts. It's about an important advantage because, otherwise, the screws used should have been made of material composite, to withstand high temperatures and have a coefficient of expansion thermal compatible with that of the assembled parts, which would have increased the cost significantly.

    Les préformes fibreuses sont réalisées en utilisant des techniques connues en soi. Ainsi, la première préforme fibreuse, de même que la deuxième, peut être réalisée à partir d'un empilement à plat de strates d'une texture fibreuse bidimensionnelle et liaison des strates entre elles par aiguilletage.The fibrous preforms are made using techniques known per se. So the first fiber preform, as well as the second, can be made from a flat stack of strata with a fibrous texture two-dimensional and bonding of the strata together by needling.

    En variante, et du fait qu'elle doit avoir une épaisseur assez grande, la première préforme fibreuse peut être réalisée à partir d'un enroulement d'une bande de texture fibreuse bidimensionnelle en couches superposées et liaison des couches entre elles par aiguilletage.Alternatively, and because it must have a fairly large thickness, the first fibrous preform can be produced from a winding of a two-dimensional fibrous texture strip in superimposed layers and bonding of layers together by needling.

    Selon un autre de ses aspects, l'invention a pour objet une turbine qui comporte une première et une deuxième pièce, chacune réalisée en une seule partie monobloc, la première pièce formant un premier flasque et des pales qui délimitent des passages de circulation entre une couronne intérieure et une couronne extérieure, tandis que la deuxième pièce forme un deuxième flasque appliqué contre les pales de la première pièce, la première et la deuxième pièce étant chacune réalisée en matériau composite thermostructural.According to another of its aspects, the invention relates to a turbine which has a first and a second part, each made in one monobloc part, the first part forming a first flange and blades which delimit circulation passages between an inner ring and a outer crown, while the second piece forms a second flange applied against the blades of the first part, the first and the second part each being made of thermostructural composite material.

    Avantageusement, elles sont assemblées uniquement par serrage mutuel au niveau de leurs parties centrales.Advantageously, they are assembled only by tightening mutual at the level of their central parts.

    D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés, sur lesquels :

    • la figure 1 est une vue en coupe montrant une turbine conforme à l'invention montée sur un arbre ;
    • la figure 2 est une vue en perspective montrant une première pièce constitutive de la turbine de la figure 1 ;
    • la figure 3 est une vue en coupe partielle selon les plans III-III de la figure 2 ;
    • la figure 4 montre des étapes successives d'élaboration d'une première pièce constitutive de la turbine de la figure 1 ;
    • la figure 5 montre des étapes successives relatives à une variante de fabrication de préforme pour l'élaboration d'une première pièce constitutive de la turbine de la figure 1 ;
    • la figure 6 montre des étapes successives d'élaboration d'une deuxième pièce constitutive de la turbine de la figure 1 ;
    • la figure 7 est une vue en coupe montrant une variante de réalisation d'une turbine selon l'invention ; et
    • la figure 8 est une vue en coupe montrant une autre variante de réalisation d'une turbine selon l'invention.
    Other features and advantages of the invention will emerge on reading the description given below, by way of indication but not limitation, with reference to the appended drawings, in which:
    • Figure 1 is a sectional view showing a turbine according to the invention mounted on a shaft;
    • Figure 2 is a perspective view showing a first component of the turbine of Figure 1;
    • Figure 3 is a partial sectional view along planes III-III of Figure 2;
    • Figure 4 shows successive stages in the development of a first component part of the turbine of Figure 1;
    • Figure 5 shows successive steps relating to a variant preform manufacturing for the development of a first component of the turbine of Figure 1;
    • Figure 6 shows successive stages in the development of a second component part of the turbine of Figure 1;
    • Figure 7 is a sectional view showing an alternative embodiment of a turbine according to the invention; and
    • Figure 8 is a sectional view showing another alternative embodiment of a turbine according to the invention.

    La figure 1 illustre en coupe une turbine 10 comprenant deux pièces monoblocs 20, 30 en matériau composite thermostructural assemblées par serrage mutuel sur un arbre 12. Le matériau constitutif des pièces 20 et 30 est par exemple un matériau composite carbone-carbone (C-C) ou un matériau composite à matrice céramique tel qu'un matériau composite C-SiC (renfort en fibres de carbone et matrice en carbure de silicium).Figure 1 illustrates in section a turbine 10 comprising two parts monoblocks 20, 30 of thermostructural composite material assembled by clamping mutual on a shaft 12. The material of the parts 20 and 30 is for example a carbon-carbon composite material (C-C) or a composite material with ceramic matrix such as a C-SiC composite material (fiber reinforcement carbon and silicon carbide matrix).

    La pièce 20 (figures 1 à 3) comprend une pluralité de pales 22 qui sont situées sur une face interne 24a d'un flasque annulaire 24 en forme de disque. Les pales 22 s'étendent entre la circonférence extérieure et la circonférence intérieure du flasque 24, sensiblement perpendiculairement à celui-ci. Les talons 22a des pales 22 se raccordent à une partie centrale formant moyeu 26 dont le diamètre intérieur est sensiblement inférieur à celui du flasque 24. Le moyeu 26 a en outre une épaisseur inférieure à la longueur des pales 22, et est espacé du flasque 24, le long de l'axe A de la turbine, de sorte que la face externe 24b du flasque, d'une part, et la face externe 26b du moyeu avec les bords longitudinaux 22b des pales 22, d'autre part, forment les faces opposées de la pièce 20.The part 20 (Figures 1 to 3) comprises a plurality of blades 22 which are located on an internal face 24 a of an annular flange 24 in the form of a disc. The blades 22 extend between the outer circumference and the inner circumference of the flange 24, substantially perpendicular thereto. The heels 22 has blades 22 are connected to a central part forming a hub 26 whose internal diameter is substantially less than that of the flange 24. The hub 26 also has a thickness less than the length of the blades 22, and is spaced from the flange 24, along the axis A of the turbine, so that the external face 24 b of the flange, on the one hand, and the external face 26 b of the hub with the longitudinal edges 22 b of the blades 22, on the other hand, form the opposite faces of the part 20.

    La pièce 30 constitue un flasque annulaire en forme de disque dont le diamètre extérieur est égal à celui du flasque 24 et dont le diamètre intérieur est égal à celui du moyeu 26.The part 30 constitutes an annular flange in the form of a disc, the outer diameter is equal to that of the flange 24 and whose inner diameter is equal to that of hub 26.

    La pièce 30 est appliquée contre la face externe 26b du moyeu 26 et contre les bords longitudinaux 22b des pales 22. Le serrage mutuel des pièces 20 et 30 est réalisé par blocage entre un épaulement 12a de l'arbre 12 et une bague 14, au moyen d'un écrou 15.The part 30 is applied against the external face 26 b of the hub 26 and against the longitudinal edges 22 b of the blades 22. The mutual tightening of the parts 20 and 30 is carried out by blocking between a shoulder 12 a of the shaft 12 and a ring 14, by means of a nut 15.

    L'aspiration par la turbine est réalisée à partir de l'espace 16 qui est situé entre le flasque 24 et le moyeu 26, et est entouré par la couronne intérieure 17 de la turbine au niveau des pieds des pales 22. L'éjection du fluide aspiré s'effectue à travers la couronne extérieure 19 de la turbine au niveau des extrémités de pales 22, après circulation à travers les passages 18 délimités par les pales 22 et les flasques 24 et 30.The suction by the turbine is carried out from the space 16 which is located between the flange 24 and the hub 26, and is surrounded by the inner ring 17 of the turbine at the feet of the blades 22. The suction fluid is ejected through the outer ring 19 of the turbine at the blade ends 22, after circulation through the passages 18 delimited by the blades 22 and the flanges 24 and 30.

    La rigidité du matériau composite thermostructural fait que le seul effort de serrage au niveau des parties centrales des pièces 20 et 30 suffit à les maintenir assemblées, y compris pendant le fonctionnement de la turbine, aucun décollement n'étant observé. Comme déjà indiqué, ceci est d'autant plus vrai que la présente invention s'applique de façon préférentielle à des turbines de petit diamètre, c'est-à-dire de diamètre extérieur ne dépassant pas environ 500 mm.The rigidity of the thermostructural composite material means that the only clamping force at the central parts of parts 20 and 30 is sufficient to maintain assemblies, including during turbine operation, no detachment not observed. As already indicated, this is all the more true since the present invention applies preferably to small turbines diameter, that is to say an outside diameter not exceeding about 500 mm.

    Comme montré sur la figure 1, les surfaces du moyeu 26 et du flasque 30 sur lesquelles s'appuient l'épaulement 12a et la bague 14 ont une forme tronconique, de même que les faces correspondantes de l'épaulement 12a et de la bague 14. Ces faces d'appui tronconiques ont des sommets sensiblement confondus situés sur l'axe A de la turbine. De la sorte, des différences de dilatation d'origine thermique entre, d'une part, les pièces 20 et 30 et, d'autre part, l'arbre 12 et la bague 14, se traduiront par un glissement, sans effet destructif.As shown in FIG. 1, the surfaces of the hub 26 and of the flange 30 on which the shoulder 12 a and the ring 14 are supported have a frustoconical shape, as do the corresponding faces of the shoulder 12 a and of the ring 14. These frustoconical bearing faces have substantially coincident vertices located on the axis A of the turbine. In this way, thermal expansion differences between, on the one hand, the parts 20 and 30 and, on the other hand, the shaft 12 and the ring 14, will result in a slip, without destructive effect.

    Des étapes successives d'un processus de fabrication de la pièce 20 sont montrées sur la figure 4. La pièce 20 est réalisée à partir d'une structure fibreuse en forme de plaque 200 (phase 41). Une telle structure est fabriquée par exemple par empilement à plat de strates de texture fibreuse bidimensionnelle, telle que nappe de fils ou de câbles, tissu,..., et liaison des strates entre elles par aiguilletage. Un procédé de fabrication de structures fibreuses de ce type est décrit dans le document FR-A-2 584 106.Successive stages of a part 20 manufacturing process are shown in Figure 4. The part 20 is made from a structure fibrous plaque-shaped 200 (phase 41). Such a structure is manufactured by example by flat stacking of layers of two-dimensional fibrous texture, such as sheet of wires or cables, fabric, ..., and connection of the strata together by needling. A method of manufacturing such fibrous structures is described in document FR-A-2 584 106.

    Une première préforme 201 de forme annulaire est découpée dans la plaque 200, les dimensions de la préforme 201 étant choisies en fonction de celles de la pièce 20 à réaliser (phase 42).A first preform 201 of annular shape is cut in the plate 200, the dimensions of the preform 201 being chosen as a function of those of the part 20 to be produced (phase 42).

    La préforme 201 est soumise à une première étape de densification par la matrice du matériau composite thermostructural à réaliser (phase 43). La densification est réalisée de manière à consolider la préforme, c'est-à-dire à lier entre elles les fibres de la préforme de façon suffisante pour permettre la manipulation et l'usinage de la préforme consolidée. La densification est réalisée de façon connue en soi par infiltration chimique en phase vapeur, ou par voie liquide, c'est-à-dire imprégnation par un précurseur de la matrice à l'état liquide et transformation du précurseur.The preform 201 is subjected to a first densification step by the matrix of the thermostructural composite material to be produced (phase 43). Densification is made so as to consolidate the preform, that is to say to link between them the fibers of the preform sufficiently to allow handling and the machining of the consolidated preform. Densification is carried out in a known manner per se by chemical vapor infiltration, or by liquid, that is to say impregnation with a precursor of the matrix in the liquid state and transformation of the precursor.

    La préforme consolidée est soumise à une première phase d'usinage au cours de laquelle les pales sont formées à partir d'une face de la préforme (phase 44), puis à une deuxième phase d'usinage au cours de laquelle elle est évidée en son centre à partir de la face opposée, de manière à former la zone d'aspiration en laissant subsister la partie de moyeu (phase 45).The consolidated preform is subjected to a first machining phase at during which the blades are formed from one face of the preform (phase 44), then to a second machining phase during which it is hollowed out in its center from the opposite side, so as to form the suction zone in leaving the hub part (phase 45).

    La préforme consolidée et usinée 202 est ensuite soumise à un ou plusieurs cycles de densification jusqu'à obtenir le degré souhaité de densification par la matrice (phase 46).The consolidated and machined preform 202 is then subjected to one or more several densification cycles until the desired degree of densification is obtained by the matrix (phase 46).

    La préforme ainsi finalement densifiée est soumise à un usinage final pour l'amener aux cotes précises de la pièce 20 (phase 47).The preform thus finally densified is subjected to a final machining to bring it to the precise dimensions of part 20 (phase 47).

    On a envisagé ci-avant l'usinage de la préforme après consolidation et avant densification complète, ce qui favorise la densification finale puisque celle-ci est plus difficile à réaliser de façon homogène dans des structures fibreuses épaisses. Il n'est toutefois pas exclu de réaliser l'usinage de la préforme après densification complète.We have considered above the machining of the preform after consolidation and before complete densification, which favors final densification since this is more difficult to achieve homogeneously in structures thick fibrous. It is not however excluded to carry out the machining of the preform after complete densification.

    Suivant une autre variante (figure 5), la préforme de la pièce 20 est réalisée à partir d'une structure fibreuse cylindrique 200' fabriquée par bobinage d'une bande de texture fibreuse bidimensionnelle en couches superposées sur un mandrin et liaison des couches entre elles par aiguilletage (phase 51). Un procédé de fabrication de structures fibreuses de ce type est décrit dans le document FR-A-2 584 107. According to another variant (FIG. 5), the preform of the part 20 is made from a cylindrical fibrous structure 200 'produced by winding a strip of two-dimensional fibrous texture in layers superimposed on a mandrel and bonding of the layers together by needling (phase 51). A method for manufacturing fibrous structures of this type is described in the document FR-A-2 584 107.

    Des préformes 201' de forme annulaire sont découpées dans la structure cylindrique 200' suivant des plans radiaux (phase 52).Preforms 201 'of annular shape are cut in the cylindrical structure 200 ′ along radial planes (phase 52).

    Chaque préforme 201' est ensuite traitée de la même façon que la préforme 201 de la figure 4.Each preform 201 ′ is then treated in the same way as the preform 201 of FIG. 4.

    Comme montré par la figure 6, la pièce 30 est réalisée à partir d'une structure fibreuse en forme de plaque 300. Cette structure est par exemple fabriquée par empilement à plat de strates de texture fibreuse bidimensionnelle et liaison des strates entre elles par aiguilletage (phase 61).As shown in Figure 6, the part 30 is made from a fibrous structure in the form of a plate 300. This structure is for example manufactured by flat stacking of layers of two-dimensional fibrous texture and connection of the strata together by needling (phase 61).

    Une préforme 301 de forme annulaire est découpée dans la plaque 300, les dimensions de la préforme étant choisies en fonction de celles de la pièce 30 à réaliser (phase 62).A preform 301 of annular shape is cut from the plate 300, the dimensions of the preform being chosen as a function of those of the part 30 to perform (phase 62).

    La préforme 301 est densifiée par la matrice, la densification étant réalisée par infiltration chimique en phase vapeur ou par voie liquide (phase 63).The preform 301 is densified by the matrix, the densification being performed by chemical vapor or liquid infiltration (phase 63).

    La préforme densifiée est soumise à un usinage final afin d'être amenée aux cotes de la pièce 30 (phase 64).The densified preform is subjected to final machining in order to be brought at the dimensions of part 30 (phase 64).

    D'autres formes de réalisation d'une turbine utilisant deux pièces monoblocs en matériau composite thermostructural définissant deux flasques des pales et un moyeu pourront être adoptées.Other embodiments of a turbine using two parts monoblocks of thermostructural composite material defining two flanges of the blades and a hub can be adopted.

    La turbine 110 de la figure 7 est formée essentiellement de deux pièces 120, 130 en matériau composite thermostructural. Elle se distingue de la turbine de la figure 1 en ce que, dans la pièce 120, les pales 122 ont une hauteur décroissante entre la couronne intérieure 117 et la couronne extérieure 119 de la turbine. Cette hauteur décroissante permet de compenser le fait que la largeur des passages 118 bordés par les pales 122 croít entre la couronne intérieure et la couronne extérieure, de manière que les sections d'entrée et de sortie des passages 118 soient sensiblement égales.The turbine 110 of FIG. 7 is formed essentially of two parts 120, 130 of thermostructural composite material. It is distinguished from the turbine of Figure 1 in that in the part 120, the blades 122 have a decreasing height between the inner ring 117 and the outer ring 119 of the turbine. This decreasing height compensates for the fact that the width of the passages 118 bordered by the blades 122 crosses between the inner ring and the outer ring, so that the inlet and outlet sections of the passages 118 are substantially equal.

    Le flasque 130 appliqué contre la pièce 120 présente alors une forme de disque dans sa partie centrale 130a appliquée contre le moyeu 126 et une forme tronconique dans sa partie périphérique appliquée contre les pales 122.The 130 applied against the flange part 120 has then a disk-shaped in its central part 130 has applied against the hub 126 and a frustoconical shape in its circumferential portion applied against the blades 122.

    Pour la réalisation du flasque 130, on peut partir d'une préforme fibreuse annulaire en forme de disque qui est mise dans la forme voulue au moyen d'un outillage, et consolidée par densification partielle en étant maintenue dans l'outillage. Après consolidation, la préforme peut être retirée de l'outillage afin de poursuivre la densification.To make the flange 130, it is possible to start from a preform disc-shaped annular fibrous which is formed into the desired shape by means of of a tool, and consolidated by partial densification while being maintained in the tools. After consolidation, the preform can be removed from the tooling in order to continue densification.

    Comme déjà indiqué, la présente invention s'applique plus particulièrement aux turbines ayant des diamètres relativement petits. Le débit de la turbine peut être augmenté ou diminué, pour un diamètre donné, en augmentant ou diminuant la hauteur des passages, c'est-à-dire l'épaisseur de la turbine. La perte de matière lors de l'usinage des pales étant d'autant plus grande que leur hauteur est plus élevée, il est préférable pour des raisons de coût de limiter l'épaisseur de la turbine, par exemple en ne dépassant pas environ 100 mm.As already indicated, the present invention applies more particularly turbines with relatively small diameters. The flow of the turbine can be increased or decreased, for a given diameter, by increasing or reducing the height of the passages, that is to say the thickness of the turbine. The loss of material during the machining of the blades being all the greater as their height is higher, it is preferable for cost reasons to limit the thickness of the turbine, for example by not exceeding about 100 mm.

    Une solution pour augmenter le débit consiste alors à accoupler deux turbines 10', 10" sur un même axe comme illustré par la figure 8. Chaque turbine 10', 10" comprend deux pièces monoblocs en matériau composite thermostructural, une première pièce 20', 20" formant pales 22', 22", flasque 24', 24" et moyeu 26', 26", et une deuxième pièce 30', 30" formant flasque.A solution to increase the flow then consists in coupling two 10 ', 10 "turbines on the same axis as illustrated in Figure 8. Each turbine 10 ', 10 "includes two one-piece pieces of thermostructural composite material, a first part 20 ', 20 "forming blades 22', 22", flange 24 ', 24 "and hub 26', 26 ", and a second part 30 ', 30" forming a flange.

    La turbine 10' est semblable à la turbine 10 de la figure 1, tandis que la turbine 10" s'en distingue par la disposition des pales. En effet, la disposition des pales 22" sur la pièce 20" est symétrique par rapport à un plan radial de la disposition des pales 22' sur la pièce 20'. De la sorte, lorsque les turbines 10', 10" sont accolées par contact mutuel entre les faces externes des flasques 24', 24", les pales 22', 22" définissent des passages de circulation orientés de la même façon autour de l'axe commun aux turbines.The turbine 10 ′ is similar to the turbine 10 in FIG. 1, while the 10 "turbine is distinguished by the arrangement of the blades. Indeed, the arrangement of the blades 22 "on the part 20" is symmetrical with respect to a radial plane of the arrangement of blades 22 'on part 20'. In this way, when the turbines 10 ', 10 " are joined by mutual contact between the external faces of the flanges 24 ', 24 ", the blades 22 ', 22 "define circulation passages oriented in the same way around the axis common to the turbines.

    Les pièces 20', 30', 30" et 20" sont assemblées par serrage mutuel sur un arbre commun 12' entre un épaulement 12'a et une bague 14', au moyen d'un écrou 15'. Les surfaces des moyeux 26' et 26" sur lesquelles s'appuient l'épaulement 12'a et la bague 14' ont une forme tronconique, de même que les faces correspondantes de l'épaulement 12'a et de la bague 14'. Une bague supplémentaire 14" à section triangulaire est interposée entre les flasques 30' et 30", les surfaces de ceux-ci s'appuyant sur la bague 14" ayant une forme tronconique. Les surfaces d'appui tronconiques du flasque 30' sur la bague 14" et du moyeu 26' sur l'épaulement 12'a ont des sommets sensiblement confondus situés sur l'axe des turbines, de même que les surfaces d'appui du flasque 30" sur la bague 14" et du moyeu 26" sur la bague 14'. De la sorte, des variations dimensionnelles d'origine thermique entre les pièces des turbines, d'une part, et l'arbre et les bagues de serrage, d'autre part, peuvent être compensées par glissement parallèlement aux surfaces d'appui tronconiques, de la même façon qu'avec la turbine 10 de la figure 1.The parts 20 ', 30', 30 "and 20" are assembled by mutual tightening on a common shaft 12 'between a shoulder 12' a and a ring 14 ', by means of a nut 15'. The surfaces of the hubs 26 'and 26 "on which the shoulder 12' a and the ring 14 'rest have a frustoconical shape, as do the corresponding faces of the shoulder 12' a and of the ring 14 '. An additional ring 14 "of triangular section is interposed between the flanges 30 'and 30", the surfaces of these bearing on the ring 14 "having a frustoconical shape. The frustoconical bearing surfaces of the flange 30 'on the ring 14 "and of the hub 26' on the shoulder 12 ' a have substantially coincident vertices situated on the axis of the turbines, as do the bearing surfaces of the flange 30 "on the ring 14" and the hub 26 "on the ring 14 '. In this way, dimensional variations of thermal origin between the parts of the turbines, on the one hand, and the shaft and the clamping rings, on the other hand, can be compensated for by sliding parallel to the frustoconical bearing surfaces, in the same way as with the turbine 10 in FIG. 1.

    Claims (16)

    1. A method of manufacturing a turbine comprising a plurality of blades disposed between two end plates, the blades and the end plates being made of thermostructural composite material, in which:
      (a) a first part is made as a single one-piece part out of thermostructural composite material to constitute both a first end plate and the blades by implementing the following steps:
      a first fiber preform is fabricated in the form of a plate having outside dimensions that are selected as a function of the outside dimensions of the first part to be made;
      the first fiber preform is at least partially densified by a matrix so that the preform is at least consolidated; and
      the at least partially densified first fiber preform is machined to give it the shape of the first part;
      (b) a second part forming the second end plate is made as a single one-piece part out of thermostructural composite material by fabricating a second fiber preform, by densifying it with a matrix, and by machining it to form the second end plate; and
      (c) the turbine is assembled by applying the second part against the blades of the first part.
    2. A method according to claim 1, characterised in that the first fiber preform is machined in the partially densified consolidated state, and matrix densification is continued after machining.
    3. A method according to claim 1 or 2, characterised in that the machining of the first fiber preform in the form of an at least partially densified plate comprises making the blades by machining from one face of the plate and making a suction zone by hollowing out a central portion of the plate from the opposite face thereof, while leaving a central hub.
    4. A method according to any one of claims 1 to 3, characterised in that the first fiber preform is made from a flat stack of plies of a two-dimensional fiber fabric with the plies being linked together by needling.
    5. A method according to any one of claims 1 to 3, characterised in that the first fiber preform is made by rolling a strip of two-dimensional fiber fabric into superposed layers with the layers being linked together by needling.
    6. A method according to any one of claims 1 to 5, characterised in that the second fiber preform is made from a flat stack of plies of a two-dimensional fiber fabric and the plies are linked together by needling.
    7. A method according to any one of claims 1 to 6, characterised in that the turbine is assembled by clamping together the first part and the second part solely in the central portions thereof.
    8. A turbine comprising a first part and a second part, each of the parts being made as a single one-piece part, the first part (20) forming both a first end plate (24) and the blades (22) defining flow passages between an inner ring (17) and an outer ring (19), while the second part forms the second end plate (30) which is applied against the blades (22) of the first part,
      characterized in that the first part and the second part are made of thermostructural composite material.
    9. A turbine according to claim 8, characterised in that the first part (20) and the second part (30) are assembled to each other solely by clamping their central portions together.
    10. A turbine according to claim 8 or 9, characterised in that, in the first part, the blades (22) extend between the outer circumference and the inner circumference on one side of a disk-shaped annular part forming the first end plate (24), and are connected, at their roots, to a hub-forming central portion (26).
    11. A turbine according to claim 10, characterised in that the thickness of the hub-forming central portion (26) is smaller than the width of the blades (22).
    12. A turbine according to claim 10 or 11, characterised in that, in the first part, the portion forming the annular end plate (24) and the portion forming the hub (26) occupy two opposite faces of the part.
    13. A turbine according to any one of claims 10 to 12, characterised in that, in the first part, the hub-forming central portion (26) has an inside diameter that is smaller than that of the annular portion forming the end plate (24).
    14. A turbine according to any one of claims 8 to 13, characterised in that the first and second parts (20, 30) are assembled together by clamping exerted against bearing surfaces belonging respectively to the first part and to the second part, located in the central portions thereof, said bearing surfaces being frustoconical in shape and having apexes that substantially coincide and are situated on the axis of the turbine.
    15. A turbine according to any one of claims 8 to 14, characterised in that the height of the blades (22) tapers from the inner ring to the outer ring so as to define passages having outlet sections that are substantially equal to their inlet sections.
    16. A turbine according to any one of claims 8 to 15, characterised in that it comprises a plurality of coaxial assemblies each comprising a first part (20', 20") and a second part (30', 30") assembled to one another solely by being clamped together via their central portions.
    EP96401835A 1995-08-30 1996-08-28 High temperature composite material impellor, particularly of small diameter, and its manufacturing method Expired - Lifetime EP0761977B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9510205 1995-08-30
    FR9510205A FR2738303B1 (en) 1995-08-30 1995-08-30 TURBINE OF THERMOSTRUCTURAL COMPOSITE MATERIAL, IN PARTICULAR WITH A SMALL DIAMETER, AND METHOD FOR THE PRODUCTION THEREOF

    Publications (2)

    Publication Number Publication Date
    EP0761977A1 EP0761977A1 (en) 1997-03-12
    EP0761977B1 true EP0761977B1 (en) 2001-01-17

    Family

    ID=9482159

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96401835A Expired - Lifetime EP0761977B1 (en) 1995-08-30 1996-08-28 High temperature composite material impellor, particularly of small diameter, and its manufacturing method

    Country Status (8)

    Country Link
    US (2) US5775878A (en)
    EP (1) EP0761977B1 (en)
    JP (1) JP3484299B2 (en)
    DE (1) DE69611582T2 (en)
    ES (1) ES2155178T3 (en)
    FR (1) FR2738303B1 (en)
    RU (1) RU2141564C1 (en)
    UA (1) UA28036C2 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN103008990B (en) * 2012-12-10 2015-06-03 成都锦江电子系统工程有限公司 Miniature multi-dimensional precise cutting processing method

    Families Citing this family (28)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FI101564B (en) 1997-01-17 1998-07-15 Flaekt Woods Ab High pressure fan
    FI101565B1 (en) * 1997-01-17 1998-07-15 Flaekt Oy Evaporation fan and its impeller
    DE19708825C2 (en) * 1997-03-05 2001-11-15 Deutsch Zentr Luft & Raumfahrt Device for conveying a medium
    US6261056B1 (en) 1999-09-23 2001-07-17 Alliedsignal Inc. Ceramic turbine nozzle including a radially splined mounting surface
    US6511294B1 (en) 1999-09-23 2003-01-28 General Electric Company Reduced-stress compressor blisk flowpath
    US6270310B1 (en) 1999-09-29 2001-08-07 Ford Global Tech., Inc. Fuel pump assembly
    US6524070B1 (en) 2000-08-21 2003-02-25 General Electric Company Method and apparatus for reducing rotor assembly circumferential rim stress
    DE10042700C2 (en) * 2000-08-31 2002-10-17 Mtu Friedrichshafen Gmbh Process for the plastic deformation of a hub bore of a high-speed turbomachine part
    US6471474B1 (en) 2000-10-20 2002-10-29 General Electric Company Method and apparatus for reducing rotor assembly circumferential rim stress
    US6663343B1 (en) 2002-06-27 2003-12-16 Sea Solar Power Inc Impeller mounting system and method
    DE10233199A1 (en) 2002-07-22 2004-02-05 Dürr Systems GmbH Turbine motor of a rotary atomizer
    JP4504860B2 (en) * 2005-04-05 2010-07-14 株式会社丸山製作所 Impeller for centrifugal blower
    US20070096589A1 (en) * 2005-10-31 2007-05-03 York Michael T Electric machine rotor fan and pole retention feature
    US7687952B2 (en) * 2006-03-30 2010-03-30 Remy Technologies, L.L.C. Brushless alternator with stationary shaft
    CN100374686C (en) * 2006-08-14 2008-03-12 吴法森 Energy-gathering pulse type steam turbine
    JP4432989B2 (en) * 2007-03-16 2010-03-17 ソニー株式会社 Centrifugal impeller, fan device and electronic equipment
    IT1394295B1 (en) * 2009-05-08 2012-06-06 Nuovo Pignone Spa CENTRIFUGAL IMPELLER OF THE CLOSED TYPE FOR TURBOMACCHINE, COMPONENT FOR SUCH A IMPELLER, TURBOMACCHINA PROVIDED WITH THAT IMPELLER AND METHOD OF REALIZING SUCH A IMPELLER
    IT1397058B1 (en) 2009-11-23 2012-12-28 Nuovo Pignone Spa CENTRIFUGAL IMPELLER MOLD, MOLD INSERTS AND METHOD TO BUILD A CENTRIFUGAL IMPELLER
    IT1397057B1 (en) 2009-11-23 2012-12-28 Nuovo Pignone Spa CENTRIFUGAL AND TURBOMACHINE IMPELLER
    DE102010011486A1 (en) * 2010-03-16 2011-09-22 Bosch Mahle Turbo Systems Gmbh & Co. Kg Rotor for a charging device
    TWM398514U (en) * 2010-09-07 2011-02-21 Chun-Chieh Chen A sort of transmission
    ITCO20110064A1 (en) 2011-12-14 2013-06-15 Nuovo Pignone Spa ROTARY MACHINE INCLUDING A ROTOR WITH A COMPOSITE IMPELLER AND A METAL SHAFT
    ITCO20130067A1 (en) 2013-12-17 2015-06-18 Nuovo Pignone Srl IMPELLER WITH PROTECTION ELEMENTS AND CENTRIFUGAL COMPRESSOR
    WO2015122799A1 (en) * 2014-02-11 2015-08-20 Михаил Валерьевич КОШЕЧКИН Gas turbine installation
    JP5884844B2 (en) * 2014-02-21 2016-03-15 株式会社ノーリツ Water heater
    US9933185B2 (en) * 2014-02-24 2018-04-03 Noritz Corporation Fan and water heater provided with the same, and impeller and water heater provided with the same
    US11643948B2 (en) * 2019-02-08 2023-05-09 Raytheon Technologies Corporation Internal cooling circuits for CMC and method of manufacture
    CN111975290B (en) * 2020-07-23 2022-02-25 哈尔滨电气动力装备有限公司 Nuclear power main pump impeller mounting process

    Family Cites Families (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB813133A (en) * 1956-08-09 1959-05-06 Ralph Edgar Smart Improvements in and relating to pump impellers
    GB553747A (en) * 1940-12-17 1943-06-03 Johann Fullemann Improvements in and relating to impellers for blowers
    FR1143291A (en) * 1954-12-24 1957-09-27 Thomson Houston Comp Francaise Assembly of a paddle wheel
    US3285187A (en) * 1965-11-05 1966-11-15 Msl Ind Inc Impeller for use in centrifugal pump or blower and a method of manufacture thereof
    US3730641A (en) * 1972-03-10 1973-05-01 Flint & Walling Inc Centrifugal pumps
    US3905723A (en) * 1972-10-27 1975-09-16 Norton Co Composite ceramic turbine rotor
    US3845903A (en) * 1973-08-15 1974-11-05 Dunham Bush Inc One piece radial vane diffuser and method of manufacturing the same
    JPS5679602U (en) * 1979-11-22 1981-06-27
    US4355954A (en) * 1980-07-18 1982-10-26 The Maytag Company Pump impeller
    US4465434A (en) * 1982-04-29 1984-08-14 Williams International Corporation Composite turbine wheel
    JPS59196901A (en) * 1983-04-25 1984-11-08 Ebara Corp Sealed impeller made of ceramics
    FR2584106B1 (en) * 1985-06-27 1988-05-13 Europ Propulsion METHOD FOR MANUFACTURING THREE-DIMENSIONAL STRUCTURES BY NEEDLEING PLANE LAYERS OF SUPERIMPOSED FIBROUS MATERIAL AND FIBROUS MATERIAL USED FOR THE IMPLEMENTATION OF THE PROCESS
    FR2584107B1 (en) * 1985-06-27 1988-07-01 Europ Propulsion METHOD FOR MANUFACTURING THREE-DIMENSIONAL REVOLUTION STRUCTURES BY NEEDLEING LAYERS OF FIBROUS MATERIAL AND MATERIAL USED FOR THE IMPLEMENTATION OF THE PROCESS
    US4862763A (en) * 1984-01-09 1989-09-05 Ltv Aerospace & Defense Company Method and apparatus for manufacturing high speed rotors
    US4634344A (en) * 1984-08-03 1987-01-06 A. R. Wilfley And Sons, Inc. Multi-element centrifugal pump impellers with protective covering against corrosion and/or abrasion
    JPS61109608A (en) * 1984-11-01 1986-05-28 Mitsubishi Heavy Ind Ltd Method of machining impeller
    DE4022467C3 (en) * 1990-07-14 1995-08-31 Vdo Schindling Delivery unit, in particular for the delivery of fuel
    JPH05865A (en) * 1991-03-15 1993-01-08 Nissan Motor Co Ltd Turbine parts and its production
    FR2703111B1 (en) * 1993-03-25 1995-06-30 Ozen Sa ROTOR FOR PUMP COMPRISING TWO WELDED ASSEMBLIES, OBTAINED BY INJECTION MOLDING OF THERMOPLASTIC MATERIALS, AND METHOD FOR MANUFACTURING SUCH A ROTOR.
    US5348442A (en) * 1993-08-18 1994-09-20 General Motors Corporation Turbine pump
    JPH07223875A (en) * 1994-02-14 1995-08-22 Ishikawajima Harima Heavy Ind Co Ltd Production of fiber-reinforced ceramic composite material
    US5531633A (en) * 1994-03-24 1996-07-02 Ingersoll-Rand Company Method of machining a metal workpiece

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN103008990B (en) * 2012-12-10 2015-06-03 成都锦江电子系统工程有限公司 Miniature multi-dimensional precise cutting processing method

    Also Published As

    Publication number Publication date
    US6029347A (en) 2000-02-29
    DE69611582D1 (en) 2001-02-22
    RU2141564C1 (en) 1999-11-20
    JP3484299B2 (en) 2004-01-06
    US5775878A (en) 1998-07-07
    FR2738303B1 (en) 1997-11-28
    DE69611582T2 (en) 2001-08-23
    ES2155178T3 (en) 2001-05-01
    JPH09125901A (en) 1997-05-13
    EP0761977A1 (en) 1997-03-12
    FR2738303A1 (en) 1997-03-07
    UA28036C2 (en) 2000-10-16

    Similar Documents

    Publication Publication Date Title
    EP0761977B1 (en) High temperature composite material impellor, particularly of small diameter, and its manufacturing method
    EP0761978B1 (en) Thermostructural composite material rotor, particularly of large diameter and its method of manufacturing
    EP2077183B1 (en) Composite flange with machined part
    EP3298246B1 (en) Turbine shroud assembly allowing a differential thermal expansion
    EP2349688B1 (en) Composite material turbine engine vane, and method for its manufacturing
    EP2245204B1 (en) Method for making parts with an insert made of a metal-matrix composite material
    FR2707902A1 (en) Process for manufacturing fiber reinforced reactor components
    EP1408237A1 (en) Turbomolecular pump
    EP0657554B1 (en) Process for preparing a circular fiberreinforced metallic workpiece
    FR2936178A1 (en) ASSEMBLY OF TITANIUM AND STEEL PARTS BY WELDING DIFFUSION
    CA2940565A1 (en) Stator section for a turbomachine and method for producing the same
    EP2961590B1 (en) Injection mould for manufacturing a rotary part made of a composite material having external flanges, in particular of a gas turbine casing
    EP3927529B1 (en) Repair or resumption of manufacture of a composite material part with fibrous three-dimensional woven reinforcement
    FR2951400A1 (en) Composite material structural part for use in e.g. floor pan of aircraft industry, has reinforcement ply provided between two one-way oriented fiber plies layers, and arranged in regular way on thickness of structural part between layers
    FR2688445A1 (en) DEPARTURE OR DRAFT FORM FOR MANUFACTURING FIBER REINFORCED METAL COATINGS OR PIECES AND PROCESS FOR MAKING SAME.
    EP0667207A1 (en) Procedure for the preparation of a circular fibre reinforced metallic piece
    FR2666262A1 (en) METHOD FOR MANUFACTURING A FIBER REINFORCED METAL PIECE
    FR2524546A1 (en) ROTOR OF TURBOMACHINE
    FR2970266A1 (en) METHOD FOR MANUFACTURING A MONOBLOC ANNULAR METAL PIECE WITH A REINFORCING INSERT IN COMPOSITE MATERIAL, AND PART OBTAINED
    EP3331657B1 (en) Method for producing a part consisting of a composite material
    FR2952943A1 (en) COMPOSITE ROLL OF ANNEAL LINE
    CA2315359C (en) Method for obtaining thin, light and rigid metal parts
    FR3033279A1 (en) TOOLS FOR SUPPORTING AND MOLDING AND METHOD FOR PRODUCING REVOLUTION PARTS IN COMPOSITE MATERIAL
    EP2483431B1 (en) High-temperature annealing line roll
    WO2014170586A1 (en) Holding and loading tool and facility for densifying porous rotating preforms

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT

    17P Request for examination filed

    Effective date: 19970505

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MO

    17Q First examination report despatched

    Effective date: 19990510

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT

    REF Corresponds to:

    Ref document number: 69611582

    Country of ref document: DE

    Date of ref document: 20010222

    ITF It: translation for a ep patent filed

    Owner name: BUZZI, NOTARO&ANTONIELLI D'OULX

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20010330

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2155178

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    26N No opposition filed
    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Ref country code: FR

    Ref legal event code: CD

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20040719

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20040723

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20040728

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20040809

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050828

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050828

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050829

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060301

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20050828

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060428

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20060428

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20050829