EP0637477B1 - Einlaufsystem für eine Aluminiumstranggussanlage - Google Patents

Einlaufsystem für eine Aluminiumstranggussanlage Download PDF

Info

Publication number
EP0637477B1
EP0637477B1 EP94108061A EP94108061A EP0637477B1 EP 0637477 B1 EP0637477 B1 EP 0637477B1 EP 94108061 A EP94108061 A EP 94108061A EP 94108061 A EP94108061 A EP 94108061A EP 0637477 B1 EP0637477 B1 EP 0637477B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
plug
inlet
section
supplying system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94108061A
Other languages
English (en)
French (fr)
Other versions
EP0637477A3 (de
EP0637477A2 (de
Inventor
C.J. Dipl.-Ing. Moritz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Aluminium Werke AG
Vaw Aluminium AG
Original Assignee
Vereinigte Aluminium Werke AG
Vaw Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Aluminium Werke AG, Vaw Aluminium AG filed Critical Vereinigte Aluminium Werke AG
Publication of EP0637477A2 publication Critical patent/EP0637477A2/de
Publication of EP0637477A3 publication Critical patent/EP0637477A3/de
Application granted granted Critical
Publication of EP0637477B1 publication Critical patent/EP0637477B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/16Closures stopper-rod type, i.e. a stopper-rod being positioned downwardly through the vessel and the metal therein, for selective registry with the pouring opening

Definitions

  • the invention relates to an inlet system for continuous aluminum casting plants, consisting of a gutter, one in gutter 1 used inlet nozzle 2, in which a plug 3 for regulation of the melt inlet 4 is inserted, the stopper 3 the narrowest cross section of the feed nozzle 2 is the melt feed closes and a control system with which the immersion depth the stopper is controllable within predetermined limits and a method for regulating an enema system.
  • the object of the invention is therefore in the enema system To optimize aluminum continuous casting plants so that under Maintaining the essential installations of negative pressure is minimized at the nozzle inlet and at the nozzle outlet and optimized the flow conditions in the inlet nozzle become.
  • a procedure for operating the enema system is said to reduce the vortex formation in the melt, so that both on the melt surface in the gutter as well no melt formation in the mold in the mold occur.
  • the nozzle contour according to the invention provides that in the The narrowest cross section is in the middle of the inlet nozzle and thus the highest speed in the middle of the nozzle is produced.
  • the nozzle shape prevents flow which could reduce the cross-section through which avoided.
  • the nozzle is thus evenly over the flows through the entire cross-section, resulting in a optimal volume flow can be set.
  • the inlet system consists of one in the channel 1 used inlet nozzle 2 into which a plug 3 for regulation of the melt inlet 4 is used.
  • a metal level H is formed above the inlet nozzle 2 in the Channel 1, which is preferably at least 5 cm.
  • the melt reaches the mold 5 via the pouring nozzle, where it is formed into an ingot 6, which is placed on the runner 7 is held.
  • a lowering device 9 the ingot 6 is down from the mold 5 pulled out.
  • nozzles 2 and plugs 3 are shown in FIG remove. It can be seen that the cross sections at the nozzle inlet (X) and nozzle outlet (Y) in relation to the other cross sections the inlet nozzle are chosen large, so that there are low Flow velocities occur.
  • the inlet nozzle according to the invention consists of two Cut A1, A2 from the narrowest cross section of the nozzle to the Nozzle entry or exit are measured.
  • section A2 In the upper part of the nozzle 2 (section A2) forms between Plug 3 and inner wall of the inlet nozzle from an annular space D, the narrows in the direction of flow.
  • the pressure ratios are also increased by an Level difference - in the example 26 cm and 34 cm - hardly changed.
  • the closely spaced curves for different level differences show that the flow conditions are very stable and even with high negative pressure the flow in the nozzle does not stop. It follows that the available cross section is relatively even is flowed through and no speed peaks occur.
  • FIGS. 6a, b and 5a, b known inlet systems exemplified.
  • a downward closing inlet system according to FIG. 4a the vacuum at the nozzle outlet can no longer be reduced as the available cross section at the nozzle outlet very strong due to the stall under the stopper is reduced.
  • FIG. 4b shows a known upward closing inlet system shown.
  • the negative pressure increases increasing level difference strongly (see Figure 5b).
  • This has the consequence that the above the nozzle inlet in the Gutter standing metal column and the associated static Pressure is insufficient to reach the nozzle inlet to compensate for the resulting negative pressure.
  • Pressure curves depend on the position of the measuring points dependent.
  • the representations in Figure 5a, b are as look at two-dimensional representations and therefore say nothing about the uniformity of the flow over the Circumference of the inlet nozzle. As shown at the beginning, but can be uneven with conventional infeed systems keiten occur over the circumference of the inlet nozzle, whereby Speed peaks arise, which in turn create the negative pressure increase.
  • the volume flow can be dosed much more precisely and that Avoid occurrence of instabilities. It showed the glass model that an optimized nozzle also over the Flow is relatively even.
  • the known inlet system tends to Turbulence formation. This is shown in FIG. 7 and is explained in more detail below.
  • the melt 4 reaches the inlet nozzle in the direction of the arrow through the channel 1 2.
  • the resulting at the nozzle inlet and outlet The melt surface becomes underpressure from the air pressure dented, which can tear open the oxide layer and Oxide or dirt particles are sucked into the melt can.
  • the non-deformable impurities are in the solidification front installed. In the later rolling process they come to the surface and lead to tearing open of the rolled strip or damage to the rolls.
  • FIG 8 is a mechanical control of the mold casting system shown schematically for aluminum ingots. Via a float 14, which on the metal surface of the Barrens is positioned using a mechanical redirector 15 of the stopper 3 by means of a push rod 16 moved up or down.
  • the term "swimmer” is used for a piece of refractory material that is on the metal surface floats and the metal stand via a lever reports. In the present case, it becomes the annular gap between nozzle and stopper enlarged or reduced, each after which direction the melt level from the set point deviates. The feed rate of the molten metal is thus regulated by different plug heights.
  • the metal level in the mold 5 can be different Reasons fluctuate. For example, the inclination of the Melting furnace not continuously, so that gushing occurs in the channel 1. Even the metal stand in the gutter is usually regulated with a float, so that normally two control systems are coupled together are. This leads to a dynamic control behavior, that during the pouring phase of a constant correction of the each plug height required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Coating With Molten Metal (AREA)

Description

Die Erfindung betrifft ein Einlaufsystem für Aluminiumstranggußanlagen, bestehend aus einer Rinne, einer in die Rinne 1 eingesetzten Zulaufdüse 2, in die ein Stopfen 3 zur Regulierung des Schmelzezulaufs 4 eingesetzt ist, wobei der Stopfen 3 am engsten Querschnitt der Zulaufdüse 2 den Schmelzezulauf verschließt und einem Regelsystem, mit dem die Eintauchtiefe des Stopfens innerhalb vorgegebener Grenzen steuerbar ist sowie ein Verfahren zur Regelung eines Einlaufsystemes.
Die Regelung des Schmelzezulaufs mit Hilfe von Düse und Stopfen ist aus verschiedenen Veröffentlichungen bekannt. So ist beispielsweise von der Deutschen Gesellschaft für Metallkunde e.V. ein Symposium unter dem Titel "Stranggießen-Schmelzen-Gießen-Überwachen" veranstaltet worden, bei dem das Prinzip der Gießspiegelregelung nach dem Wirbelstromprinzip erläutert wurde. Bei den 1986 herausgegebenen Vortragstexten findet sich auf Seite 331 die Abbildung eines Regelsystems unter Verwendung von Düsen und Stopfen. Die Düse ist am Boden einer Rinne befestigt und ragt mit ihrem unteren Ende in die Kokille hinein.
Ändert sich unter bestimmten Voraussetzungen die Geschwindigkeit der Aluminiumschmelze in der Einlaufdüse, so verändert sich auch der statische Druck. Bei sehr hohen Geschwindigkeiten der Aluminiumschmelze werden bei den dann auftretenden Unterdrucken am Düseneintritt oder Düsenaustritt Oxyd- und schmutzteilchen von der Metalloberfläche der Rinne oder des Barrens in die Schmelze eingesogen, was sich nachteilig bei der erzeugten Barrenqualität bemerkbar macht.
Aufgabe der Erfindung ist es daher, das Einlaufsystem bei Aluminiumstranggußanlagen derart zu optimieren, daß unter Beibehaltung der wesentlichen Installationen der Unterdruck am Düseneintritt und am Düsenaustritt minimiert wird und die Strömungsverhältnisse in der Zulaufdüse optimiert werden. Ein Verfahren zum Betrieb des Einlaufsystems soll die Wirbelbildung in der Schmelze herabsetzen, so daß sowohl an der Schmelzeoberfläche in der Rinne als auch an der Schmelzeoberfläche in der Kokille keine Wirbelbildungen auftreten.
Diese Aufgabe wird erfindungsgemäß durch die in den Ansprüchen angegebenen Merkmale gelöst. Es hat sich gezeigt, daß durch eine besondere Formgebung der Innenkontur der Düse sowie durch die Einhaltung bestimmter Eintauchtiefen in die oberhalb des Sumpfes sich ausbildende Schmelzzone das Mitreißen von Oxyd- und anderen Schmutzteilchen von der Metalloberfläche vermieden werden kann. Ferner muß für einen ausreichenden Metallstand in der Rinne gesorgt werden.Im ersten Schritt wird der am Düsenaustritt herrschende Unterdruck minimiert und dann die Eintauchtiefe so gemessen, daß eine Metallsäule von mindestens 2 cm den verbleibenden Unterdruck kompensiert.
Die erfindungsgemäße Düsenkontur sieht vor, daß in der Mitte der Zulaufdüse der engste Querschnitt vorliegt und damit die höchste Geschwindigkeit in der Mitte der Düse erzeugt wird. Durch die Düsenform werden Strömungsabrisse, die den durchströmten Querschnitt verringern könnten, vermieden. Die Düse wird somit gleichmäßig über den gesamten Querschnitt durchströmt, wodurch sich ein optimaler Volumenstrom einstellen läßt.
Bei den herkömmlichen Rinnenanordnungen ergeben sich am Einlaufsystem unterschiedliche Strömungsverhältnisse, je nachdem, welche Düsenseite von der in der Rinne fließenden Schmelze zuerst angeströmt wird. Unter bestimmmten Voraussetzungen führt dies bei herkömmlichen Einlaufsystemen zu einer ungleichmäßigen Verteilung der Flüssigkeitsströmung an der Düseninnenwand, mit der Folge, daß an bestimmten Düsenquerschnitten sehr große Strömungsgeschwindigkeiten und an anderen Stellen ein Strömungsschatten entsteht. Diese Zustände störten bisher die Gleichmäßigkeit der Strömung und wirkten sich auch auf die Einlauf- und Auslaufverhältnisse an der Zufuhrdüse aus.
Zusammenfassend lassen sich die erfindungsgemäßen Merkmale wie folgt darstellen:
  • 1. Ausbildung der Düse derart, daß am Düseneintritt und am Düsenaustritt nur geringe Unterdrucke entstehen.
  • 2. Ausbildung der Düsenkonfiguration derart, daß die Düse über den Querschnitt gleichmäßig durchströmt wird und die Strömung an keiner Stelle abreißt.
  • 3. Drosselung der Strömung im mittleren Bereich der Düse, sodaß die vorhandene Strömungsenergie vermindert wird und an den Ein- und Austrittsenden der Düse praktisch keine Turbulenz auftritt.
  • Im folgenden wird die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:
    Figur 1
    Gesamtansicht eines erfindungsgemäßen Einlaufsystem
    Figur 2
    Erfindungsgemäße Zulaufdüse mit Stopfen im Querschnitt
    Figur 3
    Druckverlauf in einem erfindungusgemäßen Einlaufsystem (Wassermodell)
    Figur 4
    Düsen/Stopfensystem nach dem Stand der Technik
    Figur 5
    Druckverlauf bei einem herkömmlichen Einlaufsystem im Wassermodell
    Figur 6
    Schematische Darstellung einer elektronischen Gießspiegelregelung
    Figur 7
    Gesamtansicht eines Einlaufsystems nach dem Stand der Technik
    Figur 8
    Schematische Darstellung einer mechanischen Gießspiegelregelung
    Nach Figur 1 besteht das Einlaufsystem aus einer in die Rinne 1 eingesetzten Zulaufdüse 2, in die ein Stopfen 3 zur Regulierung des Schmelzezulaufs 4 eingesetzt ist. Am Düseneintritt über der Zulaufdüse 2 bildet sich ein Metallstand H in der Rinne 1 aus, der vorzugsweise mindestens 5 cm beträgt.
    Über die Gießdüse gelangt die Schmelze in die Kokille 5, wo sie zu einem Barren 6 geformt wird, der auf dem Angußstein 7 gehalten wird. Durch Absenken eines Gießtisches 8 mittels Absenkvorrichtung 9 wird der Barren 6 nach unten aus der Kokille 5 herausgezogen.
    Die Formen von Düsen 2 und Stopfen 3 sind aus der Figur 2 zu entnehmen. Man erkennt, daß die Querschnitte am Düsenein- (X) und Düsenaustritt (Y) im Verhältnis zu den übrigen Querschnitten der Einlaufdüse groß gewählt sind, damit dort geringe Strömungsgeschwindigkeiten auftreten.
    Die erfindungsgemäße Zulaufdüse besteht gemäß Figur 2 aus zwei Abscbnitten A1, A2, die vom engsten Querschnitt der Düse zum Düsenein- bzw. zum Düsenaustritt gemessen werden.
    Im oberen Teil der Düse 2 (Abschnitt A2) bildet sich zwischen Stopfen 3 und Innenwand der Zulaufdüse ein Ringraum D aus, der sich in Strömungsrichtung verengt.
    Im unteren Teil der zulaufdüse 2 (Abschnitt A1) bildet sich zwischen Stopfen 3 und der Innenwand der Düse 2 nach Durchtritt durch den engsten Querschnitt ein Ringraum E aus, der sich zum Düsenaustritt hin erweitert. Die Erweiterung wächst mit zunehmender Annäherung an die Spitze S des Stopfens 3.
    Aus Figur 2 ist auch zu erkennen, wie der Stopfen 3 in die Düse 2 eintaucht. Der zwischen der Düse 2 und dem Stopfen 3 verbleibende Raum ist als Ringspalt C anzusehen und ist so ausgelegt, daß die Strömung den gesamten Querschnitt gleichmäßig ausfüllt. Von der Einlaufseite aus gesehen verjüngt sich der Ringspalt C, sodaß sich im strömenden Metall ein Staudruck aufbaut, der einer Verringerung des statischen Drucks in der Schmelze entgegenwirkt.
    Im fast parallelen Teil des Ringspaltes C wird die für die Drosselung nötige Reibung erzeugt. Der Ringspalt C erweitert sich sodann geringfügig zum Stopfen 3 hin, sodaß sich die Strömung hier besser an den Stopfen 3 anlegt. Bei abnehmendem Querschnitt tritt durch die sich verjüngende Düse 2 eine Vergleichmäßigung der Strömung über den Querschnitt auf.
    Hinter der engsten Stelle, etwa in der Düsenmitte, erweitert sich der Querschnitt, sodaß die Strömung ohne Abriß wieder abgebremst wird. Um auch an dem Stopfen 2 einen Strömungsabriß zu vermeiden, ist dieser an der Spitze zu einem Radius von im Beispiel 11,5 mm ausgezogen.
    Zur Überprüfung der tatsächlichen Strömungsverhältnisse in der erfindungsgemäßen Düse wurde ein Wassermodell des bei der Herstellung eines Walzbarrens herrschenden Zustandes geschaffen. In diesem Wassermodell konnten die Verhältnisse in der Rinne, in der Düse und im Walzbarren, bei verschiedenen Düsen-Stopfen-Systemen simuliert werden. Mit diesem Wassermodell wurden die Druckverläufe im optimierten Einlaufsystem untersucht. Das Ergebnis ist in Figur 3 dargestellt.
    Man erkennt, daß am Düseneintritt (Düsenlänge = 0) ein positiver oder nur leicht negativer Druck herrscht. In der Düsenmitte werden durch die hohen Strömungsgeschwindigkeiten sehr hohe Unterdrucke erreicht. Am engsten Querschnitt werden hohe Unterdrucke gemessen, die zeigen, daß die Strömung nicht abreißt, sondern an den Wandungen anliegt. Danach erfolgt innerhalb kürzester Zeit ein Abbau der sehr hohen Unterdrucke, sodaß am Düsenaustritt bei etwa 17 cm Düsenlänge nur noch sehr geringe Unterdrucke verbleiben.
    Die Druckverhältnisse werden auch durch einen vergrößerten Niveauunterschied - im Beispiel 26 cm und 34 cm - kaum verändert. Die dicht beieinander liegenden Kurven für verschiedene Niveauunterschiede zeigen, daß die Strömungszustände sehr stabil sind und auch bei hohen Unterdrucken die Strömung in der Düse nicht abreißt. Daraus folgt, daß der zur Verfügung stehende Querschnitt relativ gleichmäßig durchströmt wird und dabei keine Geschwindigkeitsspitzen auftreten.
    In den Figuren 6a, b und 5a, b sind die Druckverläufe bekannter Einlaufsysteme exemplarisch dargestellt. Bei einem nach unten schließenden Einlaufsystem gemäß Figur 4a kann der Unterdruck am Düsenaustritt nicht mehr abgebaut werden, da der verfügbare Querschnitt am Düsenaustritt durch den Strömungsabriß unter dem Stopfen sehr stark verkleinert wird. Somit entstehen hohe Unterdrucke am Düsenaustritt, die nicht mehr durch eine Vergrößerung der Eintauchtiefe der Düse kompensiert werden können (siehe Figur 5a).
    In Figur 4b ist ein bekanntes nach oben schließendes Einlaufsystem dargestellt. Hier Steigt der Unterdruck bei zunehmendem Niveauunterschied stark an (siehe Figur 5b). Dies hat zur Folge, daß die über dem Düseneintritt in der Rinne stehende Metallsäule und der damit verbundene statische Druck nicht ausreicht, um den am Düseneintritt entstehenden Unterdruck zu kompensieren. Ferner entsteht unter dem Stopfen ein Strömungsabriß, der den zur Verfügung stehenden Querschnitt vermindert. Bei größerem Niveauunterschied kann sich dieser Strömungsabriß bis zum Düsenaustritt hin auswirken, sodaß dort eine Verstärkung des Unterdruckes mit den eingangs genannten nachteiligen Folgen auftritt.
    Die zu den vorstehenden Betrachtungen herangezogenen Druckverläufe sind von der jeweiligen Lage der Meßpunkte abhängig. Die Darstellungen in Figur 5a, b sind als zweidimensionale Darstellungen anzusehen und sagen daher nichts über die Gleichmäßigkeit der Strömung über den Umfang der Einlaufdüse aus. Wie eingangs dargestellt, können aber bei üblichen Einlaufsystemen Ungleichmäßig keiten über den Umfang der Zulaufdüse auftreten, wodurch Geschwindigkeitsspitzen entstehen, die wiederum den Unterdruck erhöhen.
    Hinzu kommt, daß in der Praxis häufig schief stehende oder krumme Stopfen die Strömungsverhältnisse noch weiter beeinflussen, in der Weise, daß die Inhomogenitäten vergrößert werden. Bei den bekannten Systemen kommt es vor, daß nur eine Häfte des Düsenumfanges durchströmt wird. Somit ergeben sich auch Probleme bei der Regulierung des Volumenstroms, die sich insbesondere bei einer automatischen Niveauregelung nachteilig bemerkbar machen.
    Bei der erfindungsgemäßen Veränderung der Querschnitte kann der Volumenstrom sehr viel genauer dosiert und das Auftreten von Instabilitäten vermieden werden. Es zeigte sich am Glasmodell, daß eine optimierte Düse auch über den Umfang relativ gleichmäßig durchströmt wird.
    Im Gegensatz dazu neigt das bekannte Einlaufsystem zur Turbulenzbildung. Dies ist anhand der Figur 7 dargestellt und wird im folgenden näher erläutert. Die Schmelze 4 gelangt in Pfeilrichtung durch die Rinne 1 zur Zulaufdüse 2. Durch die an Düsenein- und austritt entstehenden Unterdrucke wird die Schmelzeoberfläche vom Luftdruck eingedellt, wodurch die Oxydschicht aufreißen kann und Oxyd- oder Schmutzteilchen in die Schmelze gesogen werden können. Die nicht verformbaren Verunreinigungen werden in die Erstarrungsfront eingebaut. Beim Späteren Walzprozeß gelangen sie an die Oberfläche und führen zum Aufreißen des Walzbandes oder zu Beschädigungen der Walzen.
    In Figur 8 ist eine mechanische Regelung des Kokillengießsystems für Aluminiumwalzbarren schematisch dargestellt. Über einen Schwimmer 14, der auf der Metalloberfläche des Barrens positioniert ist, wird über eine mechanische Umlenkung 15 der Stopfen 3 mittels einer Druckstange 16 nach oben oder unten bewegt. Der Begriff "Schwimmer" steht dabei für ein Stück Feuerfestmaterial, das auf der Metalloberfläche schwimmt und über einen Hebel den Metallstand meldet. Im vorliegenden Fall wird damit der Ringspalt zwischen Düse und Stopfen vergrößert oder verkleinert, je nachdem in welche Richtung das Schmelzeniveau vom Sollwert abweicht. Die Zulaufmenge der Metallschmelze wird somit durch unterschiedliche Stopfenhöhen geregelt.
    Andere Methoden bestehen in der Laserabtastung des Metallstandes in der Kokille. Das entstehende Signal wird hier auf elektronischem Wege verarbeitet und zu einer Stellgröße für den Stopfen 3 umgebildet (siehe Figur 6).
    Der Metallstand in der Kokille 5 kann aus verschiedenen Gründen schwanken. Beispielsweise erfolgt die Neigung des Schmelzeofens nicht kontinuierlich, sodaß eine Schwallbildung in der Rinne 1 auftritt. Auch der Metallstand in der Rinne wird üblicherweise mit einem Schwimmer geregelt, sodaß im Normalfall zwei Regelsysteme miteinander gekoppelt sind. Dies führt zu einem dynamischen Regelverhalten, das während der Gießphase einer ständigen Korrektur der jeweiligen Stopfenhöhe bedarf.
    Schwankungen des Metallstands verändern die thermischen Bedingungen, was zu einer ungünstigen Ausbildung der Barrenoberfläche führt. Die Dicke der Randschale, die vor dem Walzen vollständig abgefräst werden muß, vergrößert sich.

    Claims (7)

    1. Einlaufsystem für Aluminiumstranggußanlagen, bestehend aus einer Rinne, einer in die Rinne (1) eingesetzten Zulaufdüse (2), in die ein Stopfen (3) zur Regulierung des Schmelzezulaufs (4) eingesetzt ist, wobei der Stopfen (3) am engsten Querschnitt der Zulaufdüse (2) den Schmelzezulauf verschließt und einem Regelsystem, mit dem die Eintauchtiefe des Stopfens innerhalb vorgegebener Grenzen steuerbar ist,
      dadurch gekennzeichnet,
      daß vom engsten Querschnitt der Düse (2) zum Düsenein- (X) und Düsenaustritt (Y) ein Abstand (A1, A2) von mindestens 7 cm eingehalten ist,
      daß am Düseneintritt der Raum zwischen Düse (2) und Stopfen (3) auf einer Länge B verengt wird, die zwischen großer 0 bis 10 cm liegt.
    2. Einlaufsystem nach Anspruch 1,
      dadurch gekennzeichnet,
      daß die Verengung über eine Länge von 1 - 10 cm erfolgt.
    3. Einlaufsystem nach einem der vorhergehenden Ansprüche,
      dadurch gekennzeichnet,
      daß sich oberhalb des engsten Düsenquerschnittes zwischen Düse (2) und Stopfen (3) ein sich in Strömungsrichtung verengender Ringraum D ausbildet, während unterhalb des engsten Düsenquerschnittes der Raum zwischen Düse (2) und Stopfen (3) mit einem Öffnungswinkel von mindestens 4° erweitert wird, wobei die Stopfenspitze S mit einem Radius von 10 - 14 mm abgerundet ist.
    4. Einlaufsystem nach einem der vorhergehenden Ansprüche,
      dadurch gekennzeichnet,
      daß die Kanten am Ein- und Auslauf mit einem Radius von 5 - 25 mm gerundet sind.
    5. Einlaufsystem nach einem der vorhergehenden Ansprüche,
      dadurch gekennzeichnet,
      daß der Ringraum D von einem Ringspalt zwischen Düse (2) und Stopfen (3) gebildet wird, wobei die den Ringspalt bildenden Seitenwände nahezu parallel verlaufen.
    6. Einlaufsystem nach Anspruch 5,
      dadurch gekennzeichnet,
      daß die nahezu parallel verlaufenden Seitenwände des Ringraumes D sich mit einer Winkeldifferenz von ca. 1° in Strömungsrichtung verengen.
    7. Verfahren zur Regelung eines Einlaufsystems für Aluminiumstranggußanlagen nach einem der vorhergehenden Ansprüche 1-6,
      dadurch gekennzeichnet,
      daß ein Metallstand H in der Rinne (1) von mindestens 5 cm über dem Düseneintritt X und eine Eintauchtiefe T der Düse (2) von mindestens 2 cm eingestellt wird.
    EP94108061A 1993-07-05 1994-05-26 Einlaufsystem für eine Aluminiumstranggussanlage Expired - Lifetime EP0637477B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4322316A DE4322316C1 (de) 1993-07-05 1993-07-05 Einlaufsystem für eine Aluminiumstranggußanlage
    DE4322316 1993-07-05

    Publications (3)

    Publication Number Publication Date
    EP0637477A2 EP0637477A2 (de) 1995-02-08
    EP0637477A3 EP0637477A3 (de) 1996-04-03
    EP0637477B1 true EP0637477B1 (de) 1999-03-24

    Family

    ID=6491984

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94108061A Expired - Lifetime EP0637477B1 (de) 1993-07-05 1994-05-26 Einlaufsystem für eine Aluminiumstranggussanlage

    Country Status (16)

    Country Link
    US (1) US5490554A (de)
    EP (1) EP0637477B1 (de)
    KR (1) KR970005376B1 (de)
    AU (1) AU674749B2 (de)
    BR (1) BR9402624A (de)
    CA (1) CA2127321C (de)
    CZ (1) CZ285017B6 (de)
    DE (2) DE4322316C1 (de)
    ES (1) ES2133443T3 (de)
    HU (1) HU216124B (de)
    NO (1) NO300034B1 (de)
    PL (1) PL177723B1 (de)
    RU (1) RU2091193C1 (de)
    SK (1) SK78394A3 (de)
    TW (1) TW289002B (de)
    YU (1) YU41294A (de)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19504009A1 (de) * 1995-02-08 1996-08-14 Vaw Ver Aluminium Werke Ag Einlaufsystem für eine Aluminiumstranggußanlage
    DE19706151C2 (de) * 1997-02-18 2000-12-07 Sms Demag Ag Verfahren und Tauchrohr zum Metallstranggießen
    KR100330352B1 (ko) * 1999-07-02 2002-04-01 유현식 내충격성이 우수한 신디오탁틱 폴리스티렌 수지 조성물
    NL1014024C2 (nl) * 2000-01-06 2001-07-09 Corus Technology Bv Inrichting en werkwijze voor het continu of semi-continu gieten van aluminium.
    US7041171B2 (en) * 2003-09-10 2006-05-09 Kastalon, Inc. Nozzle for use in rotational casting apparatus
    US7270711B2 (en) * 2004-06-07 2007-09-18 Kastalon, Inc. Nozzle for use in rotational casting apparatus
    US6989061B2 (en) * 2003-08-22 2006-01-24 Kastalon, Inc. Nozzle for use in rotational casting apparatus
    JP5621737B2 (ja) * 2011-09-15 2014-11-12 新日鐵住金株式会社 連続鋳造における流量調整方法
    WO2014164911A1 (en) 2013-03-12 2014-10-09 Novelis Inc. Intermittent molten metal delivery
    JP2018536085A (ja) * 2015-09-15 2018-12-06 リテック システムズ エルエルシー 炉式溶鉱炉などの溶融物制御のためのレーザセンサ
    RU2721258C1 (ru) 2017-11-15 2020-05-18 Новелис Инк. Уменьшение превышения или недостающего значения уровня металла при переходе с изменением требования к скорости потока

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB917565A (en) * 1960-05-13 1963-02-06 Didier Werke Ag Improvements relating to pouring nozzles for liquid metal
    US4523624A (en) * 1981-10-22 1985-06-18 International Telephone And Telegraph Corporation Cast ingot position control process and apparatus
    FR2639267B1 (fr) * 1988-11-23 1991-02-22 Clecim Sa Procede et ensemble d'alimentation en metal fondu de la lingotiere d'une installation de coulee continue d'ebauches minces
    US5205343A (en) * 1989-06-03 1993-04-27 Sms Schloemann-Siemag Aktiengesellschaft Pouring tube for feeding molten steel into a continuous casting mold
    US5339885A (en) * 1993-05-07 1994-08-23 Wagstaff Inc. Integrated non-contact molten metal level sensor and controller

    Also Published As

    Publication number Publication date
    SK78394A3 (en) 1995-09-13
    EP0637477A3 (de) 1996-04-03
    DE4322316C1 (de) 1995-03-16
    YU41294A (sh) 1996-10-09
    CZ285017B6 (cs) 1999-05-12
    NO300034B1 (no) 1997-03-24
    KR950002888A (ko) 1995-02-16
    RU94024564A (ru) 1996-04-20
    RU2091193C1 (ru) 1997-09-27
    BR9402624A (pt) 1995-04-04
    EP0637477A2 (de) 1995-02-08
    CZ160694A3 (en) 1997-05-14
    HU9401732D0 (en) 1994-09-28
    TW289002B (de) 1996-10-21
    KR970005376B1 (ko) 1997-04-15
    HU216124B (hu) 1999-04-28
    CA2127321A1 (en) 1995-01-06
    ES2133443T3 (es) 1999-09-16
    HUT67850A (en) 1995-05-29
    US5490554A (en) 1996-02-13
    AU674749B2 (en) 1997-01-09
    PL303861A1 (en) 1995-01-09
    NO941868L (no) 1995-01-06
    AU6613294A (en) 1995-01-12
    CA2127321C (en) 1999-05-11
    DE59407993D1 (de) 1999-04-29
    NO941868D0 (no) 1994-05-19
    PL177723B1 (pl) 2000-01-31

    Similar Documents

    Publication Publication Date Title
    EP0323958B1 (de) Einrichtung zum stranggiessen von flachen brammen
    EP0637477B1 (de) Einlaufsystem für eine Aluminiumstranggussanlage
    DE2442915A1 (de) Giessrohr mit geschlossenem boden und einander gegenueberliegenden seitlichen oeffnungen
    AT400935B (de) Tauchgiessrohr
    DD294889A5 (de) Tauchgiessrohr zum einleiten von stahlschmelze in eine stranggiesskokille
    EP0726113B1 (de) Einlaufsystem für eine Aluminiumstranggussanlage
    EP0630711B1 (de) Eintauchausguss
    DE4344953C2 (de) Verfahren und Vorrichtung zum Angießen eines endabmessungsnahen Metallbandes
    DE60114779T2 (de) Verbessertes tauchrohr für das stranggiessen
    EP1678333B1 (de) Abstichrohr
    WO2008071357A1 (de) Verfahren und vorrichtung zur herstellung von breiten bändern aus kupfer oder kupferlegierungen
    EP0934786B1 (de) Verfahren zum Stranggiessen von Metall sowie Stranggiessanlage hierzu
    EP0920936B1 (de) Kokille zum Stranggiessen
    CH671716A5 (de)
    DE2521218A1 (de) Oszillierbare kokille mit in stranglaufrichtung kreisbogenfoermigem formhohlraum
    DE19606291C5 (de) Kokillenrohr
    DE10130354C1 (de) Tauchrohr und Verfahren zum optimierten Vergießen einer Stahlschmelze in einer Kokille
    EP1900460B1 (de) Multi-Tauchausguss
    EP0674958A2 (de) Verfahren und Vorrichtung zum endabmessungsnahen Vergiessen von Schmelzen
    EP2219805A1 (de) Verfahren und vorrichtung zum vergleichmässigen des erstarrungsvorganges eines insbesondere beim strang- oder bandgiessen erzeugten schmelzflüssigen metalles
    DE2426692C3 (de) Verfahren und Vorrichtung zum Kühlen des sich in einer oszillierenden Kokille bildenden Stranges beim Stranggießen von Stahl
    EP4374986A1 (de) Stranggiessanlage, insbesondere zum giessen metallurgischer langprodukte, sowie ein giessrohr
    DE102013224557A1 (de) Stranggießanlage und Verfahren zum Stranggießen eines Metallstranges
    DE20122083U1 (de) Unterdruck-Aggregat für die Glasherstellung
    DE2426692B2 (de) Verfahren und Vorrichtung zum Kühlen des sich in einer oszillierenden Kokille bildenden Stranges beim Stranggießen von Stahl

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): BE CH DE ES FR GB GR IT LI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): BE CH DE ES FR GB GR IT LI

    17P Request for examination filed

    Effective date: 19960304

    17Q First examination report despatched

    Effective date: 19980227

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE CH DE ES FR GB GR IT LI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 19990324

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990324

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990324

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59407993

    Country of ref document: DE

    Date of ref document: 19990429

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: URS WEGMANN DIPL.-ING.

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2133443

    Country of ref document: ES

    Kind code of ref document: T3

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 19990324

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20050524

    Year of fee payment: 12

    Ref country code: CH

    Payment date: 20050524

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20050531

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20050609

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20050629

    Year of fee payment: 12

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060527

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060531

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060531

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061201

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20070131

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20060527

    BERE Be: lapsed

    Owner name: *VAW ALUMINIUM A.G.

    Effective date: 20060531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060531