JPH0648872A - Production of oxidation-resistant c/c composite material - Google Patents

Production of oxidation-resistant c/c composite material

Info

Publication number
JPH0648872A
JPH0648872A JP4221976A JP22197692A JPH0648872A JP H0648872 A JPH0648872 A JP H0648872A JP 4221976 A JP4221976 A JP 4221976A JP 22197692 A JP22197692 A JP 22197692A JP H0648872 A JPH0648872 A JP H0648872A
Authority
JP
Japan
Prior art keywords
coating
sic
composite
composite material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4221976A
Other languages
Japanese (ja)
Other versions
JP3218092B2 (en
Inventor
Akihiro Kuroyanagi
聡浩 黒柳
Yoshihiro Shiotani
善弘 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP22197692A priority Critical patent/JP3218092B2/en
Publication of JPH0648872A publication Critical patent/JPH0648872A/en
Application granted granted Critical
Publication of JP3218092B2 publication Critical patent/JP3218092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a production method of oxidation-resistant C/C composite material (carbon fiber-reinforced carbon composite material) showing high and stable oxidation resistance at high temp. in an oxidative atmosphere. CONSTITUTION:This production method is composed of three processes. In the first process, SiO gas at 1800-2000 deg.C is brought into contact with the surface of a C/C composite base body to form a SiC film having a gradient-function structure. In the second process, an amorphous SiC film and fine polycrystalline SiC film are successively formed at 900-1000 deg.C and 1200-1400 deg.C, respectively, by pulse-CVI method using a mixture gas of CH3SiCl3 and H2. In the third process, the coating film is impregnated in vacuum with a liquid prepared by hydrolysis and polymn. of B(OC12H27)3 and Si(OC2H5)4 by alkoxide method to form a B2O5-SiO2 glass coating film. In the second process, heat treatment at >=1400 deg.C in a nonoxidative atmosphere is added to convert the SiC coating film into a highly crystallized state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温酸化雰囲気下にお
いて高度の酸化抵抗性を示す被覆組織層を有する耐酸化
性C/C複合材(炭素繊維強化炭素複合材)の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxidation resistant C / C composite material (carbon fiber reinforced carbon composite material) having a coating structure layer exhibiting a high degree of oxidation resistance in a high temperature oxidizing atmosphere.

【0002】[0002]

【従来の技術】C/C複合材は、卓越した比強度、比弾
性率を有するうえに優れた耐熱性および化学的安定性を
備えているため、航空宇宙用をはじめ多くの分野で構造
材料として有用されているが、この材料には易酸化性と
いう炭素材固有の材質的な欠点があり、これが汎用性を
阻害する最大のネックとなっている。このため、C/C
複合材の表面に耐酸化性の被覆を施して改質化する試み
が盛んにおこなわれており、例えばZrO2 、Al2
3 、SiC、Si3 4 等のセラミックス系物質によっ
て被覆処理する方法が提案されている。
2. Description of the Related Art C / C composite materials have excellent heat resistance and chemical stability as well as excellent specific strength and specific elastic modulus, so that they are structural materials in many fields including aerospace. However, this material has a material defect unique to carbon materials, that is, it is easily oxidizable, and this is the biggest bottleneck that impedes versatility. Therefore, C / C
Many attempts have been made to modify the surface of a composite material by applying an oxidation resistant coating, for example, ZrO 2 , Al 2 O.
A method of coating with a ceramic material such as 3 , SiC, Si 3 N 4 has been proposed.

【0003】このうち、最も実用性の高い耐酸化層はS
iC被膜である。従来、C/C複合基材の表面にSiC
の被覆を施す方法として、気相反応により生成するSi
Cを直接沈着させるCVD法(化学的気相蒸着法)と、
基材の炭素を反応源に利用して珪素成分と反応させるこ
とによりSiCに転化させるコンバージョン法が知られ
ているが、それぞれに長短がある。すなわち、CVD法
を適用して形成したSiC被覆層は基材との界面が明確
に分離している関係で、熱衝撃を与えると相互の熱膨張
差によって層間剥離現象が起こり易く、高温域での十分
な耐酸化性は望めない。これに対し、コンバージョン法
による場合には基材の表層部が連続的にSiC層に転化
する傾斜機能組織となるため界面剥離を生じることはな
いが、CVD法に比べて緻密性に劣るうえ、反応時、被
覆層に微小なクラックが発生する難点がある。
Of these, the most practical oxidation resistant layer is S.
iC film. Conventionally, SiC was used on the surface of C / C composite substrate.
As a method of applying the coating of Si, Si produced by a gas phase reaction
A CVD method for directly depositing C (chemical vapor deposition method),
A conversion method is known in which carbon of a base material is used as a reaction source to react with a silicon component to convert it into SiC, but each has its own merits and demerits. That is, in the SiC coating layer formed by applying the CVD method, the interface with the substrate is clearly separated, and when a thermal shock is applied, a delamination phenomenon is likely to occur due to a mutual thermal expansion difference, and thus in a high temperature range. Sufficient oxidation resistance cannot be expected. On the other hand, when the conversion method is used, the surface layer portion of the base material has a functionally graded structure that is continuously converted into the SiC layer, so that interfacial peeling does not occur, but it is inferior in denseness to the CVD method and There is a problem that minute cracks are generated in the coating layer during the reaction.

【0004】このような問題点の解消を図る手段とし
て、C/C複合基材面にSiOガスの接触によるコンバ
ージョン法で第1のSiC被膜を形成し、さらにその表
面をアモルファスSiCが析出するような条件でCVD
法による第2のSiC被覆層を形成する耐酸化処理法
(特開平4−12078 号公報) 、更にこれを改良して第2
の被覆層を減圧加熱下でハロゲン化有機珪素化合物を基
材組織に間欠的に充填して還元熱分解させるパルスCV
I法を用いて形成する耐酸化処理法(特開平4−42878
号公報) 、被覆層をSiC被覆層、SiO2 微粒被覆
層、SiO2 ガラス被覆層またはB2 3 もしくはB2
3 −SiO2 ガラス被覆層が3層状に形成された耐酸
化性C/C材(特開平4−42883 号公報) 等が本出願人
によって開発されている。
As a means for solving such a problem, a first SiC film is formed on the surface of a C / C composite base material by a conversion method by contact with SiO gas, and amorphous SiC is further deposited on the surface. CVD under various conditions
Of the second anti-oxidation treatment method for forming a second SiC coating layer by the method (JP-A-4-12078)
Pulse CV for intermittently filling the base material structure with a halogenated organosilicon compound under reduced pressure heating of the coating layer of the above to perform reductive thermal decomposition
Oxidation-resistant treatment method formed by using the I method
Gazette), the coating layer is a SiC coating layer, a SiO 2 fine particle coating layer, a SiO 2 glass coating layer or B 2 O 3 or B 2
The present applicant has developed an oxidation resistant C / C material (Japanese Patent Application Laid-Open No. 4-42883) in which an O 3 —SiO 2 glass coating layer is formed in three layers.

【0005】更に本発明者らは、これらの技術を一層発
展させた耐酸化性C/C材として、炭素繊維強化炭素材
の基材面に、傾斜機能を有する多結晶質のSiC被膜か
らなる第1被覆層、アモルファス質または微細多結晶質
のSiC被膜からなる第2被覆層、およびB2 3 −S
iO2 ガラス被膜からなる第3被覆層を積層形成した被
覆構造を提案した(特願平3−25643 号) 。
Further, as a C / C material having oxidation resistance which is a further development of these techniques, the present inventors have formed a polycrystalline SiC coating film having a gradient function on the surface of the base material of the carbon fiber reinforced carbon material. the first coating layer, an amorphous substance or micro polycrystalline second coating layer made of SiC coating, and B 2 O 3 -S
We proposed a coating structure in which a third coating layer consisting of an iO 2 glass coating was laminated (Japanese Patent Application No. 3-25643).

【0006】[0006]

【発明が解決しようとする課題】特願平3−25643 号の
発明による耐酸化性C/C複合材によれば、苛酷な高温
酸化雰囲気に対しても十分安定な耐久性能を発揮する
が、より詳細に検討すると第2被覆層の形成条件が耐酸
化性に微妙な影響を与えることが判明した。
The oxidation resistant C / C composite material according to the invention of Japanese Patent Application No. 3-25643 exhibits sufficiently stable durability even in a severe high temperature oxidizing atmosphere. A closer examination revealed that the conditions for forming the second coating layer had a delicate effect on the oxidation resistance.

【0007】本発明は、この知見を基に前記の先行発明
を製法面から改良を加えたもので、その目的は苛酷な高
温酸化性雰囲気において高度かつ安定した酸化抵抗性を
発揮する耐酸化性C/C複合材の製造方法を提供しよう
とするところにある。
The present invention is based on this finding and is an improvement of the above-mentioned prior invention from the viewpoint of manufacturing method. The purpose of the present invention is to exhibit high and stable oxidation resistance in a severe high temperature oxidizing atmosphere. There is an attempt to provide a method for manufacturing a C / C composite material.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明による耐酸化性C/C複合材の製造方法は、炭
素繊維をマトリックス樹脂と共に複合成形し硬化および
焼成炭化処理して得られる炭素繊維強化炭素複合材を基
材とし、該基材の表面に反応温度1800〜2000℃
でSiOガスを接触させてコンバージョン法により傾斜
機能組織のSiC被膜を形成する第1被覆工程、ハロゲ
ン化有機珪素化合物と水素との混合ガスを用いてパルス
CVI法により900〜1000℃の加熱温度でアモル
ファス質のSiC被膜を形成する第1段階操作と120
0〜1400℃の加熱温度で微細多結晶質のSiC被膜
を形成する第2段階操作を順次に施す第2被覆工程、つ
いでB(OC12273 およびSi(OC2 5 4
アルコキシド法により加水分解・重合させたガラス前駆
体液を真空含浸してB2 3 −SiO2 ガラス被膜から
なる表面層を形成する第3被覆工程からなることを構成
上の特徴とする。
A method for producing an oxidation resistant C / C composite material according to the present invention for achieving the above object is obtained by subjecting a carbon fiber to a composite molding together with a matrix resin, curing and firing carbonization. A carbon fiber reinforced carbon composite material is used as a base material, and a reaction temperature of 1800 to 2000 ° C. is applied to the surface of the base material.
In the first coating step of forming a SiC film having a functionally gradient structure by contacting SiO gas with a conversion method at a heating temperature of 900 to 1000 ° C. by a pulse CVI method using a mixed gas of a halogenated organosilicon compound and hydrogen. First Step Operation for Forming Amorphous SiC Coating and 120
A second coating step in which a second stage operation for forming a fine polycrystalline SiC coating at a heating temperature of 0 to 1400 ° C. is sequentially performed, and then B (OC 12 H 27 ) 3 and Si (OC 2 H 5 ) 4 are added. The constitutional feature is that it comprises a third coating step in which a glass precursor solution hydrolyzed and polymerized by the alkoxide method is vacuum impregnated to form a surface layer composed of a B 2 O 3 —SiO 2 glass coating film.

【0009】また、本発明による第2被覆工程の別の実
施態様は、ハロゲン化有機珪素化合物と水素との混合ガ
スを用いてパルスCVI法によりアモルファス質および
/または微細多結晶質のSiC被膜を形成したのち、非
酸化性雰囲気中で1400℃以上の温度に加熱処理して
被膜性状を高結晶性SiCに転化させるものである。
Another embodiment of the second coating step according to the present invention is to form an amorphous and / or fine polycrystalline SiC coating by a pulse CVI method using a mixed gas of a halogenated organosilicon compound and hydrogen. After being formed, it is heat-treated at a temperature of 1400 ° C. or higher in a non-oxidizing atmosphere to convert the film properties into highly crystalline SiC.

【0010】まず本発明の基材となるC/C複合材は、
炭素繊維の織布、フエルト、トウなどの強化繊維に炭化
残留率の高いマトリックス樹脂液を含浸または塗布して
プリプレグを形成し、これを積層成形したのち硬化およ
び焼成炭化処理する常用の方法で製造される。この際の
使用材料には特に限定はなく、通常、強化材の炭素繊維
にはポリアクリロニトリル系、レーヨン系、ピッチ系な
ど各種のものが、またマトリックス樹脂としてはフェノ
ール系、フラン系その他炭化性の良好な液状熱硬化性樹
脂類を用いることができる。製造されたC/C複合基材
には、必要に応じてマトリックス樹脂を含浸、硬化、炭
化する処理を反復して組織の緻密化が図られる。
First, the C / C composite material as the base material of the present invention is
Manufactured by a conventional method of impregnating or applying a matrix resin liquid having a high carbonization residual ratio to reinforcing fibers such as carbon fiber woven cloth, felt, and tow to form a prepreg, which is laminated and then cured and carbonized by firing. To be done. The material used in this case is not particularly limited, and generally, various carbon fiber reinforcing materials such as polyacrylonitrile-based, rayon-based, pitch-based, etc., and the matrix resin of phenol-based, furan-based or other carbonizable Good liquid thermosetting resins can be used. The manufactured C / C composite substrate is subjected to a process of impregnating with a matrix resin, curing, and carbonizing, if necessary, to densify the structure.

【0011】コンバージョン法により傾斜機能組織のS
iC被膜を形成する第1被覆工程は、SiO2 粉末をS
iまたはC粉末と混合して密閉加熱系に収納し、系内に
C/C複合基材をセットもしくは埋没して加熱反応させ
る方法によりおこなわれる。工程条件としては、SiO
2 に対するSiまたはCの配合量を重量比で2:1、加
熱温度を1800〜2000℃に各設定し、系内を還元
または中性雰囲気に保持することが好ましい。加熱時、
SiO2 はSiまたはC成分により加熱還元されてSi
Oガスを生成し、このSiOガスがC/C複合基材の炭
素組織と反応して表層部をSiCが界面で連続的に濃度
変化する傾斜機能組織のSiC被覆層に転化させる。該
第1被覆工程で形成される好適なSiC被覆層の膜厚
は、100〜300μm である。
S of a functionally graded tissue is obtained by the conversion method.
In the first coating step for forming the iC coating, SiO 2 powder is added to S
It is carried out by a method in which it is mixed with i or C powder and housed in a closed heating system, and the C / C composite base material is set or embedded in the system and reacted by heating. The process conditions are SiO
It is preferable to set the compounding amount of Si or C to 2 in a weight ratio of 2: 1, set the heating temperature to 1800 to 2000 ° C., and maintain the system in a reducing or neutral atmosphere. When heating,
SiO 2 is heated and reduced by the Si or C component to produce Si
O gas is generated, and this SiO gas reacts with the carbon structure of the C / C composite base material to convert the surface layer portion into a SiC coating layer having a functionally graded structure in which the concentration of SiC continuously changes at the interface. The suitable film thickness of the SiC coating layer formed in the first coating step is 100 to 300 μm.

【0012】第2被覆工程は、ハロゲン化有機珪素化合
物と水素との混合ガスを石英反応室内で加熱されている
C/C複合基材にガス状態で接触させる操作を短周期で
間欠的に反復するパルスCVI工程によっておこなわれ
る。ハロゲン化有機珪素化合物としてはトリクロロメチ
ルシラン(CH3SiCl3)が好適に用いられ、水素ガスとのモ
ル比(CH3SiCl3/H2) が0.01〜0.05になるように
混合してC/C複合基材が加熱されている減圧状態の反
応室に秒間隔で間欠的な導入・停止を繰り返すことが好
ましい。
In the second coating step, an operation of bringing a mixed gas of a halogenated organosilicon compound and hydrogen into contact with a C / C composite substrate heated in a quartz reaction chamber in a gas state is intermittently repeated in a short cycle. The pulse CVI process is performed. Trichloromethylsilane (CH 3 SiCl 3 ) is preferably used as the halogenated organosilicon compound and mixed so that the molar ratio with hydrogen gas (CH 3 SiCl 3 / H 2 ) is 0.01 to 0.05. Then, intermittent introduction / stopping is preferably repeated at intervals of a second into the reaction chamber in a reduced pressure state where the C / C composite substrate is heated.

【0013】前記の第2被覆工程において、アモルファ
ス質のSiC被膜と微細多結晶質のSiC被膜を順次に
層形成するにはパルスCVI工程の加熱条件を調整し、
まず最初の第一段階操作を900〜1000℃の温度範
囲に設定してアモルファス質のSiC被膜を形成し、つ
いで温度を1200〜1400℃に上昇させた第2段階
操作により微細多結晶質のSiC被膜を重ねて形成する
方法が採られる。この条件設定において、とくに微細多
結晶質SiC被膜を形成する場合の温度調整は重要であ
り、1200℃未満では結晶性状が不安定となり、14
00℃を越えるとSiC被膜が不均質となる。最も好ま
しい加熱温度は1300℃である。また適切な形成膜厚
は、下層のアモルファス質SiC層が10〜30μm 、
上層の微細多結晶質SiC層が30〜50μm である。
In the second coating step, in order to sequentially form the amorphous SiC coating and the fine polycrystalline SiC coating, the heating conditions of the pulse CVI step are adjusted,
First, the first stage operation is set to a temperature range of 900 to 1000 ° C. to form an amorphous SiC film, and then the second stage operation in which the temperature is raised to 1200 to 1400 ° C. is used to form fine polycrystalline SiC. A method of forming coatings by stacking them is adopted. In setting these conditions, temperature adjustment is particularly important when forming a fine polycrystalline SiC coating, and if the temperature is less than 1200 ° C., the crystal properties become unstable.
If the temperature exceeds 00 ° C, the SiC coating becomes inhomogeneous. The most preferable heating temperature is 1300 ° C. In addition, an appropriate film thickness is 10 to 30 μm for the lower amorphous SiC layer,
The upper fine polycrystalline SiC layer has a thickness of 30 to 50 μm.

【0014】他方、高結晶SiC被膜を形成するには、
パルスCVI工程の加熱温度を900〜1300℃の範
囲に設定して予めアモルファス質および/または微細多
結晶質のSiC被覆層を形成したのち、基材を非酸化性
雰囲気に保持された加熱炉内に移して1500℃以上の
温度に加熱処理してSiC被膜の結晶性を高める方法が
採られる。
On the other hand, in order to form a highly crystalline SiC film,
In the heating furnace in which the heating temperature of the pulse CVI step is set in the range of 900 to 1300 ° C. to form an amorphous and / or fine polycrystalline SiC coating layer in advance, and then the base material is kept in a non-oxidizing atmosphere. And a heat treatment at a temperature of 1500 ° C. or higher to enhance the crystallinity of the SiC coating.

【0015】第3被覆工程におけるB2 3 −SiO2
ガラス被膜は、B(OC1227)3およびSi(OC2
5)4 をアルコキシド法によって加水分解・重合させてガ
ラス前駆体液を作製し、この液を第2被覆工程を施した
C/C複合基材に真空含浸したのち500℃以上の温度
で加熱処理する方法で形成される。この際、B2 3
ラスはB(OC1227)3を直接に真空含浸することによ
り形成することができるが、SiO2 ガラスはSi(O
2 5)4 を予めpH1〜2に調整して加水分解重合し
てから真空含浸することが好ましい。また、被覆順序と
して最初にSiO2 ガラスを被覆してからB2 3 ガラ
スを被覆することが好結果を与える。
B 2 O 3 --SiO 2 in the third coating step
The glass coating consists of B (OC 12 H 27 ) 3 and Si (OC 2 H 2
5 ) 4 is hydrolyzed and polymerized by an alkoxide method to prepare a glass precursor solution, and this solution is vacuum impregnated into the C / C composite substrate subjected to the second coating step, and then heat treated at a temperature of 500 ° C. or higher. Formed by the method. At this time, the B 2 O 3 glass can be formed by directly impregnating B (OC 12 H 27 ) 3 in vacuum, but the SiO 2 glass can be formed by Si (O 2
It is preferable to adjust the pH of C 2 H 5 ) 4 in advance to pH 1 to 2 for hydrolysis polymerization, and then to impregnate in vacuum. It is also successful to coat the SiO 2 glass first and then the B 2 O 3 glass as the coating sequence.

【0016】[0016]

【作用】上記のように本発明の方法ではC/C複合基材
面に3工程の被覆処理を施して耐酸化性被膜が形成され
る。このうち、第1被覆工程で形成されるSiC被膜は
傾斜機能組織を備える緻密で密着性の高い厚膜として形
成される。第2被覆工程で被覆されるアモルファス質と
微細多結晶質の2層構造のSiC被膜は、第1被覆工程
によるSiC被覆層の微小な空隙(ピンホール)やクラ
ック等を充填封止するとともに、アモルファス質または
微小多結晶質による単独のSiC被膜層に比べて高温使
用時におけるSiC被膜組織の緻密保持性が向上し、被
覆性状が極めて安定化する。また、第2被覆工程で加熱
処理により高結晶性SiC層を形成する態様では、結晶
化の過程ならびに加熱時に基材との熱膨張差によって生
じる微細な亀裂を積極的に発生させておき、高温使用時
の性状変動が起こらない組織形態を確保する。第3被覆
工程で形成するB2 3 −SiO2 ガラス被膜は、前記
の第2被覆SiC層に発生した微細なクラックを目詰め
して被覆層の無孔構造化を確実なものとする。
As described above, according to the method of the present invention, the C / C composite substrate surface is subjected to a coating treatment in three steps to form an oxidation resistant coating. Of these, the SiC coating formed in the first coating step is formed as a dense and highly adherent thick film having a functionally graded structure. The amorphous and fine polycrystalline two-layered SiC coating that is coated in the second coating step fills and seals minute voids (pinholes), cracks, and the like in the SiC coating layer in the first coating step, and Compared with a single SiC coating layer made of an amorphous material or a micropolycrystalline material, the dense retention of the SiC coating structure at the time of high temperature use is improved, and the coating properties are extremely stabilized. In addition, in the aspect in which the highly crystalline SiC layer is formed by heat treatment in the second coating step, fine cracks caused by a difference in thermal expansion with the base material during the crystallization process and heating are positively generated, Ensure a tissue morphology that does not cause property changes during use. The B 2 O 3 —SiO 2 glass coating formed in the third coating step fills the fine cracks generated in the second coating SiC layer to ensure the non-porous structure of the coating layer.

【0017】このように第2被覆工程で形成するSiC
被覆層の結晶性状を予め調整しておくことにより、17
00℃までの高温酸化雰囲気においても極めて高度かつ
安定した耐酸化性能が付与される。
The SiC thus formed in the second coating step
By adjusting the crystalline properties of the coating layer in advance,
Even in a high temperature oxidizing atmosphere up to 00 ° C, extremely high and stable oxidation resistance performance is imparted.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.

【0019】実施例1〜3、比較例1〜4 (1) C/C複合基材の作製 ポリアクリロニトリル系高弾性タイプの平織炭素繊維布
をフェノール樹脂初期縮合物からなるマトリックス樹脂
液に浸漬して含浸処理したのち、14枚積層してモール
ドに入れ、加熱温度110℃、適用圧力20kg/cm2の条
件で複合成形した。成形体を250℃の温度に加熱して
完全に硬化したのち、窒素雰囲気に保持された焼成炉に
移し、5℃/hr の昇温速度で2000℃まで上昇し5時
間保持して焼成炭化した。ついで、得られたC/C材に
フェノール樹脂液を真空加圧下に含浸し、前記と同様の
2000℃焼成処理を3回反復して二次元配向型のC/
C複合基材を作製した。
Examples 1 to 3 and Comparative Examples 1 to 4 (1) Preparation of C / C composite base material A polyacrylonitrile-based high elasticity type plain woven carbon fiber cloth was dipped in a matrix resin solution containing a phenol resin initial condensation product. After impregnation, 14 sheets were laminated and placed in a mold, and composite molding was performed under the conditions of a heating temperature of 110 ° C. and an applied pressure of 20 kg / cm 2 . After the molded body was heated to a temperature of 250 ° C. to be completely hardened, it was transferred to a firing furnace maintained in a nitrogen atmosphere, heated to 2000 ° C. at a temperature rising rate of 5 ° C./hr, and held for 5 hours to be carbonized. . Then, the obtained C / C material was impregnated with a phenol resin solution under a vacuum pressure, and the same 2000 ° C. firing treatment was repeated 3 times to repeat the two-dimensional orientation type C / C material.
A C composite substrate was prepared.

【0020】(2) 第1被覆工程 SiO2 粉末とSi粉末を2:1(重量比)の配合比率
になるように混合し、混合粉末を黒鉛ルツボに入れ上部
にC/C複合基材(幅30mm、長さ50mm、厚さ5mm) をセ
ットした。この黒鉛ルツボを電気炉に移し、内部をAr
ガスで十分に置換したのち50℃/hr の速度で1850
℃まで昇温させ、2時間保持してC/C複合基材の表層
部に傾斜機能組織を有するSiC被覆層を形成した。形
成されたSiC被覆層の厚さは約200μm であった
が、その表面に幅10μm 程度の亀裂が多数発生してい
ることが認められた。
(2) First coating step SiO 2 powder and Si powder are mixed in a mixing ratio of 2: 1 (weight ratio), the mixed powder is put into a graphite crucible and a C / C composite substrate ( Width 30mm, length 50mm, thickness 5mm) was set. This graphite crucible was transferred to an electric furnace and the inside was filled with Ar.
After fully substituting with gas, at 1850 at a rate of 50 ° C / hr
The temperature was raised to 0 ° C. and maintained for 2 hours to form a SiC coating layer having a functionally graded structure on the surface layer of the C / C composite substrate. The thickness of the formed SiC coating layer was about 200 μm, but it was confirmed that many cracks having a width of about 10 μm were generated on the surface.

【0021】(3) 第2被覆工程 第1被覆層を形成したC/C複合基材をパルスCVI装
置の石英反応管内に設置し管内をArガスで十分に置換
したのち高周波誘導加熱によりC/C複合基材の温度を
1000℃に上昇した。ついで、真空ポンプにより反応
管内を2秒で2Torr以下に減圧し、直ちにトリクロロメ
チルシラン(CH3SiCl3)とH2 の混合ガス(CH3SiCl3/H2
ル比0.05) を1秒間で720Torrになるように導入し1
秒間保持した。この管内減圧、反応ガス導入および保持
の操作を4000回のパルスで繰り返し、厚さ約20μ
m のアモルファス質SiC被膜を形成した。引き続き、
C/C複合基材の加熱温度を1300℃に上昇し、パル
ス数5000回で膜厚約30μm の微細多結晶質SiC
被膜を積層形成した。
(3) Second coating step The C / C composite substrate on which the first coating layer was formed was placed in a quartz reaction tube of a pulse CVI device, the inside of the tube was sufficiently replaced with Ar gas, and then C / C was performed by high frequency induction heating. The temperature of the C composite substrate was raised to 1000 ° C. Then, the pressure inside the reaction tube was reduced to 2 Torr or less in 2 seconds by a vacuum pump, and immediately a mixed gas of trichloromethylsilane (CH 3 SiCl 3 ) and H 2 (CH 3 SiCl 3 / H 2 molar ratio 0.05) was applied in 720 Torr for 1 second. Introduced to become 1
Hold for a second. This operation of depressurizing the inside of the tube, introducing the reaction gas, and holding the same was repeated with 4000 pulses to obtain a thickness of about 20 μ
An amorphous SiC film of m 2 was formed. Continuing,
The heating temperature of the C / C composite substrate was raised to 1300 ° C., and the number of pulses was 5000 and the film thickness was about 30 μm.
The coating was laminated.

【0022】(4) 第3被覆工程 第2被覆層を形成したC/C複合基材を真空デシケータ
に入れ、真空ポンプで1Torr以下に減圧したのち、Si
(OC2 5)4 1モルに対し7モル量のエタノールを加
え、11モルの水と0.03モルのHClを混合してp
H1.5で加水分解・重合させたガラス前駆体液を2To
rrの減圧下に流入し、C/C複合基材が完全に浸漬する
まで液を満たして1時間保持した。ついで、C/C複合
基材をデシケータから取り出し、大気雰囲気の電気炉に
移して10℃/min. の昇温速度で500℃まで加熱し、
この温度に30分間保持してSiO2 ガラスの被膜を形
成した。
(4) Third coating step The C / C composite substrate on which the second coating layer was formed was placed in a vacuum desiccator, and the pressure was reduced to 1 Torr or less by a vacuum pump.
7 mol of ethanol was added to 1 mol of (OC 2 H 5 ) 4 , 11 mol of water and 0.03 mol of HCl were mixed, and p
2To glass precursor liquid hydrolyzed and polymerized with H1.5
It was flowed under a reduced pressure of rr and filled with the liquid until the C / C composite base material was completely immersed and held for 1 hour. Then, the C / C composite substrate was taken out from the desiccator, transferred to an electric furnace in the atmosphere, and heated to 500 ° C. at a heating rate of 10 ° C./min.
The temperature was kept for 30 minutes to form a film of SiO 2 glass.

【0023】SiO2 ガラス被覆を形成したC/C複合
基材を真空デシケータに入れ、1Torr以下に減圧したの
ち、B(OC1227)3を2Torr以下の減圧下に注入しC
/C複合基材が浸漬した状態で1時間保持した。処理後
のC/C複合基材をデシケータから取り出し、室温空気
中で2時間風乾したのち、大気雰囲気に保持された電気
炉に移し500℃で30分間加熱してB2 3 ガラスの
被膜を形成した。その結果、全面にB2 3 −SiO2
ガラスの被膜が形成された。
The C / C composite substrate on which the SiO 2 glass coating was formed was placed in a vacuum desiccator and the pressure was reduced to 1 Torr or less. Then, B (OC 12 H 27 ) 3 was injected under a reduced pressure of 2 Torr or less to C.
The / C composite substrate was kept immersed for 1 hour. The treated C / C composite substrate was taken out from the desiccator, air-dried in room temperature air for 2 hours, transferred to an electric furnace kept in the air atmosphere, and heated at 500 ° C. for 30 minutes to form a B 2 O 3 glass coating film. Formed. As a result, B 2 O 3 --SiO 2 was formed on the entire surface.
A glass coating was formed.

【0024】(5) 耐酸化性の評価 上記の3段階被覆工程を施したC/C複合基材を大気雰
囲気に保持された電気炉に入れ、1500℃の温度に1
00分間保持したのち炉出して常温まで自然冷却した。
この工程を10回繰り返し、最終的なC/C複合材の酸
化による重量減少率を測定した。なお、比較のために第
2被覆工程を1000〜1400℃の加熱温度範囲で1
段階操作により単層のアモルファス質および/または微
細多結晶質SiC被膜を形成したC/C複合材について
も同様に酸化重量減少率を測定した。それらの結果を表
1に示した。
(5) Evaluation of Oxidation Resistance The C / C composite base material subjected to the above-mentioned three-step coating process is put in an electric furnace maintained in the air atmosphere and kept at a temperature of 1500 ° C. for 1 hour.
After holding it for 00 minutes, it was taken out of the furnace and naturally cooled to room temperature.
This step was repeated 10 times, and the weight loss rate of the final C / C composite material due to oxidation was measured. In addition, for comparison, the second coating step is performed in the heating temperature range of 1000 to 1400 ° C.
The C / C composite material in which a single-layer amorphous and / or fine polycrystalline SiC coating was formed by the stepwise operation was also measured for the weight loss on oxidation. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】表1の結果から、本発明の条件を適用した
実施例は比較例に比べてC/C複合材に高度の耐酸化性
能が付与され、酸化性雰囲気での優れた高温安定性を示
すことが認められる。とくに第2段階の加熱温度を13
00℃に設定して微細多結晶質のSiC被膜を形成した
実施例2において良好な結果が得られた。
From the results shown in Table 1, the examples to which the conditions of the present invention are applied give the C / C composites a high degree of oxidation resistance as compared with the comparative examples, and have excellent high temperature stability in an oxidizing atmosphere. It is accepted to show. Especially, the heating temperature of the second stage is 13
Good results were obtained in Example 2 in which a fine polycrystalline SiC coating was formed at a temperature of 00 ° C.

【0027】実施例5 実施例1と同一の第1被覆工程により傾斜機能組織のS
iC被膜を形成したC/C複合基材をパルスCVI装置
にセットし、次の操作によって第2被覆工程を施した。
系内をArガス雰囲気に保持してC/C複合基材を10
00℃に加熱し、実施例1と同一の原料ガスを、ガス導
入時の圧力650Torr、同圧力保持時間3秒、ガス排出
時の圧力5Torr、同圧力保持時間3秒のパルス条件に設
定してCVI処理をおこなった。このパルスCVIを1
0000回繰り返し、厚さ50μm のアモルファス質S
iC被膜を形成した。ついで、C/C複合基材をアルゴ
ン雰囲気の加熱炉に入れ、1500℃の温度に1時間保
持してアモルファス質SiC被膜を高結晶性のSiC層
に転化させた。この処理により、SiC層には多数の微
細な亀裂が発生した。
Example 5 S of a functionally graded structure was subjected to the same first coating step as in Example 1.
The C / C composite substrate on which the iC film was formed was set in the pulse CVI device, and the second coating step was performed by the following operation.
The inside of the system is maintained in an Ar gas atmosphere, and the C / C composite substrate is
After heating to 00 ° C., the same raw material gas as in Example 1 was set under pulse conditions of a gas introduction pressure of 650 Torr, a pressure retention time of 3 seconds, a gas discharge pressure of 5 Torr, and a pressure retention time of 3 seconds. CVI treatment was performed. This pulse CVI is 1
Repeated 0000 times, 50 μm thick amorphous S
An iC coating was formed. Then, the C / C composite substrate was placed in a heating furnace in an argon atmosphere and kept at a temperature of 1500 ° C. for 1 hour to convert the amorphous SiC film into a highly crystalline SiC layer. By this treatment, many fine cracks were generated in the SiC layer.

【0028】引き続き、実施例1と同一条件により第3
被覆工程を施して耐酸化性C/C複合材を製造した。こ
の材料につき、実施例1と同様にして大気高温酸化によ
る重量減少率を測定したところ、0.2%と高水準の酸
化抵抗性を示した。
Subsequently, the third condition is obtained under the same conditions as in the first embodiment.
A coating process was performed to produce an oxidation resistant C / C composite material. The weight reduction rate of this material due to oxidation at high temperature in the atmosphere was measured in the same manner as in Example 1, and it showed a high level of oxidation resistance of 0.2%.

【0029】[0029]

【発明の効果】以上のとおり、本発明によればC/C複
合基材の表層部に形成された傾斜機能組織のSiC被膜
面に、特定条件のパルスCVI法を用いて結晶質のSi
C被膜を形成し、ついで全面にB2 3 −SiO2 ガラ
ス被膜を積層形成する3段階工程を介して高度の耐酸化
性と安定した耐久性を備えるC/C複合材が効率よく製
造できる。したがって、高温酸化雰囲気の過酷な条件に
晒される構造部材用の耐酸化性C/C複合材の工業的生
産技術として極めて有用である。
As described above, according to the present invention, a crystalline Si film is formed on the SiC film surface of the functionally graded structure formed on the surface layer portion of the C / C composite base material by using the pulse CVI method under specific conditions.
A C / C composite material having a high degree of oxidation resistance and stable durability can be efficiently produced through a three-step process of forming a C coating and then laminating a B 2 O 3 —SiO 2 glass coating on the entire surface. . Therefore, it is extremely useful as an industrial production technology of an oxidation resistant C / C composite material for structural members exposed to the severe conditions of a high temperature oxidizing atmosphere.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維をマトリックス樹脂と共に複合
成形し硬化および焼成炭化処理して得られる炭素繊維強
化炭素複合材を基材とし、該基材の表面に反応温度18
00〜2000℃でSiOガスを接触させてコンバージ
ョン法により傾斜機能組織のSiC被膜を形成する第1
被覆工程、ハロゲン化有機珪素化合物と水素との混合ガ
スを用いてパルスCVI法により900〜1000℃の
加熱温度でアモルファス質のSiC被膜を形成する第1
段階操作と1200〜1400℃の加熱温度で微細多結
晶質のSiC被膜を形成する第2段階操作を順次に施す
第2被覆工程、ついでB(OC12273 およびSi
(OC2 5 4 をアルコキシド法により加水分解・重
合させたガラス前駆体液を真空含浸してB2 3 −Si
2 ガラス被膜からなる表面層を形成する第3被覆工程
からなることを特徴とする耐酸化性C/C複合材の製造
方法。
1. A base material is a carbon fiber reinforced carbon composite material obtained by subjecting a carbon fiber to a composite molding together with a matrix resin, curing and firing carbonization treatment, and a reaction temperature of 18 on the surface of the base material.
Forming a SiC film having a functionally graded structure by a conversion method by contacting SiO gas at 00 to 2000 ° C.
Covering step, forming an amorphous SiC film at a heating temperature of 900 to 1000 ° C. by a pulse CVI method using a mixed gas of a halogenated organosilicon compound and hydrogen 1
A second coating step of sequentially performing a step operation and a second step operation of forming a fine polycrystalline SiC coating at a heating temperature of 1200 to 1400 ° C., followed by B (OC 12 H 27 ) 3 and Si
A glass precursor solution obtained by hydrolyzing and polymerizing (OC 2 H 5 ) 4 by an alkoxide method is vacuum impregnated to obtain B 2 O 3 —Si.
A method for producing an oxidation resistant C / C composite material, which comprises a third coating step of forming a surface layer made of an O 2 glass film.
【請求項2】 第2被覆工程を、ハロゲン化有機珪素化
合物と水素との混合ガスを用いてパルスCVI法により
アモルファス質および/または微細多結晶質のSiC被
膜を形成したのち、C/C複合基材を非酸化性雰囲気中
で1400℃以上の温度に加熱処理して被膜性状を高結
晶性SiCに転化させるプロセスとする請求項1記載の
耐酸化性C/C複合材の製造方法。
2. In the second coating step, an amorphous and / or fine polycrystalline SiC coating is formed by a pulse CVI method using a mixed gas of a halogenated organosilicon compound and hydrogen, and then a C / C composite is formed. The method for producing an oxidation resistant C / C composite material according to claim 1, wherein the base material is subjected to a heat treatment at a temperature of 1400 ° C. or higher in a non-oxidizing atmosphere to convert the coating property into highly crystalline SiC.
JP22197692A 1992-07-28 1992-07-28 Method for producing oxidation resistant C / C composite Expired - Fee Related JP3218092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22197692A JP3218092B2 (en) 1992-07-28 1992-07-28 Method for producing oxidation resistant C / C composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22197692A JP3218092B2 (en) 1992-07-28 1992-07-28 Method for producing oxidation resistant C / C composite

Publications (2)

Publication Number Publication Date
JPH0648872A true JPH0648872A (en) 1994-02-22
JP3218092B2 JP3218092B2 (en) 2001-10-15

Family

ID=16775124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22197692A Expired - Fee Related JP3218092B2 (en) 1992-07-28 1992-07-28 Method for producing oxidation resistant C / C composite

Country Status (1)

Country Link
JP (1) JP3218092B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263568A (en) * 1993-03-05 1994-09-20 Japan Atom Energy Res Inst Method for improving oxidation resistance of carbonaceous material
CN102745998A (en) * 2012-06-21 2012-10-24 西北工业大学 Preparation method for anti-oxidant silica-based ceramic coating with wide temperature range for carbon/carbon composite
CN103451708A (en) * 2013-08-31 2013-12-18 西北工业大学 Method for preparing carbon nanotube/carbon/carbon composite material through dielectrophoresis technology
CN104356696A (en) * 2014-10-21 2015-02-18 西北工业大学 Rare earth silicate coating and method for preparing coating on surface of C/SiC composite material
CN106083207A (en) * 2016-06-14 2016-11-09 西北工业大学 A kind of preparation method of the tiny coat of silicon carbide of surface of carbon/carbon composite crystal grain
CN110050326A (en) * 2016-12-20 2019-07-23 韩国东海碳素株式会社 Semiconductors manufacture component and its manufacturing method including SiC vapor deposition layer
CN114591102A (en) * 2022-03-30 2022-06-07 陕西科技大学 C/C composite material SiB6-Glass oxidation resistant coating and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674903B (en) * 2012-05-15 2013-11-27 陕西科技大学 Preparation method of SiC/C-AlPO4-mullite antioxidation coating for C/C composite material
CN105481477B (en) * 2015-12-29 2018-01-02 湖南博望碳陶有限公司 A kind of preparation method of graphite/SiC ceramic matrix composite material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263568A (en) * 1993-03-05 1994-09-20 Japan Atom Energy Res Inst Method for improving oxidation resistance of carbonaceous material
CN102745998A (en) * 2012-06-21 2012-10-24 西北工业大学 Preparation method for anti-oxidant silica-based ceramic coating with wide temperature range for carbon/carbon composite
CN103451708A (en) * 2013-08-31 2013-12-18 西北工业大学 Method for preparing carbon nanotube/carbon/carbon composite material through dielectrophoresis technology
CN104356696A (en) * 2014-10-21 2015-02-18 西北工业大学 Rare earth silicate coating and method for preparing coating on surface of C/SiC composite material
CN106083207A (en) * 2016-06-14 2016-11-09 西北工业大学 A kind of preparation method of the tiny coat of silicon carbide of surface of carbon/carbon composite crystal grain
CN110050326A (en) * 2016-12-20 2019-07-23 韩国东海碳素株式会社 Semiconductors manufacture component and its manufacturing method including SiC vapor deposition layer
JP2020502806A (en) * 2016-12-20 2020-01-23 トーカイ カーボン コリア カンパニー.,リミテッド Semiconductor manufacturing component including SiC vapor deposited layer and method of manufacturing the same
US11694893B2 (en) 2016-12-20 2023-07-04 Tokai Carbon Korea Co., Ltd. Semiconductor manufacturing parts comprising SiC deposition layer, and manufacturing method therefor
CN114591102A (en) * 2022-03-30 2022-06-07 陕西科技大学 C/C composite material SiB6-Glass oxidation resistant coating and preparation method thereof
CN114591102B (en) * 2022-03-30 2023-02-28 陕西科技大学 C/C composite material SiB 6 Glass oxidation resistant coating and method for producing the same

Also Published As

Publication number Publication date
JP3218092B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH06345571A (en) Production of high-temperature oxidation resistant c/c composite material
JPH07126089A (en) Production of oxidation-resistance c/c composite material
JPH0710753B2 (en) Method for producing carbon fiber reinforced composite material having oxidation resistance
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH10209061A (en) Constitution member for semiconductor diffusion furnace
JPH06247782A (en) Production of oxidation resistant c/c composite material
JPH0791137B2 (en) Oxidation resistant carbon fiber reinforced carbon material
JPH05148018A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JPH06345570A (en) Productiom of oxidation resistant c/c composite material
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP4218853B2 (en) Carbonaceous crucible for pulling single crystal and method for producing the same
JPH07309677A (en) Oxidation-resistant c/c composite material and its production
JPH09255443A (en) Oxidation-resistant treatment of carbon fiber-reinforced carbon composite material
JP3038493B2 (en) Method for producing oxidation resistant C / C material
JP3033042B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH0796473B2 (en) Oxidation resistance treatment method for carbon fiber reinforced carbon material
JP3461415B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH0952777A (en) Production of oxidation resistant c/c composite material
JPH0794353B2 (en) Oxidation resistance treatment method for carbon fiber reinforced carbon material
JPH10167861A (en) Antioxidation treatment of carbon material reinforced carbon fiber
JPH07101790A (en) Production of oxidation resistant carbon fiber reinforced carbon material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees