EP0652283B1 - Reinigung von Kunststoffen - Google Patents

Reinigung von Kunststoffen Download PDF

Info

Publication number
EP0652283B1
EP0652283B1 EP94117320A EP94117320A EP0652283B1 EP 0652283 B1 EP0652283 B1 EP 0652283B1 EP 94117320 A EP94117320 A EP 94117320A EP 94117320 A EP94117320 A EP 94117320A EP 0652283 B1 EP0652283 B1 EP 0652283B1
Authority
EP
European Patent Office
Prior art keywords
solution
plastic
cleaning
complexing agent
peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94117320A
Other languages
English (en)
French (fr)
Other versions
EP0652283A1 (de
Inventor
Heinz Jörg Dr. Rath
Peter Di Stamprech
Michael Prof. Dr. Schuster
Stefan Dipl.-Chem. Ringmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0652283A1 publication Critical patent/EP0652283A1/de
Application granted granted Critical
Publication of EP0652283B1 publication Critical patent/EP0652283B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/30Amines; Substituted amines ; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3218Alkanolamines or alkanolimines

Definitions

  • the invention relates to a method and means for cleaning plastics in unprocessed and processed form, in particular plastics that come into contact with chemically highly pure liquids.
  • plastics in unprocessed and processed form, in particular plastics that come into contact with chemically highly pure liquids.
  • contaminants can get into the liquids from the container surfaces, so that they become noticeably contaminated, especially after prolonged contact and especially at higher temperatures, even if only special methods such as neutron activation are used in the container walls Impurities are detectable.
  • High-purity liquids for analytical, diagnostic and therapeutic purposes as well as in semiconductor manufacturing are increasingly being processed and stored in plastic containers and conveyed in plastic lines, with some of the valuable high-purity liquid generally being used to rinse out the line or the container and then cleaned or discarded again must become. This method is therefore very unsatisfactory.
  • a method for cleaning plastic contact lenses by treatment with a basic aqueous solution of an active oxygen-releasing per compound is known, which is characterized in that the contact lenses are additionally treated with an acidic aqueous solution of an active oxygen releasing per compound treated and after removal from the second aqueous solution treated with a nonionic detergent and then rinsed with water.
  • additional chelating agents can be added to the first and / or second solution, namely preferably aminocarboxylic acid compounds, and the acidic groups can also be used in the form of their water-soluble salts.
  • Other chelating agents mentioned are citric acid or citrates and polyphosphates. But even with this known method, the problem underlying the invention could not be solved satisfactorily.
  • an aqueous-liquid, builder-containing detergent which contains at least one synthetic, detergent-active compound, an alkali metal fatty acid soap, mono-, di- or triethanol- or isopropanolamine, a hydrotrope and, as a builder, sodium tripolyphosphate and tetrapotassium pyrophosphate and optionally contains hydrogen peroxide.
  • This detergent is stable for at least one month at both 0 ° C and 52 ° C. As a washing bleach, it is comparable to a high-performance powder with 17% perborate content.
  • the complexing agent is an alkanolamine, although this - as mentioned above - by itself does not produce a satisfactory effect. This is because it was also found that the extrusion tool is a possible source of the contaminants introduced. The presence of an oxidizing agent is therefore required to bring the traces of heavy metals, in particular iron, into ionic form so that the complexing agent can develop its effect. Iron is treated here and in the following as a "leading impurity" because it is by far the highest concentration compared to other heavy metals and is also difficult to remove. Experiments have shown that removal of the iron usually also removes the other heavy metal contaminants.
  • the hydroxyl groups appear more important than the nitrogen atom (which appears to be more important for other heavy metals such as chromium).
  • two hydroxyl groups on the same nitrogen atom which are bound via "spacer” groups are required.
  • the "spacer” can be an alkylene group with up to 6 carbon atoms, which can be interrupted by oxygen atoms and nitrogen functions, which should be understood to mean, for example, compounds of the type of ethylenediamine tetra (hydroxyalkyl) compounds.
  • alkanolamines such as the adducts of ethylene and propylene oxide with ammonia, primary alkylamines with 1 to 4 carbon atoms and ethylenediamine are preferred.
  • the alkanolamines have the further advantage that they not only do not adhere to the organic substrates, but also detach inorganic and organic impurities adhering to them. In addition, their "dirt-carrying capacity" prevents recontamination of the surfaces that have already been cleaned.
  • the preferred alkanolamine is triethanolamine. It is a mild alkali (a 0.1 N aqueous solution shows a pH of 10.5) and does not cause any skin irritation.
  • Alkali peroxides can be used as inorganic peroxide compounds, but - as with the alkanolamines - the addition of a base is not necessary.
  • hydrogen peroxide is advantageously used. The easiest way to determine the amount of hydrogen peroxide is to carry out preliminary tests under the conditions of use, since this compound is known to be temperature sensitive.
  • the alkanolamines used preferably as complexing agents have a stabilizing effect.
  • concentrations of at least about 5% by weight, based on the finished cleaning solution are expedient. Lower concentrations often require a long exposure time, higher concentrations are generally only required if the substrate is heavily contaminated.
  • the alkaline cleaning solution advantageously has a pH in the range from 7.5 to 12, preferably 8 to 10.
  • alkanolamines react alkaline, the addition of another base is not always necessary when they are used. However, it is often useful to add aqueous ammonia solution, and the amount of the more expensive alkanolamine can be reduced. The cheapest in individual cases The combination can be determined by simple preliminary tests.
  • a preferred embodiment of the invention is that the plastic is used in finely divided form so that the contaminants are extracted by the cleaning solution according to the invention.
  • the cleaning method according to the invention can be used over a wide temperature range.
  • the temperature sensitivity of this molded article will be used and, for example, working in a range from room temperature to approximately 120 ° C., preferably approximately 50 ° C. If a finely divided plastic is extracted, it is advantageous to choose a higher temperature, suitably about 80 to 120 ° C. In general, shorter treatment times are sufficient at higher temperatures.
  • the increased decomposition of the peroxide compound must be taken into account, that is, if necessary, metered in or used in sufficient concentration right from the start.
  • the cleaning method according to the invention is generally applicable to all plastics. It also has an excellent effect on hydrophobic plastics that are used in the packaging sector, such as polyethylenes, polypropylenes, polyvinyl chlorides and polyesters. However, it can also be used with advantage for the so-called high-performance plastics such as polyacetals, polyphenylene sulfides, polyether ketones and, above all, fluoropolymers.
  • a one-stage treatment is generally sufficient.
  • Pretreatment or, if necessary, post-treatment with acidic solutions should not be ruled out. So come for example, a hydrofluoric acid aftertreatment may be considered, it being possible to add peroxides and optionally auxiliaries such as surfactants to the HF solution.
  • a mixture of the composition (in% by weight) has proven itself: 89.5% water 10.0% H2O2, 30% 0.5% HF, 50% Such an aftertreatment can, if necessary, remove residual iron impurities.
  • further additives such as further complexing agents, surfactants, buffers or the like, can also be added to the alkaline solution.
  • Nonionic surfactants such as adducts of ethylene and / or propylene oxide with long-chain alcohols, alkylphenols and the like are particularly suitable as surfactants.
  • multiple treatment of the substrates can also be considered if significant migration of contaminants from the depth of the plastic can be determined, for example after the substrate has been heated.
  • Table 1 contains comparative examples V1 to V3 in which one of the components of the cleaning solution according to the invention is missing.
  • composition of the cleaning solution is defined as follows: "parts" are parts by weight, the hydrogen peroxide being used as a 30% aqueous solution and the ammonia as a 25% aqueous solution.
  • concentration of triethanolamine (TEA) is given in ppm.
  • the extraction result is given in ng iron / g plastic.
  • Table 1 example Parts TEA [ppm] Fe [ng / g] H2O H2O2 NH3 30 min 60 min V1 4th - 1 500 0.56 0.69 V2 4th - 1 1000 0.49 0.62 V3 3rd 1 1 --- 0.82 1.07 1 3rd 1 1 500 1.04 1.29 2nd 3rd 1 1 1000 1.10 1.41 3rd 3rd 1 0.5 1000 1.02 1.39 4th 4th 1 1 1000 0.91 1.32 5 4th 1 1 10,000 1.58 2.01 6 5 1 1 1000 0.82 1.21 7 6 1 1 1000 0.92 0.96
  • Comparative examples V1 and V2 show that an ammoniacal TEA solution shows only a relatively low extraction effect.
  • Comparative example C3 shows that an ammoniacal hydrogen peroxide solution produces significantly poorer extraction results than the cleaning solutions according to the invention.
  • Example 3 The procedure of Example 3 is followed, but extraction is carried out for 75 minutes, a final concentration of extracted iron of 1.5 ng / g of plastic being achieved. By re-using a fresh solution, 0.47 ng / g is extracted after 60 minutes.
  • Example 4 is repeated, but the sample is shaken at about 100 Hz during the extraction. After 30 minutes, 3.59 ng Fe / g plastic are extracted.
  • Vials with a capacity of 50 ml formed from the copolymer are filled with the cleaning solution used in Example 4 and stored at different temperatures for 30 or 60 minutes.
  • Table 2 shows the extraction results. Table 2 example Temperature [° C] Fe [ng / g] 30 min 60 min 10th Room temperature 0.73 1.47 11 50 1.30 1.81 12th 80 1.83 2.35
  • Example 11 is repeated, but the vial is immersed at 3/4 its height in an ultrasonic bath. After 30 minutes 1.58 and after 60 minutes 2.31 ng Fe / g plastic are extracted.
  • Example 3 is repeated, but increasing amounts of a nonionic surfactant (commercial product ®TRITON X 100) are added. The results are shown in Table 3.
  • Table 3 example Surfactant [ppm] Fe [ng / g] 30 min 60 min 3rd 0 1.02 1.39 14 100 1.51 1.59 15 200 1.40 1.67 16 400 1.83 2.42
  • Example 16 With increasing addition of surfactant, foaming increases. In addition, a faster decomposition of the hydrogen peroxide is observed in Example 16.
  • the vials used in Examples 10 to 12 are filled at room temperature with 25 ml of the cleaning solution shown in Table 4 and stored for 30 or 60 minutes.
  • Table 4 shows the extracted chromium content [ng (Cr)], based on the amount of plastic used [g].
  • V4 is a comparative example with water.
  • Table 4 example Parts TEA [ppm] Cr [ng / g] H2O H2O2 NH3 30 min 60 min 17th 3rd 1 1 1000 0.70 0.95 18th 3rd 1 0.25 1000 0.40 0.59 19th 4th 1 1 1000 0.54 0.72 20th 5 1 1 1000 0.45 0.65 V4 1 - - --- 0.031 ---

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und Mittel zur Reinigung von Kunststoffen in unverarbeiteter und verarbeiteter Form, insbesondere von Kunststoffen, die mit chemisch hochreinen Flüssigkeiten in Kontakt kommen. Bei der Herstellung, Verwendung und insbesondere bei der Lagerung können Verunreinigungen aus den Behälteroberflächen in die Flüssigkeiten gelangen, so daß diese, vor allem nach längerem Kontakt und insbesondere bei höheren Temperaturen, merklich verunreinigt werden, auch wenn in den Behälterwandungen nur mit speziellen Methoden wie Neutronenaktivierung Verunreinigungen nachweisbar sind.
  • Hochreine Flüssigkeiten für analytische, diagnostische und therapeutische Zwecke sowie in der Halbleiterfertigung werden zunehmend in Kunststoffbehältern verarbeitet und gelagert und in Kunststoffleitungen gefördert, wobei in der Regel ein Teil der wertvollen hochreinen Flüssigkeit zum Ausspülen der Leitung oder des Behälters verwendet wird und anschließend erneut gereinigt oder verworfen werden muß. Diese Methode ist deshalb sehr unbefriedigend.
  • Es wurde gefunden, daß in extrudierten Kunststoffbehältern gelagerte hochreine Flüssigkeiten Schwermetallspuren enthalten, die vorher nicht in der Flüssigkeit nachweisbar waren und in der Kunststoffoberfläche nur in geringen Spuren nachweisbar sind. Eine vorsorgliche Reinigung der Kunststoffoberflächen mit einem Alkanolamin, wie es in "Metalloberfläche" 38 (1984) 4, Seiten 163 bis 168, insbesondere Seite 164, beschrieben ist, brachte keine Verbesserung.
  • Aus der US-A 3 908 680 ist ein Verfahren zur Reinigung von Kunststoff-Kontaktlinsen durch Behandlung mit einer basischen wäßrigen Lösung einer aktiven Sauerstoff abgebenden Perverbindung bekannt, das dadurch gekennzeichnet ist, daß man die Kontaktlinsen zusätzlich noch mit einer sauren wäßrigen Lösung einer aktiven Sauerstoff abgebenden Perverbindung behandelt und nach der Entfernung aus der zweiten wäßrigen Lösung mit einem nichtionischen Detergenz behandelt und dann mit Wasser spült. Vorzugsweise können hier bei der ersten und/oder zweiten Lösung zusätzlich Chelatisierungsmittel zugesetzt werden, nämlich vorzugsweise Aminocarbonsäureverbindungen, wobei die sauren Gruppen auch in Form ihrer wasserlöslichen Salze eingesetzt werden können. Weitere genannte Chelatisierungsmittel sind Citronensäure beziehungsweise Citrate und Polyphosphate. Aber auch mit diesem bekannten Verfahren war das der Erfindung zugrundeliegende Problem nicht befriedigend zu lösen.
  • Aus der DE-A-30 22 767 ist ein wäßrig-flüssiges, builderhaltiges Waschmittel bekannt, das mindestens eine synthetische, waschaktive Verbindung, eine Alkalimetallfettsäureseife, Mono-, Di- oder Triethanol- oder Isopropanolamin, ein Hydrotrop und als Builder Natriumtripolyphosphat und Tetrakaliumpyrophosphat sowie gegebenenfalls Wasserstoffperoxid enthält. Dieses Waschmittel ist für wenigstens einen Monat sowohl bei 0 °C als auch bei 52 °C stabil. Als Wasch-Bleichmittel ist es vergleichbar mit einem Hochleistungspulver mit 17 % Perboratgehalt.
  • Überraschenderweise wurde nun gefunden, daß schon ein einstufiges Verfahren zum Reinigen von Kunststoffen gute Ergebnisse liefert, das dadurch gekennzeichnet ist, daß man den Kunststoff mit einer alkalischen wäßrigen Lösung in Kontakt bringt, die eine anorganische Peroxidverbindung und einen Komplexbildner ohne saure Gruppen in freier oder Salzform und, soweit erforderlich, eine Base enthält.
  • Die Erfindung betrifft weiterhin eine wäßrige, alkalische builderfreie Reinigungslösung, die gekennzeichnet ist durch einen Gehalt an
    • a) einem anorganischen Peroxid,
    • b) einem Komplexbildner ohne saure Gruppen in freier oder Salzform und, falls erforderlich,
    • c) einer Base.
  • In einer bevorzugten Ausführungsform der Erfindung ist der Komplexbildner ein Alkanolamin, obwohl dieses - wie vorstehend erwähnt - für sich genommen keine befriedigende Wirkung erbringt. Es wurde nämlich weiterhin gefunden, daß das Extrusionswerkzeug eine mögliche Quelle für die eingeschleppten Verunreinigungen darstellt. Es bedarf deshalb der Anwesenheit eines Oxidationsmittels, um die Schwermetallspuren, insbesondere Eisen, erst in ionische Form zu bringen, damit der Komplexbildner seine Wirkung entfalten kann. Eisen wird hier und im folgenden als "Leitverunreinigung" behandelt, da es gegenüber anderen Schwermetallen mit Abstand in den höchsten Konzentrationen vorliegt und auch schwierig zu entfernen ist. Versuche haben gezeigt, daß eine Entfernung des Eisens in der Regel auch die anderen Schwermetallverunreinigungen beseitigt.
  • Für die Komplexierung des Eisens erscheinen im Falle der bevorzugten Komplexbildner, der Alkanolamine, die Hydroxygruppen maßgeblicher als das Stickstoffatom (das für andere Schwermetalle wie Chrom wichtiger erscheint). Für eine gute Komplexbildung sind zwei über "Spacer"-Gruppierungen gebundene Hydroxygruppen am selben Stickstoffatom erforderlich. Der "Spacer" kann eine Alkylengruppe mit bis zu 6 C-Atomen sein, die durch Sauerstoffatome und Stickstoffunktionen unterbrochen sein kann, worunter beispielsweise Verbindungen vom Typ der Ethylendiamin-tetra-(hydroxyalkyl)-Verbindungen verstanden werden sollen.
  • Bevorzugt sind leicht zugängliche Alkanolamine wie die Anlagerungsprodukte von Ethylen- und Propylenoxid an Ammoniak, primäre Alkylamine mit 1 bis 4 C-Atomen sowie Ethylendiamin. Insbesondere für höhere Ansprüche an die Reinigungswirkung sind solche Verbindungen bevorzugt, die sich leicht, beispielsweise durch Sublimation oder Destillation, hochrein gewinnen lassen.
  • Die Alkanolamine zeigen den weiteren Vorteil, daß sie nicht nur an den organischen Substraten nicht anhaften, sondern auch daran haftende anorganische und organische Verunreinigungen ablösen. Darüber hinaus verhindern sie durch ihr "Schmutztragevermögen" eine Rekontamination der bereits gesäuberten Flächen. Das bevorzugte Alkanolamin ist Triethanolamin. Es stellt ein mildes Alkali dar (eine 0,1 n wäßrige Lösung zeigt einen pH-Wert von 10,5) und bewirkt keinerlei Hautreizung.
  • Als anorganische Peroxidverbindungen können Alkaliperoxide eingesetzt werden, wobei - wie bei den Alkanolaminen - der Zusatz einer Base nicht erforderlich ist. Vorteilhaft setzt man jedoch Wasserstoffperoxid ein. Die Menge an Wasserstoffperoxid wird am einfachsten durch Vorversuche unter den Anwendungsbedingungen ermittelt, da diese Verbindung bekanntlich temperaturempfindlich ist. Es hat sich jedoch gezeigt, daß die bevorzugt als Komplexbildner eingesetzten Alkanolamine eine stabilisierende Wirkung ausüben.
  • Bei Temperaturen bis zu etwa 80 °C sind Konzentrationen von mindestens etwa 5 Gew.-%, bezogen auf die fertige Reinigungslösung, zweckmäßig. Geringere Konzentrationen erfordern häufig eine lange Einwirkungsdauer, höhere Konzentrationen sind im allgemeinen nur bei stärkeren Verunreinigungen des Substrats erforderlich.
  • Die alkalische Reinigungslösung hat vorteilhaft einen pH-Wert im Bereich von 7,5 bis 12, vorzugsweise 8 bis 10.
  • Da Alkanolamine alkalisch reagieren, ist bei ihrem Einsatz der Zusatz einer weiteren Base nicht immer erforderlich. Zweckmäßig ist jedoch oft ein Zusatz von wäßriger Ammoniaklösung, wobei die Menge des teureren Alkanolamins verringert werden kann. Die im Einzelfalle günstigste Kombination kann durch einfache Vorversuche ermittelt werden.
  • Eine bevorzugte Ausgestaltung der Erfindung besteht darin, daß der Kunststoff in feinverteilter Form eingesetzt wird, so daß die Verunreinigungen durch die erfindungsgemäße Reinigungslösung extrahiert werden.
  • Das erfindungsgemäße Reinigungsverfahren kann über einen weiten Temperaturbereich Anwendung finden. Bei der Reinigung von Formkörpern wird man sich nach der Temperaturempfindlichkeit dieses Formkörpers richten und beispielsweise in einem Bereich von Raumtemperatur bis etwa 120 °C, vorzugsweise etwa 50 °C, arbeiten. Wird ein feinverteilter Kunststoff extrahiert, so wählt man vorteilhaft eine höhere Temperatur, zweckmäßig etwa 80 bis 120 °C. Im allgemeinen sind dabei bei höheren Temperaturen kürzere Behandlungszeiten ausreichend. Hierbei ist aber auf den verstärkten Zerfall der Peroxidverbindung Rücksicht zu nehmen, diese also gegebenenfalls nachzudosieren oder schon von Anfang an in ausreichender Konzentration einzusetzen.
  • Das erfindungsgemäße Reinigungsverfahren ist generell auf alle Kunststoffe anwendbar. Es wirkt auch vorzüglich bei hydrophoben Kunststoffen, die im Verpackungsbereich Anwendung finden, wie Polyethylene, Polypropylene, Polyvinylchloride und Polyestern. Mit Vorteil ist es aber auch anwendbar für die sogenannten Hochleistungskunststoffe wie Polyacetale, Polyphenylensulfide, Polyetherketone und vor allem Fluorpolymere.
  • Wie eingangs erwähnt, ist - im Gegensatz zu dem aus der DE-C 24 43 147 bekannten Verfahren - eine einstufige Behandlung im allgemeinen ausreichend. Eine Vorbehandlung oder gegebenenfalls auch Nachbehandlung mit sauren Lösungen soll damit jedoch nicht ausgeschlossen sein. So kommt beispielsweise eine Flußsäure-Nachbehandlung in Betracht, wobei der HF-Lösung Peroxide und gegebenenfalls Hilfsmittel wie Tenside zugesetzt werden können. Bewährt hat sich eine Mischung der Zusammensetzung (in Gew.-%):
    89,5 % Wasser
    10,0 % H₂O₂, 30%ig
    0,5 % HF, 50%ig
    Durch eine solche Nachbehandlung können nötigenfalls restliche Eisenverunreinigungen herausgelöst werden.
  • Bei dem erfindungsgemäßen Verfahren können der alkalischen Lösung auch weitere Zusätze zugefügt werden, wie weitere Komplexbildner, Tenside, Puffer oder dergleichen. Als Tenside kommen vor allem nichtionische Tenside in Betracht wie Anlagerungsprodukte des Ethylen- und/oder Propylenoxids an langkettige Alkohole, Alkylphenole und dergleichen. Zweckmäßig sind Mengen bis zu 400 ppm, vorzugsweise 100 bis 300 ppm, vor allem etwa 200 ppm, bezogen auf die fertige Reinigungslösung. Hierdurch wird die Benetzung der Oberflächen beschleunigt, ohne daß es zu einem störenden Schäumen kommt.
  • Erfindungsgemäß kommt auch eine mehrfache Behandlung der Substrate in Betracht, wenn eine nennenswerte Migration von Verunreinigungen aus der Tiefe des Kunststoffes feststellbar ist, beispielsweise nach Erhitzen des Substrats.
  • Auch ein Zusatz von organischen Lösemitteln ist möglich, wenn auch im allgemeinen nicht vorteilhaft, da die Rückgewinnung aufwendig ist.
  • Besonders bevorzugte Ausgestaltungen der Erfindung werden in den folgenden Beispielen näher erläutert.
  • In den Beispielen wurden hochreine Chemikalien eingesetzt um sicherzustellen, daß nicht durch diese Schwermetalle eingeschleppt werden, die die gemessenen Ergebnisse verfälschen. Diese Beispiele haben also Modellcharakter, da in der Praxis wegen des genannten Schmutztragevermögens der bevorzugt eingesetzten Alkanolamine technische Qualitäten der eingesetzten Chemikalien verwendet werden können.
  • Die Durchführung aller Versuche erfolgt unter Berücksichtigung der üblichen Regeln spurenanalytischen Arbeitens. So wurde bidestilliertes Wasser und im Hochvakuum destilliertes Triethanolamin eingesetzt; Wasserstoffperoxid und Ammoniaklösung waren handelsübliche "VLSI"-Qualitäten (Firma Merck, Darmstadt). Die Eisenbestimmung erfolgte durch Atomabsorptionsspektrometrie (Atomabsorptionsspektrometer der Firma Varian Spectraa 400 sowie Graphitofen- und Probengebereinheit GTA 96) bei 248,3 nm, Spaltbreite 0,2 nm, Untergrundkorrektur: Deuteriumlampe, Injektionsvolumen 20 µl, Nachweisgrenze 0,3 ng/ml, linearer Kalibrierungsbereich 0 bis 13 ng/ml.
  • Als Substrat diente ein Copolymer aus 96 Gew.-% Tetrafluorethylen und 4 Gew.-% Perfluor-n-propylvinylether mit einem MFI 2 g/10 Minuten, bestimmt nach ASTM D 1238-57 T (bei 372 °C und 5 kg Last) mit einem Eisengehalt von 500 bis 550 ng/g Copolymer. Wie sich aus den folgenden Versuchen ergibt, liegt dieser Eisengehalt zum größten Teil im Inneren des Kunststoffs vor, da eine wiederholte Behandlung - ohne zwischenzeitliche Erhitzung des Kunststoffs - nur noch relativ geringe extrahierte Eisenmengen ergab.
  • Beispiele 1 bis 7
  • 50 g Kunststoffgranulat mit einer mittleren Teilchengröße von 16,9 mm³ werden mit 25 ml Reinigungslösung der in der Tabelle 1 angegebenen Zusammensetzung 30 beziehungsweise 60 Minuten stehengelassen. Die Ergebnisse zeigt die folgende Tabelle 1.
  • In der Tabelle 1 sind Vergleichsbeispiele V1 bis V3 enthalten, in denen eine der erfindungsgemäßen Komponenten der Reinigungslösung fehlt.
  • Die Zusammensetzung der Reinigungslösung ist wie folgt definiert: "Teile" sind Gewichtsteile, wobei das Wasserstoffperoxid als 30%ige und das Ammoniak als 25%ige wäßrige Lösung eingesetzt sind. Die Konzentration an Triethanolamin (TEA) ist in ppm angegeben. Das Extraktionsergebnis ist in ng Eisen/g Kunststoff angegeben. Tabelle 1
    Beispiel Teile TEA [ppm] Fe [ng/g]
    H₂O H₂O₂ NH₃ 30 min 60 min
    V1 4 - 1 500 0,56 0,69
    V2 4 - 1 1000 0,49 0,62
    V3 3 1 1 --- 0,82 1,07
    1 3 1 1 500 1,04 1,29
    2 3 1 1 1000 1,10 1,41
    3 3 1 0,5 1000 1,02 1,39
    4 4 1 1 1000 0,91 1,32
    5 4 1 1 10000 1,58 2,01
    6 5 1 1 1000 0,82 1,21
    7 6 1 1 1000 0,92 0,96
  • Die Vergleichsbeispiele V1 und V2 zeigen, daß eine ammoniakalische TEA-Lösung nur eine relativ geringe Extraktionswirkung zeigt. Das Vergleichsbeispiel V3 zeigt, daß eine ammoniakalische Wasserstoffperoxidlösung deutlich schlechtere Extraktionsergebnisse als die erfindungsgemäßen Reinigungslösungen erbringt.
  • Die erfindungsgemäßen Beispiele zeigen, daß - erwartungsgemäß - die Reinigungswirkung konzentrationsabhängig ist. Dies gilt vor allem für das TEA, wobei aber mit der vorhandenen Meßeinrichtung bei noch höheren Konzentrationen keine zuverlässig reproduzierbaren Angaben möglich sind. Höhere Konzentrationen an TEA sind aber nicht nur hinsichtlich der Reinigungswirkung, sondern auch bezüglich der Stabilisierung des Wasserstoffperoxids vorteilhaft.
  • Beispiel 8
  • Man verfährt gemäß Beispiel 3, extrahiert aber 75 Minuten lang, wobei eine Endkonzentration an extrahiertem Eisen von 1,5 ng/g Kunststoff erzielt wird. Durch eine erneute Anwendung einer frischen Lösung werden nach 60 Minuten 0,47 ng/g extrahiert.
  • Beispiel 9
  • Beispiel 4 wird wiederholt, die Probe während der Extraktion jedoch mit circa 100 Hz geschüttelt. Nach 30 Minuten sind 3,59 ng Fe/g Kunststoff extrahiert.
  • Beispiele 10 bis 12
  • Aus dem Copolymer geformte Fläschchen mit 50 ml Fassungsvermögen werden mit der in Beispiel 4 eingesetzten Reinigungslösung befüllt und bei unterschiedlichen Temperaturen 30 beziehungsweise 60 Minuten gelagert. Die Tabelle 2 zeigt die Extraktionsergebnisse. Tabelle 2
    Beispiel Temperatur [°C] Fe [ng/g]
    30 min 60 min
    10 Raumtemperatur 0,73 1,47
    11 50 1,30 1,81
    12 80 1,83 2,35
  • Beispiel 13
  • Beispiel 11 wird wiederholt, das Fläschchen jedoch zu 3/4 seiner Höhe in ein Ultraschallbad getaucht. Nach 30 Minuten sind 1,58 und nach 60 Minuten 2,31 ng Fe/g Kunststoff extrahiert.
  • Beispiele 14 bis 16
  • Beispiel 3 wird wiederholt, jedoch steigende Mengen an einem nichtionischen Tensid (Handelsprodukt ®TRITON X 100) zugesetzt. Die Ergebnisse zeigt die Tabelle 3. Tabelle 3
    Beispiel Tensid [ppm] Fe [ng/g]
    30 min 60 min
    3 0 1,02 1,39
    14 100 1,51 1,59
    15 200 1,40 1,67
    16 400 1,83 2,42
  • Mit steigendem Tensidzusatz tritt eine steigende Schaumbildung auf. Außerdem wird im Beispiel 16 eine schnellere Zersetzung des Wasserstoffperoxids beobachtet.
  • Beispiele 17 bis 20
  • Die in den Beispielen 10 bis 12 eingesetzten Fläschchen werden bei Raumtemperatur mit 25 ml der in Tabelle 4 angegebenen Reinigungslösung befüllt und 30 beziehungsweise 60 Minuten gelagert. In der Tabelle 4 ist der extrahierte Chromanteil [ng(Cr)], bezogen auf die eingesetzte Kunststoffmenge [g], angegeben. V4 ist ein Vergleichsbeispiel mit Wasser. Tabelle 4
    Beispiel Teile TEA [ppm] Cr [ng/g]
    H₂O H₂O₂ NH₃ 30 min 60 min
    17 3 1 1 1000 0,70 0,95
    18 3 1 0,25 1000 0,40 0,59
    19 4 1 1 1000 0,54 0,72
    20 5 1 1 1000 0,45 0,65
    V4 1 - - --- 0,031 ---
  • Für Tabelle 4 gelten die gleichen Definitionen wie für Tabelle 1.

Claims (8)

  1. Verfahren zum Reinigen von Kunststoffen, dadurch gekennzeichnet, daß man den Kunststoff mit einer alkalischen wäßrigen Lösung in Kontakt bringt, die eine anorganische Peroxidverbindung und einen Komplexbildner ohne saure Gruppen in freier oder Salzform und, falls erforderlich, eine Base enthält.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Kunststoff als Formkörper eingesetzt wird, der oberflächlich gereinigt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Kunststoff in feinverteilter Form eingesetzt wird und die Verunreinigungen extrahiert werden.
  4. Wäßrige, alkalische builderfreie Reinigungslösung, gekennzeichnet durch einen Gehalt an
    a) einem anorganischen Peroxid,
    b) einem Komplexbildner ohne saure Gruppen in freier oder Salzform und, falls erforderlich,
    c) einer Base.
  5. Lösung nach Anspruch 4, dadurch gekennzeichnet, daß der Komplexbildner ein Alkanolamin ist.
  6. Lösung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Komplexbildner Triethanolamin ist.
  7. Lösung nach einem oder mehreren der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß das Peroxid Wasserstoffperoxid ist.
  8. Lösung nach einem oder mehreren der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die Lösung ein Tensid enthält.
EP94117320A 1993-11-08 1994-11-03 Reinigung von Kunststoffen Expired - Lifetime EP0652283B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4338021A DE4338021A1 (de) 1993-11-08 1993-11-08 Reinigung von Kunststoffen
DE4338021 1993-11-08

Publications (2)

Publication Number Publication Date
EP0652283A1 EP0652283A1 (de) 1995-05-10
EP0652283B1 true EP0652283B1 (de) 1996-03-20

Family

ID=6502022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94117320A Expired - Lifetime EP0652283B1 (de) 1993-11-08 1994-11-03 Reinigung von Kunststoffen

Country Status (3)

Country Link
EP (1) EP0652283B1 (de)
JP (1) JPH07207299A (de)
DE (2) DE4338021A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693164B2 (en) 2000-06-01 2004-02-17 3M Innovative Properties Company High purity fluoropolymers
CN105251732B (zh) * 2015-11-09 2018-05-11 奉化市旭日鸿宇有限公司 一种塑料颗粒原料的清洗方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908680A (en) * 1973-10-12 1975-09-30 Flow Pharma Inc Methods for cleaning and bleaching plastic articles
US4298492A (en) * 1979-06-21 1981-11-03 Lever Brothers Company Built liquid detergent composition
DE4117972A1 (de) * 1991-05-31 1992-12-03 Hildegard John Haushaltsreiniger

Also Published As

Publication number Publication date
DE59400166D1 (de) 1996-04-25
JPH07207299A (ja) 1995-08-08
DE4338021A1 (de) 1995-05-11
EP0652283A1 (de) 1995-05-10

Similar Documents

Publication Publication Date Title
EP0181673B1 (de) Verfahren zur Reinigung von Aluminiumbehältern
EP0569843B1 (de) Nichtionische, fliessfähige Perlglanzdispersionen
DE1492495C2 (de) Keimtötendes Mittel und seine Verwendung
EP0502466B1 (de) Verfahren zur Reinigung von Wasserstoffperoxyd für die Mikroelektronik
DE3826720A1 (de) Verfahren zur herstellung hochreinen wasserstoffperoxids
EP0158174A1 (de) Nichtionische, fliessfähige Perlglanzdispersionen
DE19718401A1 (de) Verfahren zur Entfernung von Metalloberflächen-Verunreinigungen von Silizium
DE1289597B (de) Hochalkalische, lagerstabile und schaumarme Flaschenreinigungsmittel
EP0652283B1 (de) Reinigung von Kunststoffen
DE3620314A1 (de) Alkalischer reiniger
DE1621593C3 (de) Verwendung alkalischer Reinigungsmittel als lagerstabile, schaumarme Metallreinigungsmittel
DE19806578A1 (de) Verfahren zur Herstellung wäßriger, im wesentlichen metallionenfreier Hydroxylaminlösungen
DE3306956C2 (de)
EP0233842B1 (de) Lösungen amphoterer Tenside zur Reinigung oder Konservierung von Weichkontaktlinsen
EP0707629B1 (de) Verfahren zur eliminierung migrierter bestandteile aus mehrweg-kunststoffgebinden für lebensmittel
DE1289815B (de) Stabile waessrige Bleichmittelloesung
EP0230903A2 (de) Verfahren zur Reinigung von Aluminiumbehältern
EP0157382B1 (de) Verfahren und wässrige, saure Reinigungslösung zur Reinigung von Aluminiumoberflächen
DE60205258T3 (de) Vorbehandlung von kunststoffmaterialien
DE1261618B (de) Alkalische, lagerstabile, schaumarme Reinigungs- und Spuelmittel
DE19607390A1 (de) Verfahren zur Entkeimung von Wasser
DE2340842B2 (de) Verfahren zur entfernung von quecksilber aus hochkonzentrierter schwefelsaeure
EP0531360B1 (de) Reinigung von aluminiumoberflächen
DE2631466A1 (de) Verwendung von lanthan-, praseodym- und/oder neodymverbindungen als stabilisatoren fuer alkalipercarbonate
DE1617178B2 (de) Flüssiges Waschmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19950314

17Q First examination report despatched

Effective date: 19950614

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 59400166

Country of ref document: DE

Date of ref document: 19960425

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960524

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980202

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981016

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981019

Year of fee payment: 5

Ref country code: GB

Payment date: 19981019

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103