EP0641935B1 - Pompe à membrane à entraînement hydraulique avec limitation mécanique de la course de la membrane - Google Patents

Pompe à membrane à entraînement hydraulique avec limitation mécanique de la course de la membrane Download PDF

Info

Publication number
EP0641935B1
EP0641935B1 EP94108469A EP94108469A EP0641935B1 EP 0641935 B1 EP0641935 B1 EP 0641935B1 EP 94108469 A EP94108469 A EP 94108469A EP 94108469 A EP94108469 A EP 94108469A EP 0641935 B1 EP0641935 B1 EP 0641935B1
Authority
EP
European Patent Office
Prior art keywords
diaphragm
membrane
chamber
conveying chamber
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94108469A
Other languages
German (de)
English (en)
Other versions
EP0641935A1 (fr
Inventor
Waldemar Horn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lewa GmbH
Lewa Herbert Ott GmbH and Co KG
Original Assignee
Lewa GmbH
Lewa Herbert Ott GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lewa GmbH, Lewa Herbert Ott GmbH and Co KG filed Critical Lewa GmbH
Publication of EP0641935A1 publication Critical patent/EP0641935A1/fr
Application granted granted Critical
Publication of EP0641935B1 publication Critical patent/EP0641935B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0081Special features systems, control, safety measures
    • F04B43/009Special features systems, control, safety measures leakage control; pump systems with two flexible members; between the actuating element and the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston

Definitions

  • the invention relates to a hydraulically driven diaphragm pump according to the preamble of claim 1.
  • leakage supplement devices of diaphragm pumps are described in DE-A 28 43 054 and in FR-A 24 92 473.
  • Controlling the leakage supplementation through the membrane system offers a number of advantages compared to pressure-controlled leakage supplementation with a snifting valve.
  • large suction heights can be overcome, the suction height being limited solely by the vapor pressure of the delivery fluid and hydraulic fluid.
  • overloading of the hydraulic space is excluded. Such pronounced vacuum peaks preferably occur in large high-pressure diaphragm pumps at the beginning of the suction phase when the liquid column in the suction line is accelerated suddenly when the suction valve is opened.
  • the diaphragm system-controlled leak supplement enables the sniffing of hydraulic fluid at a low differential pressure of, for example, less than 0.3 bar, i.e. the absolute pressure remains at around 0.7 bar.
  • the pressure-controlled leakage supplement requires a relatively high setting of the differential pressure at the snifting valve of, for example, 0.6 bar in order to ensure safe operation.
  • the resulting pressure drop in the hydraulic chamber during the sniffing process to, for example, 0.4 bar absolute pressure leads to increased gas formation. This results in a reduced delivery rate and delivery accuracy.
  • the negative pressure prevailing at the suction valve can propagate via the suction valve, which is never completely static, into the delivery chamber and into the hydraulic chamber and then leads to hydraulic fluid, for example via the piston seal, being sucked from the reservoir into the hydraulic chamber.
  • both the suction stroke position and the pressure stroke limit position of the membrane have a membrane stroke limitation to provide. This takes place in the suction stroke limit position in a purely mechanical manner, namely by means of a support plate against which the membrane lies in the suction stroke limit position.
  • the diaphragm stroke limitation is effected purely hydraulically, in that a valve member, which is provided on the piston-side end of a control slide of a leakage supplement device, interrupts the hydraulic connection from the piston work chamber to the diaphragm work chamber, excess hydraulic oil being displaced into the reservoir space via a pressure relief valve.
  • a diaphragm pump (DE-A 40 18 464) to design the diaphragm as a sandwich diaphragm, which consists of two individual layers held at a distance.
  • the space between the individual layers is connected to a display device which responds as soon as the liquid pressure - either from the delivery space or from the pressure space - propagates into the membrane space when a single layer breaks.
  • these are connected at a multiplicity of points, in particular by welding, but this is technically relatively complex and can lead to tearing of these connections at high negative pressures.
  • the invention has for its object to design the diaphragm pump of the generic type in such a way that it has a high degree of functional reliability with little wear even after a long period of operation and ensures a secure holding together of the diaphragm systems in their central area.
  • the coupling members are connected to a control slide of a diaphragm system-controlled leakage supplement device, which is displaceably guided in the pump body.
  • a simple mutual connection of the two coupling members is achieved in that the delivery chamber-side coupling member has a rod-like fastening part which passes through central through holes in the membrane and the hydraulic-side coupling member and is fastened to the control slide.
  • the control slide also has a continuous longitudinal bore through which the rod-like fastening part passes, so that it can be fixed on the end of the control slide facing the displacement piston.
  • the function of the screw or rivet is from the coupling member on the delivery chamber side itself taken over by being provided with a rod-like fastening part which extends through the control slide of a diaphragm system-controlled leakage supplement device and is fixed there at the opposite end.
  • the arrangement according to the invention has the advantage that the fastening device provided for clamping the membrane systems is not subjected to any pressure load. Deformations in the thread area, which occur with the known coupling screw and can lead to undesired loosening of the arrangement, are avoided in a simple manner. The membrane systems are thus reliably held together even with a long service life, and wear and tear is reduced.
  • the stop surface of the coupling member on the delivery chamber can also be designed to be continuously flat and extensive, so that the compressive stresses between the stop surfaces and thus also wear phenomena occurring there can be reduced.
  • the arrangement according to the invention can be produced in a very simple manner since only a central through-hole has to be made in the control slide of the leakage supplement device in order to be able to pass the rod-like fastening part of the coupling member on the delivery chamber side. It is thus included in the invention of the control slide of the leakage supplement device in the fastening of the coupling member, which results in a structural simplification.
  • the coupling members are expediently designed as stop elements which are connected both to the delivery chamber boundary wall of the pump cover and to that of the pump cover Have pump body interacting stop surfaces for a mechanical pressure stroke or suction stroke limitation of the membrane. Because of such an arrangement, the diaphragm stroke limitation is effected on both sides of the diaphragm in a purely mechanical manner, so that hydraulic stroke limitation means, for example for limiting the pressure stroke, are superfluous.
  • the coupling members are designed such that, in the pressure stroke or suction stroke limit position of the membrane, together with associated pump body or pump cover surfaces, they each form a support surface for the membrane that is adapted to the natural membrane geometry, at least essentially continuously. Such a configuration makes a significant contribution to protecting the membrane.
  • the coupling members are expediently designed as rotationally symmetrical support plates with, in particular, flat end faces.
  • the flat end surface facing away from the membrane acts as a large-area stop surface in the pressure stroke or suction stroke limit position, while the flat end surface facing the membrane is designed as a large-area support surface for the membrane.
  • the coupling member on the delivery chamber side is covered with a plastic layer.
  • This plastic layer protects the coupling member on the pressure stroke side from aggressive media on the one hand and on the other hand can be designed such that it acts as a damping element when the coupling member strikes the pump cover in the pressure stroke limit position.
  • hydraulic coupling element is integral, i.e. in one piece, is formed with the control slide.
  • the radius of at least the coupling element on the delivery chamber side is expediently equal to or greater than half the radius of the membrane section located in the delivery chamber.
  • the coupling member on the delivery chamber is dimensioned and arranged in such a way that it at least largely covers the mouths of the inlet and outlet channels.
  • the membrane is also mechanically supported in the area of the inlet and outlet channels when the membrane is in the pressure stroke limit position, which can prevent the membrane from being pressed into the inlet or outlet channels and "shoot through" the membrane at these points he follows. It is therefore easily possible with such a configuration to dimension the inlet and outlet channels generously and to arrange them in such a way that they open into the delivery chamber in a region close to the center, ie in the region of the largest membrane stroke.
  • the inlet and outlet channels open into the delivery chamber in such a way that their center point distance from the central axis of the delivery room is a maximum of 50% of the largest delivery chamber radius.
  • the pump-internal pressure losses can advantageously be further reduced in that the inlet and outlet channels are aligned parallel to the direction of movement of the membrane in the region of their orifices on the delivery chamber side.
  • the coupling members are generally dimensionally stable, it is advantageous if the individual membrane layers have a bead in the area between the coupling members and the clamping on the edge. On the one hand, this bead enables the desired mobility of the membrane and, on the other hand, it is expediently designed to be sufficiently rigid to prevent the individual membrane systems from lifting off from one another in the suction stroke.
  • a ventilation hole is expediently provided in the pump cover, which opens into the geodetically highest point of the delivery chamber and is connected to the outlet channel.
  • This vent hole which can be made relatively small in relation to the inlet or outlet channel, serves to vent the delivery chamber.
  • a solid particle discharge hole is provided in the pump cover, which opens into the geodetically lowest point of the delivery chamber and is connected to the inlet channel. This hole is used to remove sedimented particles to prevent them from getting caught between the pump cover and the membrane and causing damage to the membrane.
  • the hydraulic chamber is expediently connected to a pressure relief valve since, as described at the beginning, it can happen when the pump starts up that the diaphragm or the coupling member bears against the pump cover. If the piston then moves further in the direction of its end of the pressure stroke or if a certain predetermined maximum pressure is exceeded, excess hydraulic oil is discharged into the reservoir via the pressure relief valve. Then the membrane works again in its normal working area.
  • a hydraulically driven diaphragm pump which has a diaphragm 1 consisting of two separate individual layers 1a, 1b, in particular made of plastic. This is clamped at its edge between a pump body 2 and a pump cover 3 which is detachably attached to the end thereof and separates a delivery chamber 4 from a hydraulic chamber 5 filled with hydraulic fluid, which represents the piston working chamber.
  • the diaphragm pump has a hydraulic diaphragm drive in the form of an oscillating displacement piston 6, which sealed in the pump body 2 between the piston working space 5 and a storage space 7 for the hydraulic fluid.
  • the piston working chamber 5 is connected via at least one axial bore 8 arranged in the pump body 2 to a diaphragm-side pressure chamber 9, which represents the diaphragm working chamber and together with the piston working chamber 5 forms the hydraulic chamber as a whole.
  • the diaphragm working space 9 is delimited on the one hand by the diaphragm 1 and on the other hand by a rear (piston-side) calotte 10.
  • This rear limitation cap 10 is formed by the correspondingly designed end face of the pump body 2 and represents part of the mechanical support surface on which the membrane 1 is applied at the end of the suction stroke.
  • a front limiting cap 11 formed by the end face of the pump cover 3 is formed in the delivery chamber 4.
  • the pump cover 3 is provided in the usual way with an inlet valve 12 (suction valve) and an outlet valve 13 (pressure valve). These two valves 12, 13 are connected via an inlet duct 14 and an outlet duct 15 to the delivery chamber 4 in such a way that the conveying medium during the suction stroke of the displacer 6 and thus the diaphragm 1 to the right according to FIG. 1 and thus the membrane 1 via the suction valve 12 and the Inlet channel 14 is sucked into the delivery chamber 4.
  • the pumped medium is discharged from the delivery chamber 4 in a metered manner via the outlet channel 15 and the pressure valve 13.
  • a leakage supplementation device In order to prevent the occurrence of cavitation at the end of the membrane suction stroke and to ensure the leakage supplementation required due to the leakage losses, a leakage supplementation device is provided.
  • This has a conventional spring-loaded sniffing valve 16, which via a channel 17 with the storage space 7 and via a channel 18 and the Connection channel 8 is connected on the one hand to the piston working space 5 and on the other hand to the membrane working space 9.
  • the leakage supplement is controlled by a control valve which has a control slide 19. This is axially displaceable with the displacement piston 6 in the area of the connecting channel 8 between the diaphragm working space 9 and the piston working space 5 in a corresponding bore of the pump body 2. At a certain point on the circumference of the control slide 19, a circumferential groove 20 is provided, which in the suction stroke end position of the membrane 1 establishes the connection between the snifting valve 16 of the leakage supplement device and the hydraulic chamber 5, 9 - via the channels 18, 8 -.
  • the individual layers 1a, 1b of the membrane 1 are rotationally symmetrical and have beads 21 in their area near the edge, which enable the layers 1a, 1b to move freely between their suction stroke and pressure stroke end positions. In the area of these beads 21, the individual layers 1a, 1b run at a distance from one another, so that an intermediate membrane space 22 is formed. In the event of a rupture of a membrane system 1 a, 1 b, this membrane space 22 is used for rapid membrane rupture signaling, by means of a corresponding display device 23, which is connected to the membrane space 22.
  • the membrane space 22 is formed in that the membrane layers 1a, 1b are held at a distance in their edge-side clamping zone by a ring 24. This ring 24 is provided with one or more channels, not shown, which establish the connection between the membrane space 22 and the interior of the membrane rupture indicator device 23.
  • the individual layers 1 a, 1 b of the membrane 1 do not run in their central region, but are instead arranged on both sides Coupling members in the form of disk-shaped support plates 25, 26 held close together.
  • the support plates 25, 26 are essentially mirror images and are arranged centrally to the central axis 27 of the control slide 19.
  • the support plate 25 on the delivery chamber side has a flat end face 28 facing the pump cover 3, which lies parallel to a likewise flat end face 29 of the pump cover 3.
  • This end face 29 of the pump cover 3 is located between the mouths of the inlet channel 14 and outlet channel 15 in the delivery chamber 4 and serves in the pressure stroke limit position of the membrane 1 as a stop surface for the support plate 25.
  • the diameter of the support plate 25 on the delivery chamber side, i.e. its extension in the radial direction is dimensioned such that the support plate 25 completely covers the mouths of the inlet and outlet channels 14, 15 in the radial direction, so that these mouths are closed by the support plate 25 in the pressure stroke limit position of the membrane 1.
  • the support plate 25 lies in an axial bore 30 of the pump cover 3, so that the flat support surface of the support plate 25, which is in contact with the membrane 1, together with the radially outside region of the cap 11 of the pump cover 3, is an almost gap-free adapted to the natural membrane geometry Support surface forms.
  • the support plate 26 on the hydraulic chamber side which is essentially a mirror image of this, enters an axial bore 31 of the pump body 2 in the suction stroke limit position of the diaphragm 1, the end face of the support plate 26 facing the displacer 6 striking an end face 41 of the pump body 2.
  • the support plate 26 is formed integrally with the control slide 19, that is, integrally formed thereon.
  • the support plate 25 on the delivery chamber side is fastened to the support plate 26 on the hydraulic chamber side or on the control slide 19 by means of a rod-like fastening part 32 which extends through central through bores within the membrane systems 1a, 1b, the support plate 26 on the hydraulic chamber side and the control slide 19 and on which the displacement piston 6 facing end of the spool 19 is fixed by a nut 33.
  • an axial bore 34 on the end face is provided in the displacer 6, the diameter of which is larger than that of the control slide 19. In this way, the displacer 6 can move beyond the projecting end of the control slide 19 in the direction of the membrane 1.
  • the inlet and outlet channels 14, 15 are oriented such that they run in the region of their mouths parallel to the central axis 27 of the control slide 19 and thus parallel to the direction of movement of the membrane 1. Since they are still arranged relatively close to the central axis 27, they lie in the region of the greatest stroke movement of the membrane 1, so that a forced flow through the delivery chamber 4 is achieved.
  • the membrane 1 works at a clear distance from the limiting cap 11 in the pump cover 3, so that the membrane 1 is not stressed by the mechanical system.
  • the diaphragm 1 moves beyond its pressure stroke end position up to its pressure stroke limit position, in which the support plate 25 strikes the end face 29 of the pump cover 3 and the diaphragm 1 rests against the support surface in the pump cover 3. If the displacement piston 6 then moves further in the direction of its pressure stroke end position or if a certain predetermined maximum pressure is exceeded, excess hydraulic fluid is discharged into the storage space 7 via a channel 37 and via a pressure relief valve 38 connected to this and a channel 39.
  • the diaphragm 1 When the pump 1 starts up, the diaphragm 1 initially moves beyond its suction stroke end position to its suction stroke limit position, in which the support plate 26 strikes the end face 41 of the pump body 2 and the diaphragm 1 rests against the support face in the pump body 2, via the snifting valve 16 and the control slide 19 sucked hydraulic fluid from the storage space 7. In both limit positions, however, the membrane 1 is supported purely mechanically via the support plates 25, 26, which at the same time ensure a secure mutual connection of the membrane systems 1a, 1b.
  • the support plate 25 on the delivery chamber side is complete with a Sheathed plastic layer 40, which has a shock-absorbing effect on the end face 29 of the pump cover 3 when the support plate 25 stops and can also be designed in such a way that the support plate 25 is protected against aggressive media.
  • the membrane systems 1a, 1b are held firmly against one another in their central region by means of the support plates 25, 26, so that they cannot become detached from one another during the suction stroke.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Claims (15)

  1. Pompe à membrane entraînée par voie hydraulique, comportant une membrane serrée le long de sa périphérie entre un corps de pompe et un couvercle de pompe, qui se compose d'au moins deux couches individuelles, qui sépare un espace de refoulement, présentant des canaux d'admission et d'évacuation séparés pour une matière à transporter, par rapport à un espace hydraulique, et qui est mue en va-et-vient entre une position finale de course d'aspiration et une position finale de course de compression par un dispositif d'entraînement hydraulique de la membrane réalisé sous forme d'un piston déplaceur oscillant, où les couches individuelles (1a, 1b) de la membrane 1 sont serrées dans leur région centrale entre un élément de couplage (25) côté espace de refoulement et un élément de couplage (26) côté espace hydraulique et sont ainsi fixées mécaniquement l'une à l'autre,
    caractérisée en ce que :
    les éléments de couplage (25, 26) sont liés à un tiroir de commande (19) d'une installation de compensation de fuites commandée par la position de la membrane, lequel est guidé mobile dans le corps de pompe (2), où l'élément de couplage (25) côté espace de refoulement comporte une pièce de fixation (32) en forme de tige, qui traverse à l'aide de trous de passage centraux la membrane (1) et l'élément de couplage (26) côté espace hydraulique et qui est fixée au tiroir de commande (19) en ce qu'elle traverse un alésage s'étendant tout du long à l'intérieur du tiroir de commande (19) et est fixée à l'extrémité de celui-ci tournée vers le piston déplaceur (6).
  2. Pompe à membrane selon la revendication 1, caractérisée en ce que les éléments de couplage (25, 26) sont formés comme des éléments de butée, qui présentent des surfaces de butée coopérant aussi bien avec la paroi de limitation de l'espace de refoulement du couvercle de pompe (3) qu'avec le corps de pompe en vue d'une limitation mécanique des courses respectives de compression et d'aspiration de la membrane.
  3. Pompe à membrane selon la revendication 1 ou 2, caractérisée en ce que les éléments de couplage (25, 26) sont formés de telle sorte qu'ils forment, dans les positions limites respectives de course de compression et de course d'aspiration de la membrane (1), en coopération avec les surfaces correspondantes du corps de pompe et du couvercle de pompe respectivement, une surface d'appui adaptée à la géométrie naturelle de la membrane et au moins essentiellement continue.
  4. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce que les éléments de couplage (25, 26) sont formés comme des plaques de support avec des surfaces frontales, en particulier planes.
  5. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce que l'élément de couplage (25) situé du côté de l'espace de refoulement est recouvert d'une couche (40) de matière plastique.
  6. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce que l'élément de couplage (26) situé du côté de l'espace hydraulique est formé intégralement avec le tiroir de commande (19).
  7. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce que le rayon de l'élément de couplage (25) situé du côté de l'espace de refoulement au moins est égal ou supérieur au demi-rayon de la partie de la membrane se trouvant dans l'espace de refoulement.
  8. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce que l'élément de couplage (25) côté espace de refoulement est dimensionné et disposé de sorte qu'il recouvre au moins en majeure partie les embouchures des canaux d'admission et d'évacuation (14, 15).
  9. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce que les canaux d'admission et d'évacuation (14, 15) débouchent dans l'espace de refoulement (4) dans une zone proche du centre, la distance de leur point médian à l'axe médian (27) de l'espace de refoulement (4) s'élevant au maximum à 50% du plus grand rayon de l'espace de refoulement.
  10. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce que les canaux d'admission et d'évacuation (14, 15) sont dirigés, dans la région de leurs embouchures côté espace de, refoulement, parallèlement à la direction du mouvement de la membrane (1).
  11. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce que la région de la paroi de limitation de l'espace de refoulement située entre les canaux d'admission et d'évacuation (14, 15) est formée comme une surface de butée, en particulier plane, pour l'élément de couplage (25) côté espace de refoulement.
  12. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce que les couches individuelles de membrane (1a, 1b) présentent une moulure (21) dans la zone située entre les éléments de couplage (25, 26) et la fixation latérale.
  13. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce qu'un alésage de mise à l'air (35) est prévu dans le couvercle de pompe, qui débouche de préférence au point géométrique le plus élevé de l'espace de refoulement et est connecté au canal d'évacuation (15).
  14. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce qu'un alésage (36) pour l'évacuation des particules solides est prévu dans le couvercle de pompe (3), qui débouche de préférence au point géométrique le plus bas de l'espace de refoulement (4) et est connecté au canal d'admission (14).
  15. Pompe à membrane selon l'une des revendications précédentes, caractérisée en ce que l'espace hydraulique (5, 9) est connecté à une soupape (38) de limitation de pression.
EP94108469A 1993-08-19 1994-06-01 Pompe à membrane à entraînement hydraulique avec limitation mécanique de la course de la membrane Expired - Lifetime EP0641935B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4327970A DE4327970C2 (de) 1993-08-19 1993-08-19 Hydraulisch angetriebene Membranpumpe mit mechanischer Membranhubbegrenzung
DE4327970 1993-08-19

Publications (2)

Publication Number Publication Date
EP0641935A1 EP0641935A1 (fr) 1995-03-08
EP0641935B1 true EP0641935B1 (fr) 1997-09-03

Family

ID=6495596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94108469A Expired - Lifetime EP0641935B1 (fr) 1993-08-19 1994-06-01 Pompe à membrane à entraînement hydraulique avec limitation mécanique de la course de la membrane

Country Status (4)

Country Link
US (1) US5899671A (fr)
EP (1) EP0641935B1 (fr)
JP (1) JPH0777163A (fr)
DE (2) DE4327970C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264436B1 (en) 1999-05-11 2001-07-24 Milton Roy Company Multifunction valve

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69732802T2 (de) * 1996-06-07 2006-04-06 Hydro Leduc Flüssigkeitshochdruckpumpe
FR2765635B1 (fr) * 1997-07-07 1999-09-03 Sagem Pompe d'injection directe de combustible pour moteur a allumage commande et systeme d'injection comportant une telle pompe
DE19742632A1 (de) * 1997-09-26 1999-04-08 Fresenius Medical Care De Gmbh Pump- und Dosiervorrichtung
FR2794811B1 (fr) * 1999-06-08 2003-02-07 Peugeot Citroen Automobiles Sa Pompe a haute pression a etancheite perfectionnee
WO2012015929A1 (fr) * 2010-07-27 2012-02-02 Delaware Capital Formation, Inc. Pompe doseuse à cylindrée variable à grand rendement énergétique
CN103814194B (zh) 2011-08-22 2016-10-19 康明斯排放处理公司 用于排气后处理系统的尿素投配的装置、方法及系统
DE102015009847A1 (de) * 2015-07-30 2017-02-02 Linde Aktiengesellschaft Vorrichtung zur Druckerhöhung eines Fluids mit einem Druckbegrenzungsventil
CN107061215A (zh) * 2017-06-02 2017-08-18 德帕姆(杭州)泵业科技有限公司 柱塞式计量泵无泄漏液力端结构
WO2019204497A1 (fr) * 2018-04-18 2019-10-24 Wanner Engineering, Inc. Dispositif de protection de pompe à diaphragme contre les différences de pression

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1101266A (en) * 1913-01-18 1914-06-23 William S Franklin Pump.
US2919650A (en) * 1955-09-22 1960-01-05 Reiners Walter Diaphragm pump for non-lubricating and chemically aggressive liquids
DE1034030B (de) * 1955-09-22 1958-07-10 Reiners Walter Dr Ing Membranpumpe fuer nicht schmierende und chemisch aggressive Fluessigkeiten, insbesondere zur Schaedlingsbekaempfung in der Landwirtschaft
US3075468A (en) * 1960-04-06 1963-01-29 Hills Mccanna Co Hydraulically actuated diaphragm pump
DE1453597C3 (de) * 1962-12-04 1973-12-06 Orlita Kg, 6300 Giessen Membranpumpe mit regelbarer For dermenge
CH443921A (fr) * 1965-09-10 1967-09-15 Fischer Traugott Pompe à membrane
US3354831A (en) * 1966-11-04 1967-11-28 Weatherhead Co Piston diaphragm pump
HU168667B (fr) * 1975-02-25 1976-06-28
US4068982A (en) * 1976-12-20 1978-01-17 Graco Inc. Charge control valve and piston assembly for diaphragm pump
DE2843054C2 (de) * 1978-10-03 1983-07-14 Bran & Lübbe GmbH, 2000 Norderstedt Kolbenmembranpumpe
FR2492473B1 (fr) * 1980-10-17 1985-06-28 Milton Roy Dosapro Pompe a membrane a compensation dans la chambre hydraulique de commande
FR2557928B1 (fr) * 1984-01-11 1988-04-22 Milton Roy Dosapro Perfectionnement aux pompes a membrane a debit variable.
US4621990A (en) * 1985-03-01 1986-11-11 The Gorman-Rupp Company Diaphragm pump
US4741252A (en) * 1986-09-24 1988-05-03 Allied-Signal Inc. Diaphragm of the rolling type having a membrane portion and a reinforcing portion
DE3706338A1 (de) * 1987-02-27 1988-09-08 Wagner Gmbh J Membranpumpvorrichtung
DE3708868A1 (de) * 1987-03-18 1988-10-06 Ott Kg Lewa Verfahren und vorrichtung zum anfahren einer hydraulischen membranpumpe gegen last
DE3931516C2 (de) * 1989-09-21 1993-10-14 Ott Kg Lewa Membranpumpe mit mechanisch angetriebener Membran
DE4018464A1 (de) * 1990-06-08 1991-12-12 Ott Kg Lewa Membran fuer eine hydraulisch angetriebene membranpumpe
DE4122538A1 (de) * 1991-07-08 1993-01-14 Friedhelm Schneider Membranpumpe mit hydraulischer betaetigung
DE4141670C2 (de) * 1991-12-17 1994-09-29 Ott Kg Lewa Hydraulisch angetriebene Membranpumpe mit Membranhubbegrenzung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264436B1 (en) 1999-05-11 2001-07-24 Milton Roy Company Multifunction valve

Also Published As

Publication number Publication date
US5899671A (en) 1999-05-04
DE4327970C2 (de) 1997-07-03
EP0641935A1 (fr) 1995-03-08
DE4327970A1 (de) 1995-03-02
DE59403946D1 (de) 1997-10-09
JPH0777163A (ja) 1995-03-20

Similar Documents

Publication Publication Date Title
EP2278150B1 (fr) Dispositif pour l'atténuation des pulsations de pression dans un système de fluide, en particulier dans un système de carburant d'un moteur à combustion interne
EP1411236B1 (fr) Dispositif pour l'atténuation des pulsations de pression dans un système de fluide, en particulier dans un système de carburant d'un moteur à combustion interne
EP0641936B1 (fr) Pompe à membrane entraînée hydrauliquement
DE19639930C2 (de) Kühlmittelpumpe
DE2502566B2 (de) Membranpumpe
DE2516810B2 (de) Mit Druckflüssigkeit betriebener Schlagapparat
DE2653378A1 (de) Vorrichtung zum luftlosen verspritzen von fluessigkeiten
EP0641935B1 (fr) Pompe à membrane à entraînement hydraulique avec limitation mécanique de la course de la membrane
DE2744653A1 (de) Ventilanordnung fuer kompressoren
EP0688954B1 (fr) Dispositif de supplément contrÔlé pour des pompes à membrane et à haute pression
DE69410893T2 (de) Rückschlagventil
DE1673517C3 (de) Selbsttätiger hydraulischer Druckbegrenzer für Membrankompressoren und -pumpen
DE2201372A1 (de) Ueberdruckventil
DE10392934B4 (de) Membranpumpe
DE1034030B (de) Membranpumpe fuer nicht schmierende und chemisch aggressive Fluessigkeiten, insbesondere zur Schaedlingsbekaempfung in der Landwirtschaft
DE3443768A1 (de) Schlauch-kolbenpumpe
DE3102506C2 (de) Kolbenpumpe mit geregelter Förderleistung
DE60315785T2 (de) Pumpe
DE2504562B2 (de) Hydrostatische Axialkolbenpumpe
DE1503390A1 (de) Hydraulische Membranpumpe
DE19803860C2 (de) Kühlmittelverdichter
EP0342346A2 (fr) Pompe à engrenages
CH345800A (de) Membranpumpe für nichtschmierende und chemisch aggressive Flüssigkeiten
DE3927521C2 (de) Tauchkolben mit variabler Kompressionshöhe für Verbrennungsmotoren
DE2338489C3 (de) Ventilgesteuerte Hochdruck-Kolbenpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19950331

EL Fr: translation of claims filed
ITCL It: translation for ep claims filed

Representative=s name: ING. ANTON AUSSERER

GBC Gb: translation of claims filed (gb section 78(7)/1977)
17Q First examination report despatched

Effective date: 19960213

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970915

REF Corresponds to:

Ref document number: 59403946

Country of ref document: DE

Date of ref document: 19971009

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090617

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090625

Year of fee payment: 16

Ref country code: DE

Payment date: 20090827

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090629

Year of fee payment: 16

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616