EP0643401B1 - Fusible électrique dépendant de la charge - Google Patents

Fusible électrique dépendant de la charge Download PDF

Info

Publication number
EP0643401B1
EP0643401B1 EP94202512A EP94202512A EP0643401B1 EP 0643401 B1 EP0643401 B1 EP 0643401B1 EP 94202512 A EP94202512 A EP 94202512A EP 94202512 A EP94202512 A EP 94202512A EP 0643401 B1 EP0643401 B1 EP 0643401B1
Authority
EP
European Patent Office
Prior art keywords
ceramic
preventive
fuse
tdr
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94202512A
Other languages
German (de)
English (en)
Other versions
EP0643401A2 (fr
EP0643401A3 (fr
Inventor
Albert Dr. C/O Philips Patentver.Gmbh Comberg
Rainer Dr. C/O Philips Patentver.Gmbh Waser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP0643401A2 publication Critical patent/EP0643401A2/fr
Publication of EP0643401A3 publication Critical patent/EP0643401A3/fr
Application granted granted Critical
Publication of EP0643401B1 publication Critical patent/EP0643401B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/13Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material current responsive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • H01C7/045Perovskites, e.g. titanates

Definitions

  • the present invention relates to a load-dependent preventive electrical protection according to the Features of the preamble of claim 1.
  • Fuses are known for electrical circuits. she serve to protect the electrical circuits and devices and machines connected to these if unwanted, usually unpredictable, burdens occur on the circuits that damage them being able to lead. Such loads can cause voltage peaks in the supply network, short circuits due to improper Handling of the devices, too high ambient temperatures or excessive ambient humidity, etc. Corresponding come fuses, thermistors or Humistors alone or in combination with one another Commitment. Such backups are also in the following for short called load securing devices.
  • preventive protection is advantageous, triggering them by a combination or certain Constellation of measured physical quantities is caused. It then becomes logical with each other interconnected preventive safeguards related. Frequently should in addition to the operating time, the accumulated load a machine during its operating life as a decision criterion used for any maintenance intervals become. This is the case with automotive engines, for example Case. It is sufficient to determine the maintenance intervals in usually not to monitor the mileage alone. Rather, it is necessary, as is the accumulated in time Register engine power. Because as a result of Traffic congestion, it is conceivable that the engine will last longer Time is operated with the speedometer cable not rotating.
  • the load on motors is often also direct Relationship to the operating temperature of the motors. That is, each the hotter the engine, the higher its load. Out For this reason, preventive safeguards are of advantage at the same time the operating time as well as the time accumulated operating temperature and thus the temporal accumulated operating load as trigger criterion to use. Such preventive safeguards are described below also load-controlled preventive safeguards called.
  • This problem is addressed in the prior art Preventive protections solved with a combination of corresponding individual sensors for temperature and the time are equipped. Every single one of the individual However, the sensor is also at risk of failure afflicted. Thus the default risk is the compound Preventive protection greater than the default risk each of the individual components. Added to this is the comparison increased assembly effort for a single component.
  • the present invention is based on the object preventive electrical preventive protection create that already as a single component several Can record types of load, is simple and thus minimizing the risk of failure and the assembly effort.
  • the preventive protection according to the invention has an electronic one Ceramic with electrodes inside a case and with lead-out leads for the electrodes.
  • the electronic used Ceramic hereinafter referred to as TDR (Time Dependent Resistor) ceramic called, has a time-dependent according to the invention Resistance, depending on the time of one quasi-insulating state in a semiconducting state ignores what is the trigger criterion.
  • TDR Time Dependent Resistor
  • At the Operation of the preventive protection according to the invention is one DC voltage via the connecting lines to the TDR ceramic and the current increase at the end of the Register operating time and evaluate accordingly.
  • a constant temperature of the device to be monitored according to the invention after a predeterminable number of Operating hours triggering the preventive protection can be achieved.
  • the operating time ⁇ of the TDR ceramic can be controlled in a defined manner both from the temperature T and from the applied DC voltage supply U and the distance d between the electrodes on or in the TDR ceramic.
  • A (U / U O ) n1 (D / d O ) n2 exp (E A / KT)
  • the pre-factor A, the exponents n 1 and n 2 , and the activation energy E A are material-dependent constants.
  • U 0 and d 0 denote the voltage or
  • the preventive protection according to the invention is, as from the the aforementioned equation can also be seen from the temperature of the device to be monitored is affected. According to the invention is therefore an extremely simple load-dependent preventive electrical protection specified that both of the operating time and the temperature of a to be monitored device is influenced and quasi automatically a link between the two parameters as a trigger criterion used.
  • PTC element a PTC thermistor
  • any known electronic ceramic the electrical resistance of which exhibits a time-dependent behavior under direct voltage, can be used for the present invention.
  • TDR ceramics are for example from J. Am. Ceram. Soc. 73 (6) 1654-62 (1990) and the literature cited therein.
  • the doped and undoped alkaline earth titanates of the perovskite type such as CaTiO 3 , SrTiO 3 or BaTiO 3 .
  • the alkaline earth ions can be replaced by 0.9-1.1 atm% alkali ions such as sodium ions or potassium ions.
  • Another possibility of doping which can be used alternatively or together with the first possibility, is the doping of the titanium by acceptor ions such as magnesium, aluminum, vanadium, chromium, manganese, iron, nickel or cobalt in an amount of 0.1 to 3 atm%.
  • acceptor ions such as magnesium, aluminum, vanadium, chromium, manganese, iron, nickel or cobalt in an amount of 0.1 to 3 atm%.
  • the TDR ceramic can be made from strontium carbonate, titanium dioxide and nickel hydroxocarbonate, with a composition of SrTi 1.01 Ni 0.001 O 3 .
  • the starting powders were ground beforehand, calcined at 950 to 1100 ° C., ground again, pressed and sintered in oxygen at 1480 ° C. for two hours.
  • the TDR ceramic was then cut into slices up to a few millimeters thick and provided with electrodes on both sides by vapor deposition or baking with a suitable metal paste. Silver, gold, platinum, palladium or other noble metals or alloys between these metals are suitable as metals.
  • this electrodized ceramic disc can be brought into thermal contact with the PTC element either on one side or on both sides.
  • the PTC element can consist of the known PTC ceramics. These are, for example, ceramics made of pure BaTiO 3 or solid solutions of BaTiO 3 with 0 ⁇ atm% PbTiO 3 ⁇ 50 and / or 0 ⁇ atm% SrTiO 3 ⁇ 50.
  • the PTC element can consist of 70 atm% BaTiO 3 and 30 atm % PbTiO 3 exist and thus have a Curie temperature T c of about 260 ° C.
  • Other PTC ceramics based on BaTiO 3 are doped with 0.1 to 0.3 atm% lanthanum, yttrium, bismuth, antimony, tantalum or niobium.
  • the thermal contact can be mediated by a thin Al 2 O 3 or AlN disc or a thin mica plate on which the ceramics are fixed using a temperature-resistant adhesive.
  • the electrodes of the PTC element are also led out of the housing and can either be galvanically isolated with the other leads that are led out, or can be led to the outside with the common ground connection that is then created, while omitting the mica disk.
  • the PTC element is heated to approximately the Curie temperature by an applied DC voltage.
  • the resistance-temperature characteristic of the PTC element leads to a self-stabilization of the temperature in the known manner.
  • the operating time ⁇ of the TDR ceramic now depends on the voltage according to the above equation.
  • the PTC element can e.g. through a metal ash or the like replaced become.
  • the operating time of this preventive protection depends then next to the voltage U and the thickness d of the integral Temperature curve at the contact point of the to be monitored Device.
  • the TDR ceramic made of SrTi 1.01 Ni 0.001 O 3 has to be sintered for six hours at 1340 ° C and then at 1280 ° C hot under 200 bar argon and post-tempered in oxygen at 800 ° C for eight hours.
  • the operating time ⁇ can moreover be varied over a wide range with the aid of the sintering temperature by adding a mol.% Of barium titanate silicate (Ba 2 Si 2 TiO 8 ) to the starting powder after the calcining and painting.
  • barium titanate silicate Ba 2 Si 2 TiO 8
  • the TDR ceramic can also be designed as a multilayer structure with a distance d of the inner electrodes between a few tens to 100 microns, which enables operation with extremely low voltages.
  • the exponent n 2 then has values from 1 to 1.1.
  • Fig. 1 shows a plan view of an inventive preventive electrical protection 10.
  • Preventive protection 10 has a housing 11, which in a TDR ceramic 12 and 12 located inside the housing any existing PTC thermistor 13 completely encloses. Connection lines 14 to the Electrodes 17 of the TDR ceramic 12 or the PTC element 13 lead out of the housing 11. You lead to a voltage source and / or evaluation unit.
  • the Housing 11 can be mounted on a device to be monitored with an attachable pad 15 with a through hole 26 be provided, which at the same time as Extension of the lower end plate of the housing 11 can be executed.
  • the housing 11 can be made of any Material, but preferably be made of copper. This applies in particular to the pad 15.
  • the Housing 11 itself can be cubic or cuboid.
  • the curve profile 18 shown for SrTi 1.01 Ni 0.001 O 3 corresponds approximately to that at a constant temperature of T 260 ° C, corresponds to a voltage U of 80 V and a distance d of 0.5 mm, an insulation resistance 19 of 10 8 ⁇ initially prevailing, which then decreases to a value of approx. 10 5 ⁇ in the region 20 after about two hours.
  • FIG. 3 shows a preventive protection 10 according to the invention on average with a PTC element 13 and one of the also shown TDR ceramic 12 separate ground connection 22. Between the heating PTC element 13 and the TDR ceramic 12 is a mica disk 23 for insulation intended.
  • the connecting lines 14 lead to the respective electrodes 17 of the TDR ceramic 12 and the PTC element 13 and have in Fig. 3 from top to bottom showing a polarization sequence of + - + -.
  • the gap between the housing 11 and the PCT element 13 and the TDR ceramic 12 is filled with glass wool 16.
  • the Bottom of the housing 11 with a not shown in Fig. 3 Be pad 15 and that Housing 11 directly below the TDR ceramic 12 seal and be in thermal contact with it.
  • FIG. 4 shows a preventive protection 10 according to the invention on average with a PTC element 13 and a TDR ceramic 12, which has a common ground connection 24 and thus only three connecting lines 14 leading out have, so that there is a polarization sequence of + - +.
  • the preventive protection 10 according to this FIG. 4 corresponds otherwise of those described in the description of FIG. 3 has been described. In this respect, the description is too Fig. 3 referenced.
  • a preventive protection 10 according to FIG. 3 is made from a acceptor-doped alkaline earth ceramic, e.g. Ni-dope Strontium titanate ceramic as TDR ceramic 12 and one conventional PTC ceramic 13 based on doped Barium titanates or barium / lead titanates or barium / strontium titanates formed that are thermally closely coupled, can also be electrically isolated from one another.
  • a acceptor-doped alkaline earth ceramic e.g. Ni-dope Strontium titanate ceramic as TDR ceramic 12 and one conventional PTC ceramic 13 based on doped Barium titanates or barium / lead titanates or barium / strontium titanates formed that are thermally closely coupled, can also be electrically isolated from one another.
  • the TDR ceramic 13 is produced, for example, from a mixture of strontium carbonate, titanium dioxide and nickel hydroxocarbonate, which leads to a ceramic of the composition SrTi 1.01 Ni 0.001 O 3 .
  • the starting powders were calcined at 950 to 1100 ° C., ground again, pressed and sintered at 1480 ° C. for 2 hours in an oxygen stream.
  • the TDR ceramic 12 was then cut into slices of thickness d (with d between 0.1 and 2 mm).
  • the electrodes 17 were applied on both sides by vapor deposition or by baking in a suitable metal paste. Silver, gold, platinum, palladium or other noble metals or alloys between these metals are suitable as metals.
  • the electrodized ceramic disk was brought into thermal contact with the PTC element 13, which consists, for example, of 70% BaTiO 3 and 30% PbTiO 3 and thus has a Curie temperature T c of approximately 260 ° C., either on one side or on both sides.
  • the thermal contact can by a thin Al 2 O 3 or.
  • AIN disk or mica plate 23 are conveyed, on which the ceramics 12, 13 are fixed by means of a temperature-resistant adhesive 25.
  • the electrical supply lines 14 can either be electrically isolated or, with the mica disc 23 omitted, can be led to the outside with a common ground connection 24.
  • the PTC element 13 is heated to approximately T c by an applied DC voltage.
  • the resistance-temperature characteristic of the PTC element 13 leads to a self-stabilization of the temperature in the known manner.
  • the tripping time that is, the operating time ⁇ of the TDR ceramic 12 depends on the voltage U according to the equation mentioned, the exponent n 1 having a value of approximately -2 for the TDR ceramic 12 listed here.
  • Preventive protection without PTC element 13 for heating is made in the same manner as described above. Instead of the PTC ceramics 13, a connecting tab 15 attached (see Fig. 1), which allows the fuse in close thermal contact with the one to be monitored Bring device.
  • the operating time of this fuse 10 depends on the Voltage U and the thickness d from the integral temperature profile at the contact point of the device to be monitored from.
  • Preventive protection with or without PTC element 13 for Heating can be done in the same way as above described.
  • the sintering condition can be as follows be varied so that the TDR ceramic 12 at 1340 ° C and 6 h is sintered. Then the ceramic 12 at 1280 ° C under 200 bar argon hot pressed and at 800 ° C for Post-annealed in oxygen for 8 hours.
  • the operating time ⁇ of this preventive protection 10 is through a changed microstructure of the ceramic 12 with unchanged Parameters about 1000 times higher.
  • a thickness the ceramic disc 12 of d 0.5 mm
  • a temperature T 200 ° C
  • a voltage of 80 V results in a Operating time ⁇ of preventive protection of 2000 hours.
  • a preventive safety device 10 with or without PTC element 13 can be produced as described above and with changed starting powder according to the previous paragraph.
  • the TDR ceramic 12 is designed as a multilayer structure with a distance d between the internal electrodes of between approximately 15 and 100 ⁇ m. This allows operation with small voltages according to the equation mentioned.
  • the exponent n 2 is approximately 1.0 to 1.1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thermistors And Varistors (AREA)
  • Fuses (AREA)

Claims (14)

  1. Fusible préventif commandé par la charge pour le contrôle d'une durée de fonctionnement souhaitée T qui comprend un corps de résistance céramique (12) possédant une résistance électrique qui passe en fonction d'un intervalle de temps et d'un deuxième type de charge d'un état initialement isolant avec une valeur de résistance élevée à un état semi-conducteur avec une valeur de résistance inférieure tandis qu'une tension continue est appliquée sur le corps de résistance, des électrodes (17) pour appliquer la tension continue sur le corps de résistance pendant l'intervalle de temps, des moyens de mesure de la résistance du corps de résistance céramique et une unité d'évaluation pour le contrôle du passage à l'état de résistance du corps de résistance.
  2. Fusible préventif selon la revendication 1,
        caractérisé en ce que le mode de fonctionnement τ, donc la réalisation du critère de déclenchement, dépend des premier et deuxième modes de charge de l'alimentation en tension continue U et d'un intervalle d entre les électrodes 17 et/ou dans la céramique TDR (12).
  3. Fusible préventif selon la revendication 2,
        caractérisé en ce qu'en raison du matériau céramique, le premier type de charge provoque un rapport avec le temps et le deuxième type de charge un rapport avec la température qui sont associés d'après la loi suivante: τ = A (U/Uo)n1 (d/do)n2 exp (EA/kT) Dans cette équation, le facteur préliminaire A, les exposants n1 et n2 ainsi que l'énergie d'activation EA sont des constantes dépendantes du matériau et U0 et d0 les unités de tension et de longueur.
  4. Fusible préventif selon la revendication 3,
        caractérisé en ce qu'un boítier (11) qui loge une céramique TDR (12) dotée d'électrodes (17) et noyée dans de la laine de verre (16) dont les lignes de liaison électriques (14) sont tirées vers l'extérieur et au moins une des surfaces de section circulaire dotées respectivement d'une électrode (17) peut être influencée thermiquement.
  5. Fusible selon la revendication 4,
        caractérisé en ce que l'influence thermique est formée par une fermeture disposée en conséquence d'une surface de liaison (15) par l'intermédiaire de laquelle le fusible préventif (10) est relié mécaniquement et thermiquement à l'appareil à contrôler.
  6. Fusible préventif selon la revendication 4,
        caractérisé en ce que le boítier (11) présente dans la section de la céramique TDR (12) qui peut être influencée thermiquement un chauffage propre avec également des lignes de liaison (14) tirées vers l'extérieur en vue de la détermination définie de la température.
  7. Fusible préventif selon la revendication 6,
        caractérisé en ce que le chauffage propre est formé par un élément PTC (13) qui se compose de titanates de baryum et/ou de titanates de baryum/plomb et/ou de titanates de baryum/strontium dopés, par exemple 70% de BaTiO3 et 30% PbTiO3 et est couplé de manière thermiquement étroite avec la céramique TDR (12) sur une ou plusieurs faces et présente des électrodes (17) sur ces surfaces de section circulaires.
  8. Fusible préventif selon la revendication 7,
        caractérisé en ce que le contact thermique est assuré par une fine couche d'Al2O3 ou d'AlN ou par une fine feuille de mica (23) sur laquelle sont fixés, d'une part, la céramique TDR (12) et, d'autre part, l'élément PTC (13) à l'aide d'un adhésif (25) résistant à la température.
  9. Fusible préventif selon la revendication 8,
        caractérisé en ce que les lignes de liaison électriques (14) de la céramique TDR (12) et de l'élément PTC (13) sont guidées vers l'extérieur hors du boítier (11) de manière galvaniquement séparée et que l'élément PTC (13) est chauffé par une tension continue appliquée jusqu'à la température de Curie Tc environ.
  10. Fusible préventif selon la revendication 8,
        caractérisé en ce que la céramique TDR (12) et l'élément PTC (13) sont directement fixés l'un à l'autre à l'aide d'un adhésif (25) résistant à la température et leurs électrodes forment dans cette zone une borne commune de mise à la masse (24) de telle sorte que seules trois lignes de liaison (14) soient tirées hors du boítier et que l'élément PTC (13) soit chauffé à la température de curie Tc par une tension continue appliquée.
  11. Fusible préventif selon l'une ou plusieurs des revendications précédentes,
        caractérisé en ce que la céramique TDR (12) est fabriquée à partir d'un titanate alcalino-terreux dopé ou non dopé du type pérovskite.
  12. Fusible préventif selon la revendication 11,
        caractérisé en ce que la céramique TDR (12) est fabriquée à partir d'une céramique de titanate de strontium dopée Ni de composition SrTi1,01Ni0,001O3.
  13. Fusible préventif selon la revendication 12,
        caractérisé en ce que, pour une alimentation de tension continue U préalablement déterminée, un exposant n1 de - 2, une épaisseur d de la céramique TDR (12) de 0,5 mm et une surface d'électrode de 200 mm2 à une température T de 260°C, il en résulte une durée de fonctionnement τ de 2 heures à une tension de 80V.
  14. Fusible préventif selon la revendication 13,
        caractérisé en ce que la céramique TDR (12) est composée d'une structure multicouches avec un intervalle d des électrodes internes entre 15 et 100 µm environ, de telle sorte qu'un exposant n2 d'environ 1,0 à 1,1 soit ainsi réglé.
EP94202512A 1993-09-09 1994-09-02 Fusible électrique dépendant de la charge Expired - Lifetime EP0643401B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4330534 1993-09-09
DE4330534A DE4330534A1 (de) 1993-09-09 1993-09-09 Belastungsabhängige elektrische Präventivsicherung

Publications (3)

Publication Number Publication Date
EP0643401A2 EP0643401A2 (fr) 1995-03-15
EP0643401A3 EP0643401A3 (fr) 1997-04-02
EP0643401B1 true EP0643401B1 (fr) 2002-05-29

Family

ID=6497253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94202512A Expired - Lifetime EP0643401B1 (fr) 1993-09-09 1994-09-02 Fusible électrique dépendant de la charge

Country Status (4)

Country Link
US (1) US6133819A (fr)
EP (1) EP0643401B1 (fr)
JP (1) JPH07192599A (fr)
DE (2) DE4330534A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119655B2 (en) * 2004-11-29 2006-10-10 Therm-O-Disc, Incorporated PTC circuit protector having parallel areas of effective resistance
US8154376B2 (en) * 2007-09-17 2012-04-10 Littelfuse, Inc. Fuses with slotted fuse bodies

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2039065A1 (de) * 1970-08-06 1972-02-17 Kind Dieter Prof Dr Ing Verfahren und Anordnungen zur strombegrenzenden Unterbrechung von Gleich- und Wechselstroemen hoher Spannung
US3931602A (en) * 1970-08-10 1976-01-06 Micro Devices Corporation Thermal limiter for one or more electrical circuits and method of making the same
US3805022A (en) * 1972-10-10 1974-04-16 Texas Instruments Inc Semiconducting threshold heaters
US3878501A (en) * 1974-01-02 1975-04-15 Sprague Electric Co Asymmetrical dual PTCR package for motor start system
US3976854A (en) * 1974-07-31 1976-08-24 Matsushita Electric Industrial Co., Ltd. Constant-temperature heater
US4016521A (en) * 1975-05-23 1977-04-05 Seybold Joseph F Thermal limiter
US4068281A (en) * 1976-09-15 1978-01-10 General Electric Company Thermally responsive metal oxide varistor transient suppression circuit
WO1984003171A1 (fr) * 1983-02-10 1984-08-16 Matsushita Electric Ind Co Ltd Composition de porcelaine pour une resistance non-lineaire dependant de la tension
GB8609324D0 (en) * 1986-04-16 1986-05-21 Micropore International Ltd Enclosing object
JPS6455301A (en) * 1987-08-26 1989-03-02 Sumitomo Heavy Industries Sintering method
US5130689A (en) * 1989-05-09 1992-07-14 Leach & Garner Co. Intermetallic time-temperature integration fuse
US5379022A (en) * 1993-05-03 1995-01-03 Fluke Corporation Thermistor device with extended operating range

Also Published As

Publication number Publication date
EP0643401A2 (fr) 1995-03-15
US6133819A (en) 2000-10-17
DE59410123D1 (de) 2002-07-04
DE4330534A1 (de) 1995-03-16
EP0643401A3 (fr) 1997-04-02
JPH07192599A (ja) 1995-07-28

Similar Documents

Publication Publication Date Title
EP0649150B1 (fr) Matériau composite
EP2815627B1 (fr) Chauffage de véhicule et procédé de contrôle d'un chauffage de véhicule
EP2917712B1 (fr) Capteur de température et procede de production d'un capteur de température
EP2488468B1 (fr) Resistance comprenant un matériau céramique
WO2013120786A1 (fr) Procédé de fabrication d'un chauffage de véhicule et chauffage de véhicule
EP1451833B1 (fr) Composant electrique a coefficient de temperature negatif
EP1277215B1 (fr) Composant electrique, son procede de fabrication et son utilisation
DE2724269C2 (de) Überlastungsschutz-Schaltung
DE10137873C1 (de) Elektrokeramisches Bauelement
EP0643401B1 (fr) Fusible électrique dépendant de la charge
EP2529381B1 (fr) Condensateur multicouche en céramique
DE10146947C5 (de) Elektrisches Bauelement
DE3434729A1 (de) Biegeelement aus piezokeramik und verfahren zu seiner herstellung
DE112022001724T5 (de) Sauerstoffsensorelement und verfahren zu seiner herstellung
EP0640816B1 (fr) Capteur de température à thermistor hybride
EP0532890B1 (fr) Capteur de température à thermistor
DE10315220A1 (de) Dickschichtpaste zur Herstellung von elektrischen Bauteilen
DE202019005383U1 (de) Varistor mit Überwachungseinrichtung
EP4374395A1 (fr) Résistance, en particulier résistance à couche épaisse
DE3390046C2 (de) Keramische Zusammensetzung mit hoher Dielektrizit{tskonstante
JP2644731B2 (ja) 電圧依存性非直線抵抗器の製造方法
DE19641727A1 (de) Kaltleiter
DE3011672A1 (de) Temperatursensor
JPH07169603A (ja) 正温度特性を有する半導体磁器およびその製造方法
DE2825960A1 (de) Elektrischer wickelkondensator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19971002

17Q First examination report despatched

Effective date: 19991122

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020529

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59410123

Country of ref document: DE

Date of ref document: 20020704

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020724

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20020904

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

ET Fr: translation filed

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021119

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

26N No opposition filed

Effective date: 20030303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030926

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030930

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040902

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST