EP0635856B1 - Zündspule - Google Patents
Zündspule Download PDFInfo
- Publication number
- EP0635856B1 EP0635856B1 EP94109288A EP94109288A EP0635856B1 EP 0635856 B1 EP0635856 B1 EP 0635856B1 EP 94109288 A EP94109288 A EP 94109288A EP 94109288 A EP94109288 A EP 94109288A EP 0635856 B1 EP0635856 B1 EP 0635856B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- permanent magnet
- iron core
- ignition coil
- cross
- sectional area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 60
- 238000004804 winding Methods 0.000 claims description 48
- 230000005415 magnetization Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 230000035699 permeability Effects 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims 1
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- 239000010941 cobalt Substances 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims 1
- 230000004907 flux Effects 0.000 description 24
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/12—Ignition, e.g. for IC engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P1/00—Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
Definitions
- the present invention relates to a method of operating an improved ignition coil mainly used for internal combustion engines for vehicles.
- Document EP-A-0 352 453 discloses an ignition coil, wherein an iron core is provided with an air gap additionally having a permanent magnet disposed in the air gap portion.
- the thickness of the permanent magnet inserted in the air gap portion is between 0.6 - 1.8 mm
- the ratio of the cross-sectional area of the permanent magnet supporting portion SG and the cross-sectional area of the iron core SF is between 1.5 and 4.5
- the ratio of the cross-sectional area of the permanent magnet SM and the cross-sectional area of the iron core SF is between 2 and 6.
- the iron core Prior to the energization of the primary coil, the iron core is magnetized by a magnetizing force of the permanent magnet inserted in the air gap portion in order to reach a state of a maximum working magnetic flux density in the negative direction which is opposite to the direction of the magnetization to be caused by the energization of the primary coil, in particular.
- the permanent magnet biases the magnetization to the negative saturation point of 1.5 T to obtain the maximum energy.
- the secondary voltage will be reduced, when the primary current is reduced below 3.5 A which is more likely, when the primary winding resistance is higher than 1 Ohm.
- the output voltage of an ignition coil having a permanent magnet is clearly less than that of an ignition coil not being equipped with a permanent magnet, specifically in a primary current range lower than 3 A. Due to the corresponding magnetic saturation, this results in an output performance degradation.
- Fig. 6 is a schematic view showing a fundamental magnetic circuit of an iron core which has a permanent magnet inserted into an air gap portion of an ignition coil according to the above European Patent Application.
- reference mark SF is a cross-sectional area of the iron core through which magnetic flux ⁇ flows
- SG is a cross-sectional area of a permanent magnet supporting portion of the iron core
- LF is a mean magnetic path length
- SM is a cross-sectional area of the permanent magnet which is hatched
- LM is a thickness of the permanent magnet.
- Figs. 7 and 8 are performance characteristic diagrams for illustrating the magnetic performance of the ignition coil according to the above European Patent Application.
- a curve (a) represents a magnetization characteristic of the iron core
- a straight line (b) represents a magnetization characteristic of the permanent magnet
- a curve (c) represents a magnetization characteristic of the primary winding.
- the maximum working magnetic flux density BF of the iron core is given by a value corresponding to a point T which is a tangent point on the curve (a) with a straight line being parallel to the straight line (b) as a resultant summation of (a) and (b).
- the gradient of the magnetization curve of the primary winding is determined by the permeability ⁇ of the permanent magnet, it is of significance that a permanent magnet material which has a permeability value close to 1 should be selected in order to increase the energy stored in the primary winding represented by a hatched area W in Fig. 8, so that the permeability value close to 1 may contribute as an air gap which stores energy and to decline the magnetization curve of the primary winding shown in Fig. 8.
- the magnetizing force nIp/2 produced by an exciting current flowing through the primary winding is the resultant of a magnetizing force HF ⁇ LF of the iron core (where HF is a magnetic field in the iron core) and a magnetizing force H ⁇ LM across the air gap portion containing the permanent magnet (where H is a magnetic field generated in the air gap portion).
- Ip means the maximum primary winding current, that is, the current under normal operation.
- nIp/2 HF ⁇ LF + H ⁇ LM
- H (nIp/2 - HF ⁇ LF)/LM [AT/m]
- BG ⁇ SG BF ⁇ SF
- BM ⁇ SG BF ⁇ SF .
- LM [SG/SF] ⁇ [ ⁇ (nIp/2 - HF ⁇ LF)/BF]
- the iron core In the negative flux region of the hatched region in the performance characteristic curve diagram of Fig. 8, the iron core is required to be magnetized by a magnetizing force of the primary winding in opposition to energy possessed by the permanent magnet, so that a positive flux may pass through the iron core. Therefore, the iron core is first magnetized to the point P close to the saturation point in the negative flux region of the iron core depicted in the lower left region in Fig. 8 by the magnetizing force of the permanent magnet as described previously. Thereafter the iron core is magnetized to the point T near the saturation point in the positive flux region depicted at an upper right region in Fig. 8 by the magnetizing force nIp due to the exciting current Ip through the primary winding.
- the maximum energy product of a permanent magnet is expressed as (B ⁇ H) MAX.
- an operating point of the permanent magnet to be determined by the gradient of the magnetization curve (b) of the permanent magnet shown in Fig. 9 is chosen the point which gives the maximum energy product (B ⁇ H) MAX. or which is around such optimum point.
- SmCo5 sinarium cobalt
- the iron core is formed of non-oriented silicon steel plates and the value of the elements therefore are as follows.
- Figs. 10 and 11 Illustrated in Figs. 10 and 11 is a secondary voltage V2 generated in the secondary winding which is obtained from performance tests conducted for various ignition coils which have different dimensions of individual portions depending on the changes in thickness LM of the permanent magnet.
- Fig. 11 shows distribution curves of the secondary voltage V2 shown in Fig. 10 after converting them into a two-dimensional characteristic curve and as a relationship between the thickness LM of the permanent magnet and the magnitude of the secondary voltage V2.
- Figs. 15 and 16 show cross-sectional and side views of another conventional ignition coil which has no permanent magnet, respectively.
- Figs. 17 and 18 respectively show the cross-sectional and side views of the ignition coil which utilizes the permanent magnet according to the above prior art 1.
- the ignition coil applied with the permanent magnet may drastically realize a small size (see the typical dimension values in the Figures) and light weight (190 grams) ignition coil compared with the prior art (350 grams) which has no permanent magnet.
- the ignition coil in the prior art described hereinabove and illustrated in Fig. 17 is mostly effective in a highly sophisticated ignition system which may supply 6A (Amperes) drive current constantly to the primary winding which has less than one ohm resistance even in a case when a battery voltage dropped below the specified value as to maximize the magnetic flux density.
- 6A Amperes
- the relationship between the primary cut-off current and secondary output voltage (I1-V2) of the ignition coil in the prior art which has no permanent magnet but has the same secondary output voltage at the same primary current of 6A is graphically compared in Fig. 12 by a solid and dotted lines respectively.
- the output performance at around 3A primary current range becomes very important, particularly in an engine cranking time under high temperature and low battery voltage.
- the thickness LM of a permanent magnet and SM/SF ratio between two cross-sectional areas SM and SF are chosen as follows so that the working magnetizing zone of a primary winding does not reside in the curved zone of the magnetization characteristics in the negative region as illustrated in Fig. 4. 0.6 mm ⁇ LM ⁇ 1.8 mm and 1.3 ⁇ SM/SF ⁇ 3.0
- Fig. 1 is a sectional view of an ignition coil according to an embodiment of this invention and Fig. 2 is a side view of the same.
- an iron core 1 is made by laminated non-oriented silicone steel sheets and forms a closed magnetic flux circuit via an air gap 2 diagonally arranged in the iron core 1.
- a permanent magnet 4 is inserted into the air gap 2 of the iron core 1.
- a primary winding 6 is wound on the iron core 1.
- the permanent magnet 4 is magnetized in the opposite direction to the direction of magnetization by the exciting current flowing through the primary winding 6.
- Electrical resistance of the primary winding 6 in case of this embodiment is made to be more than 1 ohm.
- a secondary winding 8 is wound on the primary winding 6.
- the mutual relationship between of thickness LM of the permanent magnet 4, diagonal cross-sectional area SM of the permanent magnet 4 and non-diagonal or normal cross-sectional area SF of the iron core 1 at the winding portion is selected to satisfy the following condition.
- the diagonal cross-sectional area SG of the iron core 1 at the air gap portion is so formed as to be nearly equal to the cross-sectional are SM of the permanent magnet 4. 0.6 mm ⁇ LM ⁇ 1.8 mm 1.3 ⁇ SM/SF ⁇ 3.0
- Thickness LM of the permanent magnet 4 of the present invention is selected within the same range (0.6 mm ⁇ LM ⁇ 1.8 mm) of that of the prior art, because this range provides maximum secondary voltage V2 as indicated in Fig. 11.
- the new condition that is, 2/3 times factor which has been discussed in detail should be added to the above condition, then it makes concluded allowable lower and upper limit of the ratio SM/SF as follows. 1.3 ⁇ SM/SF ⁇ 3.0
- the ignition coil of the present invention may use its straight line portion as the magnetization curve for the primary winding 6 by the introduction of the 2/3 factor and SM/SF ratio of 1.5.
- the stored energy W' 1.5 on the lower current range is approximately equal to the energy W' of ignition coil which has no permanent magnet.
- Fig. 5 shows that there is no difference in the secondary output voltage V2 versus cut-off current of the primary winding 6 of both ignition coils of the present invention and the prior art which has no permanent magnet.
- the ignition coil which is most small in size without degrading performance under low primary current.
- the ignition coil includes an iron core 1 forming a closed magnetic circuit through an air gap 2 , a primary winding 6 wound around the iron core 1 for magnetizing the iron core 1 and a permanent magnet 4 magnetized in an opposite direction to a magnetizing direction by the primary winding current.
- a cross-sectional area SG of the iron core 1 at which the permanent magnet 4 is inserted is made substantially equal to that SM of the permanent magnet 4 .
- the permanent magnet 4 In order for the permanent magnet 4 to bias by 2/3 of the magnetic flux saturation point of the iron core 1 , the permanent magnet 4 is so shaped that its thickness LM satisfies 0.6 mm ⁇ LM ⁇ 1.8 mm and its cross-sectional area SM and the cross-sectional area SF of winding portion of the iron core 1 satisfies 1.3 ⁇ SM/SF ⁇ 3.0 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Claims (5)
- Verfahren zum Betreiben einer Zündspule der Bauart mit,einem einen geschlossenen magnetischen Kreis über einen darin vorgesehenen Luftspalt (2) aufweisenden Eisenkern (1),einer auf dem Eisenkern gewickelten Primärwicklung (6) zur Magnetisierung des Eisenkerns bei einer Versorgung mit elektrischem Strom,einer auf dem Eisenkern (1) gewickelten Sekundärwicklung (8),einem in den Luftspalt (2) des Eisenkerns (1) eingefügten und in einer Gegenrichtung zu einer Magnetisierungsrichtung infolge der Versorgung der Primärspule (6) mit elektrischem Strom magnetisierten Dauermagneten (4), wobei eine Querschnittsfläche (SG) des Eisenkerns, bei der der Dauermagnet eingefügt ist, im wesentlichen gleich einer Querschnittsfläche (SM) des Dauermagneten (4) ist und eine Dicke (LM) des Dauermagneten innerhalb eines Bereiches von 0,6 mm bis 1,8 mm liegt, und
wobei die Primärwicklung einen primärseitigen Widerstand größer als 1 Ohm aufweist und ein Verhältnis (SM/SF) zwischen der Querschnittsfläche (SM) des Dauermagneten (4) und einer Querschnittsfläche (SF) des Eisenkerns (1), bei der die Wicklungen aufgewickelt sind, innerhalb eines Bereiches von 1,3 bis 3,0 liegt,
wobei im Betrieb der Maximalwert des durch die Primärwicklung zur Sättigungsmagnetisierung des Eisenkerns fließenden Stroms eine Magnetisierungsstärke in dem Eisenkern bewirkt, die der Magnetisierungsstärke infolge des Dauermagneten entgegengerichtet und wertmäßig 1,5-fach größer ist. - Verfahren zum Betreiben einer Zündspule der Bauart mit,einem einen geschlossenen magnetischen Kreis über einen darin vorgesehenen Luftspalt (2) aufweisenden Eisenkern (1),einer auf dem Eisenkern gewickelten Primärwicklung (6) zur Magnetisierung des Eisenkerns bei einer Versorgung mit elektrischem Strom,einer auf dem Eisenkern (1) gewickelten Sekundärwicklung (8),einem in den Luftspalt (2) des Eisenkerns (1) eingefügten und in einer Gegenrichtung zu einer Magnetisierungsrichtung infolge der Versorgung der Primärspule (6) mit elektrischem Strom magnetisierten Dauermagneten (4), wobei eine Querschnittsfläche (SG) des Eisenkerns, bei der der Dauermagnet eingefügt ist, im wesentlichen gleich einer Querschnittsfläche (SM) des Dauermagneten (4) ist und eine Dicke (LM) des Dauermagneten innerhalb eines Bereiches von 0,6 mm bis 1,8 mm liegt, und
wobei die Primärwicklung (6) mit einem außerhalb angeordneten Widerstand verbunden ist, der in Verbindung mit der Primärwicklung einen primärseitigen Widerstand größer als 1 Ohm bereitstellt, und ein Verhältnis (SM/SF) zwischen der Querschnittsfläche (SM) des Dauermagneten (4) und einer Querschnittsfläche (SF) des Eisenkerns (1), bei der die Wicklungen aufgewickelt sind, innerhalb eines Bereiches von 1,3 bis 3,0 liegt,
wobei im Betrieb der Maximalwert des durch die Primärwicklung zur Sättigungsmagnetisierung des Eisenkerns fließenden Stroms eine Magnetisierungsstärke in dem Eisenkern bewirkt, die der Magnetisierungsstärke infolge des Dauermagneten entgegengerichtet und wertmäßig 1,5-fach größer ist. - Verfahren zum Betreiben einer Zündspule nach Anspruch 1 oder 2, wobei die Zündspule für eine Brennkraftmaschine eines Automobils verwendet wird.
- Verfahren zum Betreiben einer Zündspule nach Anspruch 3, wobei eine Permeabilität (µ) des Dauermagneten (4) im wesentlichen den Wert 1 aufweist, der Dauermagnet (4) Samarium und Kobalt umfaßt, und der Eisenkern (1) nichtorientierte Silizium-Stahl-Platten umfaßt.
- Verfahren zum Betreiben einer Zündspule nach Anspruch 1 oder 2, wobei die Magnetisierung in der Gegenrichtung durch den Dauermagneten (4) auf den Wert 1,0 T beschränkt ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14793693 | 1993-06-18 | ||
JP147936/93 | 1993-06-18 | ||
JP14793693A JP3391049B2 (ja) | 1993-06-18 | 1993-06-18 | 点火コイル |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0635856A1 EP0635856A1 (de) | 1995-01-25 |
EP0635856B1 true EP0635856B1 (de) | 2000-09-13 |
Family
ID=15441417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94109288A Expired - Lifetime EP0635856B1 (de) | 1993-06-18 | 1994-06-16 | Zündspule |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0635856B1 (de) |
JP (1) | JP3391049B2 (de) |
KR (1) | KR100242545B1 (de) |
DE (1) | DE69425853T2 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3031158U (ja) * | 1996-05-14 | 1996-11-22 | 阪神エレクトリック株式会社 | 内燃機関用点火コイル |
JP4410196B2 (ja) * | 2006-01-31 | 2010-02-03 | 三菱電機株式会社 | 内燃機関用点火コイル装置 |
US20190277214A1 (en) * | 2018-03-12 | 2019-09-12 | Diamond Electric Mfg. Corporation | System and method for boosted non-linear ignition coil |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE656392C (de) * | 1936-02-27 | 1938-02-04 | Magnetos R B Soc D | Zuendspule |
DE1464202A1 (de) * | 1962-02-23 | 1969-05-22 | Licentia Gmbh | Permanentvormagnetisiertes induktives Element |
DE7924989U1 (de) * | 1979-09-04 | 1980-11-13 | Brown, Boveri & Cie Ag, 6800 Mannheim | Magnetischer Energiespeicher |
FR2486160A1 (fr) * | 1980-07-04 | 1982-01-08 | Ducellier & Cie | Perfectionnement aux bobines d'allumage pour moteurs a combustion interne |
EP0352453B1 (de) * | 1988-07-28 | 1993-05-19 | Nippondenso Co., Ltd. | Zündspule |
JP2995763B2 (ja) * | 1989-11-10 | 1999-12-27 | 株式会社デンソー | 点火コイル |
-
1993
- 1993-06-18 JP JP14793693A patent/JP3391049B2/ja not_active Expired - Lifetime
-
1994
- 1994-06-15 KR KR1019940013472A patent/KR100242545B1/ko not_active IP Right Cessation
- 1994-06-16 EP EP94109288A patent/EP0635856B1/de not_active Expired - Lifetime
- 1994-06-16 DE DE69425853T patent/DE69425853T2/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3391049B2 (ja) | 2003-03-31 |
DE69425853T2 (de) | 2001-03-15 |
JPH0722256A (ja) | 1995-01-24 |
KR950001091A (ko) | 1995-01-03 |
KR100242545B1 (ko) | 2000-03-02 |
DE69425853D1 (de) | 2000-10-19 |
EP0635856A1 (de) | 1995-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4990881A (en) | Ignition coil with permanent magnet | |
US5101803A (en) | Ignition coil | |
EP0738831B1 (de) | Zündspule für eine innere Brennkraftmaschine | |
US5128646A (en) | Ignition coil for an internal combustion engine | |
US5128645A (en) | Ignition coil for an internal combustion engine | |
EP0932167B1 (de) | Hybrid-Typ Magnet und diesen enthaltender Schrittmotor | |
EP0635856B1 (de) | Zündspule | |
US6188304B1 (en) | Ignition coil with microencapsulated magnets | |
WO2016166850A1 (ja) | 内燃機関用点火コイル | |
US20020171524A1 (en) | Ignition coil | |
JPH0646550A (ja) | 車両用交流発電機 | |
CN107408452B (zh) | 内燃机用点火线圈 | |
JP4343448B2 (ja) | 変圧器の製造方法 | |
JP2830367B2 (ja) | 内燃機関用点火コイル | |
JP2734540B2 (ja) | 点火コイル | |
JPH0845753A (ja) | 点火コイル | |
JPH10340821A (ja) | イグニッションコイル | |
JP4291422B2 (ja) | 内燃機関用点火コイル | |
JP2952701B2 (ja) | 内燃機関用点火コイル | |
JP3031158U (ja) | 内燃機関用点火コイル | |
JP2827043B2 (ja) | 内燃機関用点火コイル | |
JPH01185907A (ja) | 点火コイル | |
JPH09306761A (ja) | 内燃機関用点火コイル | |
JP2936239B2 (ja) | 内燃機関用点火コイル | |
JPH10275732A (ja) | 内燃機関用点火コイル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19941130 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 19950623 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DENSO CORPORATION |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69425853 Country of ref document: DE Date of ref document: 20001019 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130612 Year of fee payment: 20 Ref country code: GB Payment date: 20130612 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20130620 Year of fee payment: 20 Ref country code: FR Payment date: 20130624 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69425853 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140617 |