JPH07223875A - Production of fiber-reinforced ceramic composite material - Google Patents

Production of fiber-reinforced ceramic composite material

Info

Publication number
JPH07223875A
JPH07223875A JP6017693A JP1769394A JPH07223875A JP H07223875 A JPH07223875 A JP H07223875A JP 6017693 A JP6017693 A JP 6017693A JP 1769394 A JP1769394 A JP 1769394A JP H07223875 A JPH07223875 A JP H07223875A
Authority
JP
Japan
Prior art keywords
fiber
ceramic
layer
woven fabric
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6017693A
Other languages
Japanese (ja)
Inventor
Akitatsu Masaki
彰樹 正木
Shigeto Nishide
重人 西出
Takahito Araki
隆人 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6017693A priority Critical patent/JPH07223875A/en
Publication of JPH07223875A publication Critical patent/JPH07223875A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a manufacturing method capable of producing a fiber- reinforced ceramic composite material without performing interfacial coating in a shorter time and obtaining it at a lower cost than by a conventional method. CONSTITUTION:Reinforcing fibers 10 are gathered to form fiber bundles. The bundles are woven to form a woven cloth-laminated article 12. The woven cloth-laminated article 12 is placed in a reduced pressure atmosphere and a gaseous raw material is supplied to this atmosphere. By the reaction of the gaseous raw material, a ceramic material for a matrix is accumulated on the surface of the reinforcing fibers to form an accumulation layer 18. Subsequently, the treated woven cloth-laminated article is impregnated into a polymer for ceramic production and consecutively sintered to form a sintered layer 22 on the periphery of the reinforcing fibers. Thus, a ceramic-based matrix 23 comprising the accumulation layer 18 and the sintered layer 22 is formed on the periphery of the reinforcing fibers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維でセラミックスを強
化した構造のセラミックス複合材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic composite material having a structure in which ceramics are reinforced with fibers.

【0002】[0002]

【従来の技術】高温で高強度を発揮することで知られる
セラミックスの1つの大きな欠点は、金属材料などに比
べると靱性が低く、破断歪や破壊靱性が小さいことであ
る。そこで、この種のセラミックスの構造材料面での信
頼性を向上させる目的で、ウィスカーやセラミックス繊
維をセラミックスマトリックス中に混入して靱性を高め
た構成の繊維強化セラミックス(FRC=Fiber Reinfo
rced Ceramics)の開発が進められている。FRCは一
般に、短繊維強化型と連続繊維強化型の2種類に分類さ
れるが、連続繊維強化型のFRCの代表的な製造方法の
一例として、CVI法(ChemicalVapor Infiltration:
気相成長法)を用いた製造方法が知られている。
2. Description of the Related Art One of the major drawbacks of ceramics known to exhibit high strength at high temperatures is that they have lower toughness and lower fracture strain and fracture toughness than metal materials and the like. Therefore, for the purpose of improving the reliability of this type of ceramics in terms of structural materials, fiber reinforced ceramics (FRC = Fiber Reinfo) having whiskers or ceramic fibers mixed in a ceramic matrix to enhance toughness
rced Ceramics) is under development. FRC is generally classified into two types, short fiber reinforced type and continuous fiber reinforced type. As an example of a typical production method of continuous fiber reinforced FRC, CVI method (Chemical Vapor Infiltration:
A manufacturing method using a vapor phase growth method) is known.

【0003】この製造方法は、強化繊維を織って2次元
織物または3次元織物などの織物(織布積層成形体)を
製作し、この織布積層成形体を減圧雰囲気に設置し、減
圧雰囲気中に原料ガスを供給して高温加熱するか、ある
いは、加熱減圧雰囲気に電荷をかけてプラズマを発生さ
せて原料ガスの反応を生じさせ、反応生成物を強化繊維
の表面に蒸着し堆積させて強化繊維の外周囲を蒸着堆積
物で覆うことでマトリックスを生成させ、FRCを製造
する方法である。
According to this manufacturing method, a woven fabric (woven fabric laminated body) such as a two-dimensional woven fabric or a three-dimensional woven fabric is produced by weaving reinforcing fibers, and the woven fabric laminate formed body is placed in a reduced pressure atmosphere, and in a reduced pressure atmosphere. Raw material gas to heat the material at high temperature, or apply a charge to a heated and decompressed atmosphere to generate plasma to cause the reaction of the raw material gas, and the reaction product is vapor-deposited on the surface of the reinforcing fiber to be strengthened. This is a method of producing an FRC by forming a matrix by covering the outer periphery of the fiber with a vapor deposition deposit.

【0004】また、連続繊維型のFRCを製造する他の
方法として、前記織布積層成形体を製作した後に、織布
積層成形体をセラミックス生成用のポリマーに浸漬し、
織布積層成形体内にポリマーを含浸させたものを焼成
し、強化繊維の外部にセラミックス製のマトリックスを
形成してFRCを製造する方法(PIC法:PolymerInf
iltration Conversion)も実施されている。
As another method for producing a continuous fiber type FRC, after manufacturing the woven fabric laminated compact, the woven fabric laminated compact is immersed in a polymer for producing ceramics,
A method for manufacturing an FRC by firing a woven fabric laminate molded body impregnated with a polymer to form a ceramic matrix outside the reinforcing fibers (PIC method: PolymerInf
iltration Conversion) is also carried out.

【0005】[0005]

【発明が解決しようとする課題】ところが、前記気相成
長法を用いた製造方法を実施するには、減圧雰囲気にお
ける反応生成物の堆積に時間がかかるので、通常、FR
C部材を製造するために、3〜8カ月もの長い期間を要
する問題がある。更に、このような長い時間をかけてマ
トリックスの析出を行ったとしても、強化繊維の周囲全
体に完全に緻密な状態のマトリックスを生成させること
は困難な問題があった。また、強化繊維に用いるセラミ
ックス繊維は、通常、SiC繊維などが用いられるが、
この種の強化繊維自体が高価格であるので、前記製造期
間の長期化と相まって従来のFRCは極めて高価な材料
となってしまう問題があった。
However, in order to carry out the manufacturing method using the vapor phase growth method, it takes a long time to deposit reaction products in a reduced pressure atmosphere.
There is a problem that it takes a long period of 3 to 8 months to manufacture the C member. Furthermore, even if the matrix is deposited over such a long time, there is a problem that it is difficult to form the matrix in a completely dense state around the entire reinforcing fibers. Further, as the ceramic fiber used as the reinforcing fiber, a SiC fiber or the like is usually used,
Since this kind of reinforcing fiber itself is expensive, there is a problem that the conventional FRC becomes an extremely expensive material in combination with the prolongation of the manufacturing period.

【0006】このような背景において本発明者らは、F
RCの製造方法と実際に製造されたFRCのそれぞれに
ついて鋭意研究を重ねた結果、以下のような知見を得
た。まず、一般的に、織布積層成形体は図7に示すよう
な構造になっている。この織布積層成形体Aは、SiC
などの強化繊維1を束ねて形成された繊維束2が多数2
次元的あるいは3次元的に織り込まれて形成されてい
る。従って、織布積層成形体Aの内部には、束ねられた
強化繊維1・・・の間に存在する微細な気孔4と、織り込
まれた繊維束2・・・の間の織目部分に存在する不連続な
間隙5とが形成されている。そして、通常の織布積層成
形体Aにおいては、前記気孔4の大きさが強化繊維1の
径と同程度の数μm〜10μm程度、間隙5の厚さが織
布1枚あたりの厚さと同程度の数100〜500μm程
度、間隙5の径は繊維束の布目と同程度の数mm〜3m
m程度となっている。
[0006] In such a background, the present inventors have
As a result of earnest studies on each of the RC manufacturing method and the actually manufactured FRC, the following findings were obtained. First, in general, a woven laminated body has a structure as shown in FIG. This woven laminated body A is made of SiC.
A large number of fiber bundles 2 formed by bundling reinforcing fibers 1 such as
It is formed by being woven three-dimensionally or three-dimensionally. Therefore, in the inside of the woven laminated body A, the fine pores 4 existing between the bundled reinforcing fibers 1 ... and the textured portion existing between the woven fiber bundles 2 ... And a discontinuous gap 5 is formed. In the usual woven fabric laminated body A, the size of the pores 4 is about several μm to 10 μm, which is the same as the diameter of the reinforcing fibers 1, and the thickness of the gap 5 is the same as the thickness of one woven fabric. About several hundred to 500 μm, and the diameter of the gap 5 is about several mm to 3 m, which is about the same as the texture of the fiber bundle.
It is about m.

【0007】このような構造の織布積層成形体Aに対し
てCVI法を実施した場合、織布積層成形体中の反応条
件が一定の部分全体に渡り均一であって、強化繊維1の
表面部分から等速度でセラミックスの析出が起きると考
えると、繊維束内部の微細な気孔4をマトリックスで埋
め尽くすことはできても、その外部の大きな間隙5の部
分をCVI法によるマトリックスで埋めることは困難で
あると考えられる。一方、CVI法の応用として、織布
積層成形体に温度分布を与えつつこの温度分布状態を変
更しながら析出を行う温度勾配CVI法が実施されてい
るが、この方法において製造した繊維強化セラミックス
複合材においてもマトリックスの緻密度が高い部分と緻
密度が低い部分を生じていた。
When the CVI method is applied to the woven laminated body A having such a structure, the reaction conditions in the woven laminated body are uniform over a certain portion, and the surface of the reinforcing fiber 1 is Considering that the ceramics precipitate from the portion at a constant rate, the fine pores 4 inside the fiber bundle can be filled with the matrix, but the large voids 5 outside the portion cannot be filled with the matrix by the CVI method. Considered difficult. On the other hand, as an application of the CVI method, a temperature gradient CVI method in which a temperature distribution is applied to a woven laminated laminate and precipitation is performed while changing the temperature distribution state has been carried out. The fiber reinforced ceramic composite produced by this method is used. Also in the material, there were a part with a high density of the matrix and a part with a low density.

【0008】また、この種のFRCをCVI法を用いて
製造する場合、強化繊維とその周囲に堆積させるセラミ
ックス材料との反応を防ぐために、強化繊維の外周に予
めコーティングを施しておくことがなされている。更
に、FRCをPIC法を用いて製造する場合において
も、予め強化繊維の外周にコーティングを施しておくこ
とがなされることがある。ところが、この強化繊維に対
するコーティング処理は、CVD(化学気相蒸着)など
の手法を用いて実施されるものであるために、このコー
ティングを行うこと自体に時間がかかり、そのため、F
RCの製造時間を更に長くする一因ともなっていた。
Further, when manufacturing this type of FRC by the CVI method, in order to prevent the reaction between the reinforcing fiber and the ceramic material deposited around it, it is necessary to coat the outer periphery of the reinforcing fiber in advance. ing. Further, even when the FRC is manufactured by the PIC method, the outer periphery of the reinforcing fiber may be previously coated. However, since the coating process for the reinforcing fibers is performed by using a method such as CVD (Chemical Vapor Deposition), it takes a long time to perform the coating itself.
It has also been a factor in further increasing the RC manufacturing time.

【0009】本発明は前記事情に鑑みてなされたもので
あり、界面コーティングを省略できて従来よりも短期間
で繊維強化セラミックス複合材を製造することができ、
繊維強化セラミック複合材を従来より低コストで得るこ
とができる製造方法の提供を目的とする。
The present invention has been made in view of the above circumstances, and it is possible to omit the interfacial coating and to manufacture a fiber-reinforced ceramic composite material in a shorter period of time than before,
It is an object of the present invention to provide a manufacturing method capable of obtaining a fiber-reinforced ceramic composite material at a lower cost than ever before.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、強化繊維を集合して繊維束を
形成し、この繊維束を織り込んで織布積層成形体を形成
し、この織布積層成形体を減圧雰囲気に設置し、減圧雰
囲気中に供給した原料ガスの反応により強化繊維の表面
にマトリックスとなるセラミックス材料を堆積させて堆
積層を形成するとともに、この後に織布積層成形体にセ
ラミックス生成用ポリマーを含浸させ、続いて焼成して
強化繊維の周囲に焼成層を形成し、強化繊維の周囲に前
記堆積層と焼成層からなるセラミックス製マトリックス
を形成するものである。
In order to solve the above-mentioned problems, the invention of claim 1 forms a fiber bundle by assembling reinforcing fibers, and weaves the fiber bundle to form a woven laminated laminate. This woven laminated body is placed in a reduced pressure atmosphere, and a ceramic material serving as a matrix is deposited on the surface of the reinforcing fibers by the reaction of the raw material gas supplied in the reduced pressure atmosphere to form a deposition layer, and then the woven fabric is formed. A laminated molded body is impregnated with a ceramics-forming polymer, and subsequently fired to form a fired layer around the reinforcing fibers, and a ceramic matrix composed of the deposited layer and the fired layer is formed around the reinforcing fibers. .

【0011】請求項2記載の発明は前記課題を解決する
ために、強化繊維を集合して繊維束を形成し、この繊維
束を織り込んで織布積層成形体を形成し、この織布積層
成形体を減圧雰囲気に設置し、減圧雰囲気中に供給した
原料ガスの反応により強化繊維の表面にマトリックスと
なるセラミックス材料を堆積させる繊維強化セラミック
ス複合材の製造方法であって、前記原料ガスの反応によ
り強化繊維の表面にセラミックス材料の堆積を行って織
布積層成形体内の繊維束内の強化繊維間の微細気孔にセ
ラミックス材料のマトリックスを生成させ、この後に、
織布積層成形体にポリマーを含浸させて織布積層成形体
内の繊維束間の間隙にポリマーを充填し、この後に焼成
して前記含浸させたポリマーをマトリックス化するもの
である。
In order to solve the above-mentioned problems, the invention according to claim 2 forms a fiber bundle by assembling reinforcing fibers, and weaving the fiber bundle to form a woven fabric laminated body. A method for producing a fiber-reinforced ceramic composite material, in which a body is placed in a reduced-pressure atmosphere, and a ceramic material serving as a matrix is deposited on the surface of a reinforcing fiber by the reaction of a raw-material gas supplied in the reduced-pressure atmosphere, the method comprising: The ceramic material is deposited on the surface of the reinforcing fiber to generate a matrix of the ceramic material in the fine pores between the reinforcing fibers in the fiber bundle in the woven laminated body, and thereafter,
The woven laminated laminate is impregnated with the polymer, the gap between the fiber bundles in the woven laminated laminate is filled with the polymer, and then the mixture is fired to form the impregnated polymer into a matrix.

【0012】請求項3記載の発明は前記課題を解決する
ために、請求項1または2記載の気相成長法により繊維
束内の強化繊維間の微細気孔に対してセラミックス材料
の堆積を行うに際し、織布積層成形体の重量が50%以
上増加するまでセラミックス材料の堆積を行い、その後
にこの織布積層成形体にポリマーを含浸させるものであ
る。
In order to solve the above-mentioned problems, the invention according to claim 3 is to deposit a ceramic material on the fine pores between the reinforcing fibers in the fiber bundle by the vapor phase growth method according to claim 1 or 2. The ceramic material is deposited until the weight of the woven laminated laminate is increased by 50% or more, and then the woven laminated laminate is impregnated with a polymer.

【0013】[0013]

【作用】強化繊維からなる繊維束を織り込んで形成した
織布積層成形体に原料ガスの反応によりセラミックス材
料を堆積させた後にセラミックス形成用ポリマーを含浸
させて焼成することで強化繊維をセラミックス材料から
なるマトリックスで覆った構造の繊維強化セラミックス
複合材が得られる。この方法において、原料ガスの反応
による堆積により、繊維束内の強化繊維間の微細気孔が
相当量セラミックス材料で埋められるとともに、ポリマ
ーの含浸と焼成により、残った微細気孔とその周囲の繊
維束間の間隙がセラミックス材料で埋められる。よっ
て、織布積層成形体全体の気孔や間隙がセラミックス材
料で十分に埋め尽くされ、強度の高いものが得られる。
[Function] The reinforcing fibers are formed from the ceramic material by depositing the ceramic material by the reaction of the raw material gas on the woven laminated body formed by weaving the fiber bundle of the reinforcing fibers, impregnating the ceramic forming polymer, and then firing the polymer. A fiber-reinforced ceramic composite material having a structure covered with a matrix is obtained. In this method, the micropores between the reinforcing fibers in the fiber bundle are filled with a considerable amount of ceramic material by the deposition due to the reaction of the raw material gas, and the remaining micropores and the space between the fiber bundles around them are impregnated by the polymer impregnation and firing. The gap is filled with a ceramic material. Therefore, the pores and gaps of the entire woven laminated body are completely filled with the ceramic material, and a strong product can be obtained.

【0014】更に、セラミックス材料を強化繊維に堆積
させた場合、この堆積層は、強化繊維と、堆積層の周囲
にポリマーを含浸させて焼成した焼成層との反応を防
ぐ。従って、高い強度を有する繊維強化セラミックス複
合材を得ることができる。よって、強化繊維に対して従
来必要であったコーティング処理を省略できる。
Further, when the ceramic material is deposited on the reinforcing fiber, the deposited layer prevents the reinforcing fiber from reacting with the fired layer obtained by impregnating and firing the polymer around the deposit layer. Therefore, a fiber-reinforced ceramic composite material having high strength can be obtained. Therefore, it is possible to omit the coating treatment which is conventionally required for the reinforcing fibers.

【0015】一方、原料ガスの反応によるセラミックス
材料の堆積作用のみにより、織布積層成形体全部の多数
の微細気孔と多数の間隙を埋めるためには相当長い期間
を要するが、繊維束内の微細気孔に原料ガスの反応堆積
によりセラミックス材料の堆積層を形成し、その後にそ
の周囲にポリマーを充填して焼成しセラミックス材料の
焼成層を生成する方法とするならば、従来より遥かに短
時間でセラミックス材料のマトリックスを生成できる。
よって、製造時間が短縮される。更に、強化繊維の織布
積層成形体の50%以上の堆積層を形成した後でポリマ
ー含浸を行うならば、強化繊維の周囲に十分な量の堆積
層を生成させることができ、この堆積層に焼成層が接合
するので、十分な強度を有する繊維強化セラミックス複
合材が得られる。
On the other hand, it takes a considerably long time to fill a large number of fine pores and a large number of voids in the entire woven laminated body only by the deposition action of the ceramic material due to the reaction of the raw material gas. If a method of forming a ceramic material deposition layer in the pores by reactive deposition of the raw material gas and then filling the surroundings with a polymer and firing to form a fired layer of the ceramic material is much shorter than before. A matrix of ceramic material can be created.
Therefore, the manufacturing time is shortened. Further, if the polymer impregnation is performed after forming the deposited layer of 50% or more of the woven laminated laminate of the reinforcing fiber, a sufficient amount of the deposited layer can be formed around the reinforcing fiber. Since the firing layer is bonded to the fiber, a fiber-reinforced ceramic composite material having sufficient strength can be obtained.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1は本発明方法の一例の工程図を示すも
ので、この例の工程に従って繊維強化セラミックス複合
材を製造するには、まず、長繊維の強化繊維を工程1で
用意し、この強化繊維を工程2で2次元あるいは3次元
織りして織布積層成形体を作成し、次いでこの織布積層
成形体に工程3でCVI法を施し、次いで工程4で前記
織布積層成形体にポリマー含浸と焼成を行い、続いて工
程5で機械加工を施して所望の形状に加工することで、
繊維強化セラミックス複合材(製品)6を得ることがで
きる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a process chart of an example of the method of the present invention. In order to manufacture a fiber-reinforced ceramic composite material according to the process of this example, first, long-fiber reinforcing fibers are prepared in step 1 and the reinforcing fibers are prepared. In step 2, two-dimensional or three-dimensional weaving is performed to prepare a woven laminated body, and then the woven laminated body is subjected to the CVI method in step 3, and then in step 4, the woven laminated body is impregnated with a polymer. By firing, and then machining in step 5 to form a desired shape,
A fiber-reinforced ceramic composite material (product) 6 can be obtained.

【0017】まず、工程1において用意する強化繊維
は、SiC繊維、アルミナ繊維、窒化ケイ繊維などのよ
うに、通常の繊維強化セラミックスを製造する場合に用
いられる強化繊維と同等のものを用いることができる。
また、この例のように、図2(a)に示すように強化繊
維10を使用し易いようにボビン11に巻き付けておい
ても良い。続いて工程2において、織物機械により2次
元織加工あるいは3次元織加工を施して所望の大きさと
形状の例えば図2(b)に示す織布積層成形体12を製
作する。この例では、強化繊維10を用いて繊維束を形
成し、これを更に織り込んで織布積層成形体12を形成
するので、織布積層成形体12の断面構造は、図7に示
す従来の織布積層成形体Aと同様の構造になり、繊維束
の内部には数μm単位の微細な気孔が形成され、隣接す
る繊維束の間には数mm単位の間隙が形成された構造に
なる。
First, the reinforcing fibers prepared in the step 1 should be the same as the reinforcing fibers used in the production of ordinary fiber-reinforced ceramics, such as SiC fibers, alumina fibers, and silicon nitride fibers. it can.
Further, as in this example, as shown in FIG. 2A, the reinforcing fiber 10 may be wound around the bobbin 11 so that it is easy to use. Then, in step 2, a two-dimensional weaving process or a three-dimensional weaving process is performed by a weaving machine to manufacture a woven fabric laminated body 12 having a desired size and shape, for example, shown in FIG. In this example, the reinforcing fiber 10 is used to form a fiber bundle, and the fiber bundle is further woven to form the woven fabric laminated body 12. Therefore, the cross-sectional structure of the woven fabric laminated body 12 is the same as that of the conventional woven fabric shown in FIG. It has the same structure as the fabric laminated body A, and has a structure in which fine pores of several μm unit are formed inside the fiber bundle and gaps of several mm unit are formed between adjacent fiber bundles.

【0018】次いでこの織布積層成形体12を工程3に
おいて、図2(c)に示すようなCVI装置15を用
い、強化繊維10の周囲にセラミックスのマトリックス
を織布積層成形体12の重量が50%程度増加するまで
生成させる。図2(c)に示すCVI装置15は、減圧
容器16とその外周部に設けられた高周波加熱コイル1
7を主体として構成され、減圧容器16は、真空ポンプ
などの減圧装置に接続されて内部圧力を調整自在に構成
され、更に、ガス供給管などが接続されて内部に原料ガ
スを供給自在に構成されている。また、高周波加熱コイ
ル17は高周波電源に接続され、減圧容器16の内部に
プラズマを発生させて減圧容器16内に供給された原料
ガスを加熱分解させて反応させることができるものであ
る。
Next, in step 3, the woven laminated body 12 is coated with a ceramic matrix around the reinforcing fibers 10 by using a CVI device 15 as shown in FIG. 2C. It is generated until it increases by about 50%. The CVI device 15 shown in FIG. 2C includes a decompression container 16 and a high-frequency heating coil 1 provided on the outer periphery thereof.
7, the decompression container 16 is connected to a decompression device such as a vacuum pump so that the internal pressure can be adjusted, and further, a gas supply pipe or the like is connected so that the source gas can be supplied inside. Has been done. The high-frequency heating coil 17 is connected to a high-frequency power source and is capable of generating plasma inside the decompression container 16 to thermally decompose the raw material gas supplied into the decompression container 16 to cause a reaction.

【0019】工程3においては、前記減圧容器16の内
部に織布積層成形体12を収納して内部を真空ポンプな
どで所定の圧力に減圧し、原料ガス供給管などから減圧
容器16内に原料ガスを供給し、高周波加熱コイル17
を作動させ、更に1000℃程度に加熱することで織布
積層成形体12の強化繊維10の1本1本の外周部に原
料ガスの反応析出物からなる堆積層18(図3を参照)
を生成させることができる。ここでは、SiH4ガスと
CH4ガスとの混合原料ガス、あるいは、メチルトリク
ロロシラン(MTS)、ジメチルジクロロシラン、Si
Cl4とCH4との混合ガスなどの原料ガスを用いること
ができる。
In step 3, the woven laminated body 12 is housed inside the decompression container 16 and the inside pressure is reduced to a predetermined pressure by a vacuum pump or the like. Gas supply, high frequency heating coil 17
Is activated and further heated to about 1000 ° C. to form a deposition layer 18 composed of reaction deposits of the source gas on the outer peripheral portion of each of the reinforcing fibers 10 of the woven laminated body 12 (see FIG. 3).
Can be generated. Here, a mixed raw material gas of SiH 4 gas and CH 4 gas, or methyltrichlorosilane (MTS), dimethyldichlorosilane, Si
A source gas such as a mixed gas of Cl 4 and CH 4 can be used.

【0020】ここで前記のように、織布積層成形体12
の重量が50%程度増加するまでCVI処理を施すの
は、この程度の堆積により強化繊維10の繊維束内の気
孔を相当量埋めることができるためであり、また、強化
繊維10の外周部にこれ以上の堆積を行うには相当の時
間を要し、製造時間が長くなるためであり、これよりも
少ない量の堆積では強化繊維10への堆積量が少なくな
り過ぎるおそれがあるからである。なお、実際の製造時
においては、例えば従来のCVI法で行っていた蒸着堆
積期間に対し、その1/3程度を本発明ではCVI法で
行い、この段階でCVI法を停止して次の工程に移るよ
うにする。ここで通常、繊維強化セラミックス複合材の
重量の40%程度が強化繊維であることから、この種の
強化繊維の重量の50%程度を前記の如くCVI法で処
理することは、繊維強化セラミックス複合材全体重量の
20%程度のセラミックス材料をCVI法で堆積させる
ことになる。より具体的には、強化繊維10の表面に2
〜3μm程度の厚さのセラミックス材料を堆積させる。
Here, as described above, the woven laminated body 12
The reason why the CVI treatment is performed until the weight of the reinforcing fiber 10 increases by about 50% is that the pores in the fiber bundle of the reinforcing fiber 10 can be filled in a considerable amount by this amount of deposition, and the outer peripheral portion of the reinforcing fiber 10 is covered. This is because it takes a considerable amount of time to perform further deposition and the manufacturing time becomes long, and the deposition amount on the reinforcing fiber 10 may be too small if the deposition amount is smaller than this. In the actual manufacturing, for example, about 1/3 of the vapor deposition deposition period performed by the conventional CVI method is performed by the CVI method in the present invention, and the CVI method is stopped at this stage to perform the next step. To move to. Here, since about 40% of the weight of the fiber-reinforced ceramic composite material is usually the reinforcing fiber, it is necessary to treat about 50% of the weight of this kind of reinforcing fiber by the CVI method as described above. About 20% of the total weight of the material will be deposited by the CVI method. More specifically, 2 is added to the surface of the reinforcing fiber 10.
A ceramic material having a thickness of about 3 μm is deposited.

【0021】工程3を終了したならば、次に、工程4に
おいて、織布積層成形体12をポリマーに浸漬する。こ
こで用いる浸漬装置は、例えば、図2(d)に示すよう
に減圧ポンプ20に接続された減圧容器21が好まし
い。この減圧容器21にポリマー溶液22を満たし、こ
れに先の織布積層成形体12を浸漬し、内部を減圧する
ことで、織布積層成形体12の内部の繊維束間の間隙に
ポリマー溶液を十分に含浸させることができる。ここで
用いるポリマー溶液は、ポリチタノカルボシラン溶液、
ポリカルボシラン溶液、ポリシラザン溶液などを例示す
ることができる。
After step 3 is completed, in step 4, the woven laminated body 12 is dipped in a polymer. The dipping device used here is preferably, for example, a decompression container 21 connected to a decompression pump 20 as shown in FIG. The decompression container 21 is filled with the polymer solution 22, and the woven laminated laminate 12 is immersed in the decompressed container 21, and the inside pressure is reduced, so that the polymer solution is filled in the spaces between the fiber bundles inside the woven laminated laminate 12. It can be sufficiently impregnated. The polymer solution used here is a polytitanocarbosilane solution,
Examples thereof include polycarbosilane solution and polysilazane solution.

【0022】この含浸処理を必要時間行ったならば、織
布積層成形体12を減圧容器21から取り出して加熱炉
などにおいて所望の温度で焼成し、ポリマー溶液を図3
に示すような焼成層22とする。焼成温度は、用いるポ
リマーの種類に応じて適宜設定するが、通常は、100
0℃前後の温度とする。また、ここで行う焼成処理の後
に、焼成層22に対して更にポリマー溶液の含浸処理を
施し、更に焼成する処理を必要回数繰り返し行っても良
い。
After this impregnation treatment has been carried out for a required time, the woven laminated laminate 12 is taken out from the decompression container 21 and fired at a desired temperature in a heating furnace or the like to prepare the polymer solution as shown in FIG.
The firing layer 22 is as shown in FIG. The firing temperature is appropriately set depending on the type of polymer used, but is usually 100
The temperature is around 0 ° C. Further, after the firing treatment performed here, the firing layer 22 may be further impregnated with a polymer solution, and further firing treatment may be repeated a necessary number of times.

【0023】焼成作業が終了したならば、次に加工工程
5において前記焼成物に切削加工あるいは切断加工など
の機械加工を施して所望の形状に加工し、繊維強化セラ
ミックス複合材6を得ることができる。この繊維強化セ
ラミックス複合材6の内部構造は、図3に示すように、
強化繊維10の周囲にセラミックス材料製の堆積層18
が形成され、各強化繊維10の堆積層18の周囲に更に
ポリマー含浸焼成により生成されたセラミックス材料製
の焼成層22が生成されて、堆積層18と焼成層22か
らなるマトリックス23が形成されている。
After the firing work is completed, in the processing step 5, the fired product is machined into a desired shape by machining such as cutting or cutting to obtain the fiber-reinforced ceramic composite material 6. it can. The internal structure of the fiber-reinforced ceramic composite material 6 is as shown in FIG.
A deposition layer 18 made of a ceramic material around the reinforcing fiber 10.
Is formed, a firing layer 22 made of a ceramic material produced by polymer impregnation firing is further formed around the deposition layer 18 of each reinforcing fiber 10, and a matrix 23 composed of the deposition layer 18 and the firing layer 22 is formed. There is.

【0024】以上説明した方法により繊維強化セラミッ
クス複合材6を製造するならば、セラミックス製マトリ
ックス23の一部である堆積層18をCVI法で製造
し、残りの焼成層22の部分をポリマー含浸と焼成によ
り形成するので、CVI法で全てのマトリックスを製造
していた従来方法に比べて遥かに短期間で製造できる効
果がある。また、CVI法で形成した堆積層18は強化
繊維10と、その外部に形成した焼成層22との反応を
防ぐので、繊維強化セラミックス複合材6の全体として
の強度は高くなる。また、高温強度においても従来材料
より高いものが得られる。よって本発明で得られる繊維
強化セラミックス複合材6を高温で高強度が要求される
用途、例えば、航空機エンジン用のフラップなどのよう
な航空機用部品や宇宙往還機の外壁用材料、あるいは、
その他、耐熱性を要求される構造材料や外装材として広
く適用することができる。
When the fiber-reinforced ceramic composite material 6 is manufactured by the method described above, the deposition layer 18 which is a part of the ceramic matrix 23 is manufactured by the CVI method, and the remaining part of the firing layer 22 is impregnated with the polymer. Since it is formed by firing, there is an effect that it can be manufactured in a much shorter period than the conventional method in which all the matrices are manufactured by the CVI method. Further, the deposited layer 18 formed by the CVI method prevents the reaction between the reinforcing fiber 10 and the fired layer 22 formed on the outside thereof, so that the strength of the fiber-reinforced ceramic composite material 6 as a whole becomes high. Also, high temperature strength can be obtained as compared with conventional materials. Therefore, the fiber-reinforced ceramics composite material 6 obtained in the present invention is used in applications requiring high strength at high temperatures, for example, aircraft parts such as flaps for aircraft engines and outer wall materials for space vehicles, or
In addition, it can be widely applied as a structural material or an exterior material that requires heat resistance.

【0025】「製造例」直径8.5μmのSiC繊維を
束ねて形成された外径500μmの繊維束を3次元織り
して幅3mm、高さ100mm、長さ200mmの直方
体状の織布積層成形体を形成し、この織布積層成形体を
減圧容器に収納し、5Torrに減圧し、内部にメチルトリ
クロロシラン(MTS)の原料ガスを供給しながら10
00℃に加熱して堆積処理を行った。織布積層成形体の
重量が50%増加した時点で織布積層成形体を減圧容器
から取り出し、次いで、ポリチタノシラン溶液に織布積
層成形体を浸漬してから1100℃で焼成する処理を8
回繰り返し施し、SiC繊維強化シリコンセラミックス
複合材を得た。この製造例では、製造期間として、2.
5カ月を要した。
"Production Example" A rectangular parallelepiped woven cloth laminate having a width of 3 mm, a height of 100 mm and a length of 200 mm is formed by three-dimensionally weaving a fiber bundle having an outer diameter of 500 μm formed by bundling SiC fibers having a diameter of 8.5 μm. The woven fabric laminated compact is housed in a decompression container, decompressed to 5 Torr, and a source gas of methyltrichlorosilane (MTS) is supplied to the body to form a body.
A deposition process was performed by heating to 00 ° C. When the weight of the woven laminated body is increased by 50%, the woven laminated body is taken out of the decompression container, and then the woven laminated body is immersed in the polytitanosilane solution and baked at 1100 ° C.
Repeated times to obtain a SiC fiber reinforced silicon ceramics composite material. In this manufacturing example, the manufacturing period is 2.
It took 5 months.

【0026】次に、前記と同等のSiC繊維を用い、こ
のSiC繊維にCVD法により厚さ)0.2μmのカー
ボンのコーティングを施し、更に、前記と同等の混合原
料ガスを用いてCVI法によりセラミックス製マトリッ
クスの全部を生成させて繊維強化セラミックス複合材試
料を製造した。この製造方法では、製造期間として6カ
月を要した。続いて、前記例で使用したポリマーと同等
のポリマーを用い、PIC法によりセラミックス製マト
リックスの全部を生成させて繊維強化セラミックス複合
材試料を製造した。更に、先のコーティングを施してい
ないSiC繊維を用い、CVI法を実施してセラミック
ス製マトリックスの全部を生成させて繊維強化セラミッ
クス複合材試料を製造した。
Next, the same SiC fiber as described above is used, this SiC fiber is coated with carbon of 0.2 μm in thickness by the CVD method, and further the CVI method is carried out using the same mixed raw material gas as described above. A fiber reinforced ceramic composite sample was produced by producing the entire ceramic matrix. This manufacturing method required 6 months as a manufacturing period. Subsequently, a polymer equivalent to the polymer used in the above example was used to produce the entire ceramic matrix by the PIC method to manufacture a fiber-reinforced ceramic composite material sample. Further, a CVI method was carried out by using the SiC fiber not coated with the above to generate all of the ceramic matrix to manufacture a fiber-reinforced ceramic composite material sample.

【0027】図4に、以上の各方法により得られた試料
の曲げ強度の値を比較した結果を示す。図4において、
CVIはコーティングを施したSiC繊維を用いてC
VI法を実施して製造した試料の特性を示し、CVI
はコーティングを施していないSiC繊維を用いてCV
I法を実施して製造した試料の特性を示す。図4に示す
結果から明らかなように、本発明方法により製造された
試料が最も優れた曲げ強さを示した。特に、従来方法で
製造された高強度のものよりも、破壊靱性の面において
20%程度の向上効果をなし得ることが明らかになっ
た。また、図5に本発明方法により製造された試料の常
温における曲げ強度と変位の関係を示し、図6に130
0℃の大気中に100時間暴露した場合の曲げ強度と変
位の関係を示す。
FIG. 4 shows the results of comparing the bending strength values of the samples obtained by the above methods. In FIG.
CVI is C using coated SiC fiber
The characteristics of the sample manufactured by carrying out the VI method are shown, and CVI
Is CV using uncoated SiC fiber
The characteristic of the sample manufactured by implementing the method I is shown. As is clear from the results shown in FIG. 4, the sample manufactured by the method of the present invention showed the best bending strength. In particular, it has been revealed that an improvement effect of about 20% can be achieved in terms of fracture toughness, as compared with the high-strength one manufactured by the conventional method. 5 shows the relationship between bending strength and displacement at room temperature of the sample manufactured by the method of the present invention, and FIG.
The relationship between bending strength and displacement when exposed to 0 ° C. atmosphere for 100 hours is shown.

【0028】これらの結果から、本発明方法により製造
された繊維強化セラミックス複合材は、常温で十分に高
い曲げ強度を示す上に、1300℃の高温においても優
れた強度を示すことが明らかになった。更に、前記製造
例の方法を実施し、CVI法で強化繊維に堆積層を堆積
させる場合に、織布積層成形体の重量が70%増加する
まで堆積を行ってからポリマー含浸焼成を行って繊維強
化セラミックス複合材を製造したが、図5と図6に示す
強度と同等の強度を示すものが得られた。
From these results, it is clear that the fiber-reinforced ceramic composite material produced by the method of the present invention exhibits sufficiently high flexural strength at room temperature and excellent strength even at a high temperature of 1300 ° C. It was Further, when the method of the above-mentioned production example is carried out and the deposition layer is deposited on the reinforced fiber by the CVI method, the woven fabric laminate is deposited until the weight thereof increases by 70%, and then the polymer-impregnated firing is performed to form the fiber. A reinforced ceramic composite material was manufactured, but a material having a strength similar to that shown in FIGS. 5 and 6 was obtained.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、強
化繊維からなる繊維束を織り込んで形成した織布積層成
形体に原料ガスの反応によりセラミックス材料の堆積層
を堆積させた後にセラミックス形成用ポリマーを含浸さ
せて焼成し焼成層を形成するので、強化繊維を堆積層と
焼成層からなるセラミックスマトリックスで覆った構造
の繊維強化セラミックス複合材が得られる。また、堆積
層は、焼成層と強化繊維とが反応することを防ぐので、
結果的に、常温は勿論、高温においても強度の高い繊維
強化セラミックス複合材を得ることができる。
As described above, according to the present invention, ceramics are formed after the deposition layer of the ceramic material is deposited by the reaction of the raw material gas on the woven fabric laminated compact formed by weaving the fiber bundle of the reinforcing fibers. Since the polymer is impregnated and fired to form a fired layer, a fiber-reinforced ceramic composite material having a structure in which reinforcing fibers are covered with a ceramic matrix composed of a deposited layer and a fired layer can be obtained. In addition, the deposited layer prevents the fired layer and the reinforcing fibers from reacting with each other,
As a result, it is possible to obtain a fiber-reinforced ceramic composite material having high strength not only at room temperature but also at high temperature.

【0030】更に本発明の方法において、原料ガスの反
応による堆積により、繊維束内の強化繊維間の微細気孔
をセラミックス材料で相当量埋めることができるととも
に、ポリマーの含浸と焼成によりその周囲の繊維束間の
間隙をセラミックス材料のマトリックスで埋めることが
できる。よって、織布積層成形体全体の気孔や間隙をセ
ラミックス材料のマトリックスで十分に埋め尽くすこと
ができるので、強度の高い繊維強化セラミックス複合材
が得られる。
Further, in the method of the present invention, by the deposition by the reaction of the raw material gas, it is possible to fill a considerable amount of fine pores between the reinforcing fibers in the fiber bundle with the ceramic material, and by impregnating and firing the polymer, the fibers around it can be filled. The gaps between the bundles can be filled with a matrix of ceramic material. Therefore, the pores and gaps of the entire woven laminated body can be sufficiently filled with the matrix of the ceramic material, so that a fiber-reinforced ceramic composite material having high strength can be obtained.

【0031】また、原料ガスの反応によるセラミックス
材料の堆積作用のみにより、織布積層成形体全部の多数
の微細気孔と多数の間隙を埋めるためには相当長い期間
を要し、しかも完全には埋めきれないが、繊維束内の微
細気孔に原料ガスの反応堆積によりセラミックス材料の
堆積層のマトリックスを形成し、その後に残った微細気
孔と繊維束間の間隙にポリマーを充填して焼成しセラミ
ックス製の焼成層のマトリックスを生成する方法とする
ならば、従来より遥かに短時間でセラミックス材料のマ
トリックスを生成できる。よって、製造時間の大幅な短
縮ができるので従来より低コストで繊維強化セラミック
ス複合材を提供できる。
Further, it takes a considerably long time to fill a large number of fine pores and a large number of voids in the entire woven fabric laminated body only by the deposition action of the ceramic material due to the reaction of the raw material gas, and it is completely filled. However, the matrix of the deposited layer of the ceramic material is formed in the fine pores in the fiber bundle by the reactive deposition of the raw material gas, and the polymer is filled in the gaps between the remaining fine pores and the fiber bundle and fired to make the ceramic material. If the method of forming the matrix of the firing layer is used, the matrix of the ceramic material can be formed in a much shorter time than the conventional method. Therefore, the manufacturing time can be significantly shortened, and the fiber-reinforced ceramics composite material can be provided at a lower cost than before.

【0032】更に、原料ガスの反応と堆積により強化繊
維の織布積層成形体の50%以上の堆積層を形成した後
でポリマーの含浸を行うならば、強化繊維の周囲に十分
な量の堆積層を生成させることができ、この堆積層上に
焼成層を形成し、両者を接合できるので、大きな強度を
有する繊維強化セラミックス複合材を得ることができ
る。
Further, if the impregnation of the polymer is carried out after the deposition layer of 50% or more of the woven laminated laminate of the reinforcing fibers is formed by the reaction and deposition of the raw material gas, a sufficient amount of the deposition is provided around the reinforcing fibers. Since a layer can be generated and a fired layer can be formed on this deposited layer and the two can be joined together, a fiber-reinforced ceramic composite material having high strength can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一例を示す工程図である。FIG. 1 is a process drawing showing an example of the method of the present invention.

【図2】(a)は強化繊維をボビンに巻き付けた状態を
示す斜視図、(b)は織布積層成形体の斜視図、(c)
はCVI装置の一例を示す構成図、(d)は減圧容器の
一例を示す構成図である。
2A is a perspective view showing a state in which reinforcing fibers are wound around a bobbin, FIG. 2B is a perspective view of a woven laminated body, and FIG.
Is a block diagram showing an example of a CVI device, and (d) is a block diagram showing an example of a decompression container.

【図3】本発明方法で得られた繊維強化セラミックス複
合材の一部断面図である。
FIG. 3 is a partial cross-sectional view of a fiber-reinforced ceramic composite material obtained by the method of the present invention.

【図4】本発明方法で得られた複合材と従来方法で得ら
れた複合材の曲げ強さを比較した図である。
FIG. 4 is a diagram comparing bending strengths of a composite material obtained by the method of the present invention and a composite material obtained by a conventional method.

【図5】本発明方法で得られた複合材の一例の室温にお
ける曲げ強さを示す図である。
FIG. 5 is a diagram showing bending strength at room temperature of an example of the composite material obtained by the method of the present invention.

【図6】本発明方法で得られた複合材の一例の高温にお
ける曲げ強さを示す図である。
FIG. 6 is a diagram showing bending strength at high temperature of an example of a composite material obtained by the method of the present invention.

【図7】一般的繊維強化セラミックス用の織布積層成形
体の断面構造を示す図である。
FIG. 7 is a view showing a cross-sectional structure of a woven fabric laminated body for general fiber reinforced ceramics.

【符号の説明】[Explanation of symbols]

6・・・繊維強化セラミックス複合材 10・・・強化繊維 12・・・織布積層成形体 16・・・減圧容器 18・・・堆積層 22・・・焼成層 23・・・マトリックス 6 ... Fiber reinforced ceramics composite material 10 ... Reinforcing fiber 12 ... Woven laminated molding 16 ... Decompression container 18 ... Deposit layer 22 ... Firing layer 23 ... Matrix

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 強化繊維を集合して繊維束を形成し、こ
の繊維束を織り込んで織布積層成形体を形成し、この織
布積層成形体を減圧雰囲気に設置し、減圧雰囲気中に供
給した原料ガスの反応により強化繊維の表面にマトリッ
クスとなるセラミックス材料を堆積させて堆積層を形成
するとともに、この後に織布積層成形体にセラミックス
生成用ポリマーを含浸させ、続いて焼成して堆積層の周
囲にポリマー焼成による焼成層を形成することにより、
強化繊維の周囲に前記堆積層と焼成層からなるセラミッ
クス製マトリックスを形成することを特徴とする繊維強
化セラミックス複合材の製造方法。
1. A reinforcing fiber is collected to form a fiber bundle, and the fiber bundle is woven to form a woven fabric laminated molded body. The woven fabric laminated molded body is placed in a reduced pressure atmosphere and supplied into the reduced pressure atmosphere. The ceramic material serving as a matrix is deposited on the surface of the reinforcing fiber by the reaction of the raw material gas thus formed to form a deposited layer, and thereafter, the woven fabric laminated compact is impregnated with the ceramic-forming polymer, and subsequently fired to deposit the deposited layer. By forming a fired layer by polymer firing around the
A method for producing a fiber-reinforced ceramic composite material, comprising forming a ceramic matrix composed of the deposited layer and the fired layer around a reinforcing fiber.
【請求項2】 強化繊維を集合して繊維束を形成し、こ
の繊維束を織り込んで織布積層成形体を形成し、この織
布積層成形体を減圧雰囲気に設置し、減圧雰囲気中に供
給した原料ガスの反応により強化繊維の表面にマトリッ
クスとなるセラミックス材料を堆積させる繊維強化セラ
ミックス複合材の製造方法であって、 前記原料ガスの反応により強化繊維の表面にセラミック
ス材料の堆積を行って織布積層成形体内の繊維束内の強
化繊維間の微細気孔にセラミックス材料の堆積層を生成
させ、この後に、織布積層成形体にポリマーを含浸させ
て織布積層成形体内にポリマーを充填し、この後に焼成
して前記含浸させたポリマーからなる焼成層を形成し、
前記堆積層と焼成層でセラミックスマトリックスを構成
することを特徴とする繊維強化セラミックス複合材の製
造方法。
2. Reinforcement fibers are collected to form a fiber bundle, the fiber bundle is woven to form a woven fabric laminated body, and the woven fabric laminated body is placed in a reduced pressure atmosphere and supplied into the reduced pressure atmosphere. A method for producing a fiber-reinforced ceramic composite material, which comprises depositing a ceramic material serving as a matrix on the surface of a reinforcing fiber by the reaction of the raw material gas, wherein the ceramic material is deposited on the surface of the reinforcing fiber by the reaction of the raw material gas. A deposition layer of a ceramic material is generated in the fine pores between the reinforcing fibers in the fiber bundle in the fabric laminated body, and thereafter, the woven fabric laminated body is impregnated with the polymer to fill the woven fabric laminated body with the polymer. After that, it is fired to form a fired layer made of the impregnated polymer,
A method for producing a fiber-reinforced ceramic composite material, which comprises forming a ceramic matrix with the deposited layer and the fired layer.
【請求項3】 原料ガスの反応により強化繊維の外周に
セラミックス材料の堆積を行うに際し、織布積層成形体
の重量が50%以上増加するまでセラミックス材料の堆
積を行い、その後にこの織布積層成形体にポリマーを含
浸させることを特徴とする請求項1または2記載の繊維
強化セラミックス複合材の製造方法。
3. When the ceramic material is deposited on the outer periphery of the reinforcing fiber by the reaction of the raw material gas, the ceramic material is deposited until the weight of the woven fabric laminate is increased by 50% or more, and then the woven fabric laminate is formed. The method for producing a fiber-reinforced ceramic composite material according to claim 1, wherein the molded body is impregnated with a polymer.
JP6017693A 1994-02-14 1994-02-14 Production of fiber-reinforced ceramic composite material Pending JPH07223875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6017693A JPH07223875A (en) 1994-02-14 1994-02-14 Production of fiber-reinforced ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6017693A JPH07223875A (en) 1994-02-14 1994-02-14 Production of fiber-reinforced ceramic composite material

Publications (1)

Publication Number Publication Date
JPH07223875A true JPH07223875A (en) 1995-08-22

Family

ID=11950898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6017693A Pending JPH07223875A (en) 1994-02-14 1994-02-14 Production of fiber-reinforced ceramic composite material

Country Status (1)

Country Link
JP (1) JPH07223875A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125901A (en) * 1995-08-30 1997-05-13 Soc Europ Propulsion <Sep> Small-diametral turbine of heat-insulating structure composite material and manufacture thereof
JPH09157049A (en) * 1995-11-30 1997-06-17 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk Production of ceramic composite material
JP2000219576A (en) * 1999-01-28 2000-08-08 Ishikawajima Harima Heavy Ind Co Ltd Ceramic-base composite member and its production
JP2006193383A (en) * 2005-01-14 2006-07-27 Tech Res & Dev Inst Of Japan Def Agency Ceramic composite material and its manufacturing method
JP2010076429A (en) * 2008-07-21 2010-04-08 Snecma Propulsion Solide Method of fabricating thermostructural composite material part, and part obtained thereby
JP2018095484A (en) * 2016-12-08 2018-06-21 三菱重工航空エンジン株式会社 Manufacturing method of ceramic matrix composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125901A (en) * 1995-08-30 1997-05-13 Soc Europ Propulsion <Sep> Small-diametral turbine of heat-insulating structure composite material and manufacture thereof
JPH09157049A (en) * 1995-11-30 1997-06-17 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk Production of ceramic composite material
JP2000219576A (en) * 1999-01-28 2000-08-08 Ishikawajima Harima Heavy Ind Co Ltd Ceramic-base composite member and its production
JP2006193383A (en) * 2005-01-14 2006-07-27 Tech Res & Dev Inst Of Japan Def Agency Ceramic composite material and its manufacturing method
JP2010076429A (en) * 2008-07-21 2010-04-08 Snecma Propulsion Solide Method of fabricating thermostructural composite material part, and part obtained thereby
JP2018095484A (en) * 2016-12-08 2018-06-21 三菱重工航空エンジン株式会社 Manufacturing method of ceramic matrix composite material

Similar Documents

Publication Publication Date Title
JP5541659B2 (en) Method for manufacturing thermostructural composite material parts and parts obtained thereby
US4837230A (en) Structural ceramic materials having refractory interface layers
EP0536264B1 (en) A process for manufacturing reinforced composites and filament material for use in said process
US5350545A (en) Method of fabrication of composites
JP5117862B2 (en) Manufacturing method of ceramic matrix composite member
JP4106086B2 (en) Ceramic matrix fiber composite material
JPS605070A (en) Composite material and manufacture
US5294387A (en) Method of producing fiber-reinforced and particle-dispersion reinforced mullite composite material
WO2011122593A1 (en) Powder material impregnation method and method for producing fiber-reinforced composite material
JPH04316611A (en) Silicon carbide-reinforced carbon complex
EP3502307B1 (en) Method of increasing the uniformity of chemical vapor deposition on fibrous material through the imposition of pressure waves
US5486379A (en) Method of manufacturing a part made of composite material comprising fiber reinforcement consolidated by a liquid process
JPH07223875A (en) Production of fiber-reinforced ceramic composite material
JPH0648872A (en) Production of oxidation-resistant c/c composite material
EP0351113B1 (en) Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same
CN114230347A (en) Preparation method and product of continuous fiber reinforced ZrC/SiC composite part
US20040115348A1 (en) Method for processing silicon-carbide preforms having a high temperature boron nitride coating
JPH0767684B2 (en) Molding method for heat resistant composite materials
US5752156A (en) Stable fiber interfaces for beryllium matrix composites
JPH0582344B2 (en)
JPH0912376A (en) High toughness ceramics and its production
JPH11130553A (en) Carbon/carbon composite material
JPH0582349B2 (en)
JP3046143B2 (en) Manufacturing method of fiber reinforced ceramics
JPH11343176A (en) Production of ceramic composite material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020903