EP0635676A1 - Verfahren und Brenner zur Verbrennung von flüssigen oder gasförmigen Brennstoffen - Google Patents

Verfahren und Brenner zur Verbrennung von flüssigen oder gasförmigen Brennstoffen Download PDF

Info

Publication number
EP0635676A1
EP0635676A1 EP94109301A EP94109301A EP0635676A1 EP 0635676 A1 EP0635676 A1 EP 0635676A1 EP 94109301 A EP94109301 A EP 94109301A EP 94109301 A EP94109301 A EP 94109301A EP 0635676 A1 EP0635676 A1 EP 0635676A1
Authority
EP
European Patent Office
Prior art keywords
burner
fuel
burner tube
wall
baffle plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94109301A
Other languages
English (en)
French (fr)
Other versions
EP0635676B1 (de
Inventor
Werner E. Dr.-Ing. Klausmann
Horst Schwendemann
Willy Wiedmann
Klaus Dipl.-Ing. Keh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elco Kloeckner Heiztechnik GmbH
Original Assignee
Elco Kloeckner Heiztechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elco Kloeckner Heiztechnik GmbH filed Critical Elco Kloeckner Heiztechnik GmbH
Publication of EP0635676A1 publication Critical patent/EP0635676A1/de
Application granted granted Critical
Publication of EP0635676B1 publication Critical patent/EP0635676B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/404Flame tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/34Burners specially adapted for use with means for pressurising the gaseous fuel or the combustion air

Definitions

  • the invention is concerned with the low-pollutant, in particular low-NO x combustion of liquid or gaseous fuels in combustion plants with a burner projecting into a combustion chamber of a boiler, the burner tube of which has at least one fuel nozzle arranged therein for the supply of the fuel and a subsequent baffle plate .
  • the invention is based on a method and a device in which exhaust gases or combustion products located in the combustion chamber are returned to the burner tube by internal recirculation.
  • nitrogen oxides NO x are formed in addition to other combustion products.
  • the reaction mechanisms that lead to such nitrogen oxides are largely known and are generally described as thermal and prompt or primary NO x formation, and as NO x formation by oxidation of the nitrogen chemically bound in the fuel.
  • a blower gas burner with internal exhaust gas recirculation is known from EP 0 347 834 B1 (DREIZLER).
  • the blower gas burner described therein comprises a burner head, the burner tube of which receives a device having a burner plate for the supply, distribution and swirling of the fuel and the combustion air.
  • On the upstream end of the burner tube there is a web ring with webs or sheet metal tabs projecting radially inwards.
  • the web ring is followed downstream by a flame tube at such a distance that an annular gap is formed between the burner tube and the flame tube.
  • the webs or tabs of the web ring create a build-up on the upstream side in the heat flow of the flame and downstream vacuum zones, which lead to the intake of the exhaust gases from the combustion chamber into the annular gap and from there into the flame tube and thus cause the exhaust gas recirculation. As a result, the exhaust gas only partially reaches the NO x -forming flame areas.
  • Burners with internal exhaust gas recirculation are also known for oil combustion plants.
  • DE-OS 40 08 692 A1 (K ⁇ RTING) describes an oil blower burner with: a mixing tube as a passage for the combustion air, which tapers conically at its downstream end; a baffle plate arranged in the area of the conical taper; and an attachment tube adjoining the mixing tube and overlapping it to form an annular gap.
  • a mixing tube as a passage for the combustion air, which tapers conically at its downstream end
  • a baffle plate arranged in the area of the conical taper
  • an attachment tube adjoining the mixing tube and overlapping it to form an annular gap.
  • German utility model G 89 09 288.0 also describes an oil burner with internal exhaust gas recirculation, in which exhaust gases from the combustion chamber are blown into the edge area of the flame.
  • nozzles are arranged on the inside of the burner tube to accelerate the combustion air and to generate a vacuum area. Openings in the burner tube wall lead into this vacuum region, so that exhaust gases are sucked in from the combustion chamber and are fed to the edge region of the flame together with the combustion air via an annular channel running on the inner wall of the burner tube.
  • burners for reducing nitrogen values are also known, which are designed for the combustion of liquid or gaseous fuels.
  • DE 40 09 222 A1 describes a burner with internal exhaust gas recirculation with: a burner tube, a fuel nozzle arranged therein, an air supply line surrounding the fuel nozzle, and an adjoining baffle plate.
  • the burner tube is provided with slots through which exhaust gas is drawn into the combustion zone of the burner tube as a result of the flow injector effect.
  • these exhaust gases do not always reach the areas of greatest NO x production.
  • EP 0 378 517 A2 discloses a burner with a burner tube, which is followed by a mixing head.
  • the burner contains a fuel nozzle for oil supply, which sprays the fuel against the hot inner wall of the burner tube in order to achieve better atomization and evaporation of the fuel.
  • DE 82 21 304 U1 (KLAMKE) describes a burner with internal exhaust gas recirculation via a plurality of supply channels distributed around the circumference of the burner tube.
  • EP 0288031 B1 (Weisberger) x NO describes a low-carbon burner for the combustion of fuel oil or fuel gas.
  • this is a burner with a so-called external exhaust gas recirculation, ie with an exhaust pipe running outside the boiler room and a recirculation fan used in this pipe.
  • An external exhaust gas recirculation of this type is associated with a considerably higher expenditure on equipment than the internal exhaust gas recirculation.
  • malfunctions can easily occur due to the formation of condensate or contamination in the exhaust gas recirculation line.
  • the invention aims to provide another method and another burner for the combustion of liquid or gaseous fuels, which in particular reduces pollutant emissions, especially NO x emissions.
  • a considerable fuel concentration is built up in an area which is displaced downstream from the baffle plate and adjoins the inner wall of the burner tube.
  • a type of fuel jacket is formed downstream of the baffle plate and against the inner wall of the burner tube.
  • the guide devices are preferably used as flow backflow and / or swirl surfaces (claim 2).
  • the amount of fuel supplied is preferably controlled as a function of the output of the combustion plants and thus in an energy-saving manner (claim 3).
  • One or more fuel nozzles are preferably guided up to the inner wall of the burner tube, in particular in such a way that they blow the fuel axially along the inner wall of the burner tube and / or radially against them (claims 5 to 7).
  • the fuel, in particular fuel gas, transport according to the invention can be implemented particularly easily in an area located downstream of the baffle plate and adjoining the inner wall of the burner tube.
  • the guiding devices against which the fuel flows are preferably uniformly distributed over the circumference of the burner tube and designed as baffle and / or swirl surfaces (claim 8).
  • Such an arrangement of the guide devices enables particularly effective exhaust gas injection into the flame, in particular as a result of the negative pressure zones which form behind such storage areas.
  • negative pressure zones in the shadow of the guide devices cause hot exhaust gases to be returned directly from the flame to the root of the flame in a turbulent flow. This leads to a stable shift of flame root areas to the control devices and thus overall for a stable expansion of the flame in the direction of the inner wall of the burner tube.
  • the guide devices are preferably designed as pipe sections (claim 9). Such a design of the control devices is technically particularly easy to implement.
  • such pipe pieces can protrude with their mouth into any vacuum areas located downstream of the baffle plate and use the accumulation effect of such vacuum areas, for example in the flow shadow directly behind the baffle plate, for exhaust gas recirculation.
  • the cool exhaust gases in the pipe sections heated by the flame are heated, which increases their flow rate.
  • the guide devices preferably each comprise an opening in the burner tube wall which serves for exhaust gas circulation and a guide plate which projects into the combustion chamber from the upstream boundary edge of the opening (claim 12).
  • a storage area builds up on the upstream side and a vacuum area on the downstream side, which - as described above - has a favorable effect on the exhaust gas recirculation with a corresponding angle of attack.
  • the guide plates practice with appropriate Inclination against the burner tube axis and / or suitable shaping additionally has a swirl effect on the fuel gas / combustion air mixture.
  • the suction of the exhaust gases from the combustion chamber is further increased by the fact that the guide plates protrude into the flow region of the fuel / combustion air mixture lying downstream of the baffle plate and adjoining the inner wall of the burner tube (claim 13).
  • the flow of the fuel-combustion air mixture running along the inner wall of the burner tube increases the exhaust gas injection.
  • the guide plates preferably have a polygonal and / or curved, in particular delta wing-shaped plan (claim 14).
  • a particularly homogeneous fuel / combustion air mixture is hereby achieved in the area of the flame root, so that complete combustion occurs with a largely homogeneous temperature distribution.
  • the guide plate is a wall section cut free from the burner tube wall and then bent inwards (claim 15). Such a design of the guide plate is particularly simple and inexpensive to manufacture.
  • Suction deflectors are preferably arranged on the outer wall of the burner tube downstream of the exhaust gas recirculation openings in order to prevent recirculation of exhaust gases with too much unburned content through the exhaust gas recirculation openings (claim 16).
  • the still hot exhaust gases do not lead to effective cooling of the flame, at most they serve to improve flame stability. Therefore, it is advantageous to have a recirculation flow from the Exhaust gases escaping from the burner tube with excessive unburned content are to be prevented by appropriate suction deflectors on the outer wall of the burner tube.
  • Flow lines are preferably led from the inlet openings of the exhaust gas guide devices into the space located radially outside of the burner tube, in such a way that exhaust gases can be recirculated from predetermined points in the combustion chamber (claim 17).
  • This has the advantage that cooler exhaust gases with a particularly low unburned fraction can be sucked off specifically from certain points in the combustion chamber and returned to the points at risk of NO x production.
  • flame reversal boilers there is in particular the possibility that exhaust gases from the exhaust gas reversal flow located within the combustion chamber are sucked into the burner tube via such flow lines and returned to the flame.
  • the burner shown in Fig. 1 is designed for the low-pollutant combustion of fuel gas. However, this is not to be understood as restrictive, since burners according to the invention are also suitable for the combustion of liquid fuels.
  • the burner essentially has a burner tube 1 which projects into a combustion chamber 3 of a boiler 5 indicated by its wall.
  • the combustion air is fed to the burner tube 1 in the direction of arrow I, preferably with the aid of a corresponding blower or a suction device.
  • the fuel is supplied via a burner lance 13, which is arranged in the burner tube 1 and which leads into fuel nozzles 15, not shown.
  • a baffle plate 17 is arranged downstream of the burner fuel nozzles 15 and extends perpendicular to the longitudinal axis of the burner tube and, in the usual way, has a central opening 19 for the passage of part of the fuel / combustion air mixture. Radially extending slots for the supply and swirling of combustion air can be provided between the central opening 19 and the outer boundary edge of the baffle plate 17. Another portion of the fuel-combustion air mixture flows through the space between the outer edge of the baffle plate 17 and the inner wall of the burner tube.
  • a combustion zone 23 adjoins the baffle plate downstream, in which the fuel-air mixture introduced is ignited. The flame then emerges from the downstream End of the burner tube 1 in the combustion chamber 3 of the boiler 5.
  • a considerable part of the fuel is supplied to an area downstream of the baffle plate 17 and adjoining the inner wall of the burner tube. Accordingly, there is a high fuel concentration, the highest in the example shown.
  • several burner lances 13 are arranged near the inner wall of the burner tube coaxially to the axis of the burner tube and distributed uniformly over the circumference of the burner tube.
  • Their fuel nozzles 15 are guided upstream of the baffle plate 17 up to the inner wall of the burner tube.
  • the fuel nozzles 15 are preferably oriented such that they blow the fuel in the axial direction along the inner wall of the burner tube (solid line). Alternatively, blow the fuel radially against the inner wall of the burner tube (dashed line) or with an axial and a radial component. As a result, the fuel is transported to the desired area together with the combustion air flowing in from behind. A type of flow jacket of the fuel / combustion air mixture is obtained, the layer thickness of which is approximately 30 mm downstream of the baffle plate. Most of the fuel is enriched within an approx. 10 mm thick jacket layer adjacent to the inner wall of the burner tube.
  • a further, centrally arranged burner lance 13 ' runs along the burner tube axis and blows a comparatively small amount of fuel through the central opening 19 of the baffle plate 17 into the combustion zone 23 of the burner tube 1 with its fuel nozzle 15'.
  • hot zones of the flame and thus the flame areas with the greatest NOx production per se are displaced downstream and radially outward from the baffle plate 17 in the direction of the inner wall of the burner tube. There, they can be supplied with cool exhaust gas comparatively easily by internal exhaust gas recirculation.
  • exhaust gas recirculation openings 25 are introduced downstream of the baffle plate 17 (at a distance of approximately 40 mm) in the burner tube wall - evenly distributed over the circumference of the burner tube 1.
  • a guide plate 27 projects into the combustion zone 23 of the burner tube 1 from the upstream boundary edge of these openings 25.
  • the guide plates 27 can have the shape of a delta wing (cf. FIGS. 2a, b) or some other suitable flow form, for example one of the 4a, c, d, e and / or f forms shown. They consist of a burner tube wall section cut out of the burner tube wall and then bent inwards.
  • Each baffle plate 27 causes a jam in front of it, ie upstream, and a vacuum zone behind it, ie downstream, in the fuel / combustion air flow jacket adjacent to the inner wall of the burner tube. These vacuum zones suck in the exhaust gases from the combustion chamber 3 and thus lead to exhaust gas recirculation.
  • the shape according to the invention in the manner of a delta wing leads to "standing vortices" on the guide plates 27, which contribute to flame stabilization. In this way, an expansion of the flame in the direction of the inner wall of the burner tube and displacement of flame root areas toward the guide plates 27 is achieved. As a result, the recirculated exhaust gases are injected into the hot zones of the flame and thus into the areas of greatest NO x production.
  • annular diaphragm 28 is arranged around the outer wall of the burner tube 1 downstream of the exhaust gas return openings 25 as a return deflector in order to prevent recirculation of exhaust gases with an excessively high unburned content directly from the combustion zone 23.
  • FIGS. 2a and 2b several - here eighteen - radially inwardly projecting guide plates 27 are evenly distributed over the circumference of the burner tube 1 and each have approximately the shape of a delta wing or an equilateral or only isosceles triangle.
  • the guide devices according to the invention are designed as pipe sections 29 which break through the burner pipe wall downstream of the baffle plate 17 and are inclined in such a way that the pipe section mouth lies downstream of the pipe section entrance.
  • the pipe section mouth protrudes here into the flow jacket of the fuel / combustion air mixture lying downstream of the baffle plate 17 and adjoining the inner wall of the burner pipe.
  • the gas-air mixture flowing past the pipe piece mouths entrains cool exhaust gases from the combustion chamber 3 of the boiler 5 (Bernoulli principle), which leads to internal exhaust gas recirculation.
  • 3a shows the uniform distribution of the - here eighteen - pipe sections 29 over the circumference of the burner pipe wall.
  • FIGS 4a, b, c, d, e and f illustrate different configurations of the guide devices 27 and 29, respectively.
  • Each figure schematically represents a section from a settlement of the section of the burner tube 1 equipped with the guide devices 27, 29.
  • the guide devices 27 are each designed as a wall section cut free from the burner tube wall and then bent inwards.
  • the bending edge 31 thereof runs in FIGS. 4c-e at right angles to the longitudinal axis of the burner tube 1; however, in FIGS. 4a and 4f, at an angle to the longitudinal axis of the burner.
  • the flow angle of the guide plates 27 can be changed by bending the guide plates 27 to different degrees around their bending edge 31. If the guide plates 27 - as seen in the direction of flow - are symmetrical and they have a bending edge 31 running at right angles to the longitudinal axis of the burner tube, then they have practically no swirl effect on the fuel / combustion air mixture. Corresponding configurations are shown in FIGS.
  • the guide plates 27 are essentially in the form of right-angled lobes, but with a bending edge 31 that runs obliquely to the longitudinal axis of the burner tube.
  • the guide plates 27 according to FIG. 4d essentially correspond to FIG. 4a, but have a right angle to the longitudinal axis of the burner tube running bending edge 31.
  • tubular guide devices 29 are shown which taper towards the inside of the burner tube.
  • 4c illustrates guide plates 27 in the form of isosceles triangles with an upstream base or bending edge 31 and a downstream tip.
  • the guide plates 27 in the form of a symmetrical trapezoid, the narrow side of which is the upstream bending edge 31.
  • This guide plate 27 is also in the manner of a delta wing against the flow.
  • the guide plates 27 have the shape of a right-angled triangle, the edges of which lie at right angles to one another lie transversely to and in the direction of the longitudinal axis of the burner tube and the base of which extends obliquely to the axis of the burner tube.
  • a burner which, due to the fuel supply according to the invention and the design and arrangement of the exhaust gas guiding devices according to the invention, achieves a particularly effective reduction in NOx emissions in the combustion zone of the burner tube.
  • the burner according to the invention is characterized by an almost complete combustion of the fuel-combustion air mixture, so that in addition to the NO x values, the other pollutant emission values are reduced to a considerable extent.
  • the effort required for the design of the burner according to the invention is low, since in particular the fuel supply according to the invention and the control devices can be implemented inexpensively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Bei einem Verfahren und einem Brenner zur Verbrennung von flüssigen oder gasförmigen Brennstoffen wird ein beachtlicher Teil des Brennstoffes einem stromab zu einer Stauscheibe (17) liegenden und an die Brennerrohrinnenwand angrenzenden Bereich zugeführt. Im Brennraum befindliche Abgase werden durch interne Abgasrezirkulation in stromab der Stauscheibe (17) aufgebaute Unterdruckgebiete rückgeführt und hierzu das Brennerrohr (1) durchbrechende und in die Unterdruckgebiete ragende Leiteinrichtungen (25, 27; 29) verwendet. <IMAGE>

Description

  • Die Erfindung befaßt sich mit der schadstoffarmen, insbesondere NOx-armen Verbrennung von flüssigen oder gasförmigen Brennstoffen in Feuerungsanlagen mit einem in einen Brennraum eines Kessels ragenden Brenner, dessen Brennerrohr wenigstens eine darin angeordnete Brennstoffdüse für die Zufuhr des Brennstoffs und eine sich daran anschließende Stauscheibe aufweist. Die Erfindung geht dabei von einem Verfahren und einer Vorrichtung aus, bei welchem bzw. welcher in der Brennkammer befindliche Abgase bzw. Verbrennungsprodukte durch interne Rezirkulation in das Brennerrohr rückgeführt werden.
  • Bei der Verbrennung fossiler Brennstoffe in Feuerungsanlagen entstehen neben anderen Verbrennungsprodukten auch Stickstoffoxide NOx. Die Reaktionsmechanismen, die zu derartigen Stickoxyden führen, sind weitgehend bekannt und werden im allgemeinen als thermische und prompte bzw. primäre NOx-Bildung, sowie als NOx-Bildung durch Oxidation des im Brennstoff chemisch gebundenen Stickstoffs beschrieben.
  • Auch ist bekannt, daß die Rückführung eines Teiles der Abgase aus dem Brennraum des Heizkessels in den Verbrennungsprozeß eine Reduzierung der NOx-Emission, insbesondere der thermischen NOx-Bildung, bewirkt; jedenfalls dann, wenn hierdurch die Flammentemperatur, der Sauerstoffpartialdruck und die für die Spaltung der Stickstoffverbindungen erforderlichen Radikale im Brennstoff-Verbrennungsluft-Gemisch verringert werden. Hierzu führt man bekanntlich die kühleren, nur noch einen geringen unverbrannten Anteil aufweisenden Abgase aus dem Brennraum in eine stromab der Stauscheibe befindliche Brennzone im Brennerrohr.
  • Aus der EP 0 347 834 B1 (DREIZLER) ist ein Gebläsegasbrenner mit interner Abgasrezirkulation bekannt. Der dort beschriebene Gebläsegasbrenner umfaßt einen Brennerkopf, dessen Brennerrohr eine eine Brennerplatte aufweisende Einrichtung für die Zufuhr, Verteilung und Verwirbelung des Brennstoffs und der Verbrennungsluft aufnimmt. Auf dem stromaufwärtigen Ende des Brennerrohres sitzt ein Stegring mit radial nach innen ragenden Stegen oder Blechlappen. Dem Stegring folgt stromab ein Flammrohr mit einem derartigen Abstand, so daß zwischen dem Brennerrohr und dem Flammrohr ein Ringspalt ausgebildet ist. Die Stege oder Lappen des Stegrings erzeugen auf ihrer stromaufwärtigen Seite einen Stau im Hitzestrom der Flamme und stromab Unterdruckzonen, die zur Ansaugung der Abgase aus dem Brennraum in den Ringspalt und von dort in das Flammrohr führen und somit die Abgasrezirkulation bewirken. Hierdurch erreicht das Abgas die NOx-bildenden Flammbereiche nur teilweise.
  • Auch für Ölverbrennungsanlagen sind Brenner mit interner Abgasrückführung bekannt.
  • Die DE-OS 40 08 692 A1 (KÖRTING) beschreibt einen Ölgebläsebrenner mit: einem Mischrohr als Durchlaß für die Verbrennungsluft, das sich an seinem stromabwärtigen Ende konisch verjüngt; einer im Bereich der konischen Verjüngung angeordneten Stauscheibe; und einem an das Mischrohr anschließenden und dieses unter Bildung eines Ringspaltes überlappenden Vorsatzrohr. Auch hier entstehen infolge der Strömungsverhältnisse am Mischrohrende Unterdruckzonen, die zu einer internen Gasrezirkulation führen. Dabei werden Abgase aus dem Brennraum hauptsächlich in den äußeren Bereich der Flamme Zurückgeführt. Eine Injektion derartiger Abgase in die heißen Zonen im Innern der Flamme - dort, wo am meisten NOx produziert wird - findet nicht statt.
  • Das Deutsche Gebrauchsmuster G 89 09 288.0 (ELECTRO-OIL) beschreibt ebenfalls einen Ölbrenner mit interner Abgasrückführung, in welchem Abgase aus der Brennkammer in den Randbereich der Flamme eingeblasen werden. Dazu sind Düsen an der Innenseite des Brennerrohrs zur Beschleunigung der Verbrennungsluft und zur Erzeugung eines Unterdruckbereiches angeordnet. In diesen Unterdruckbereich führen Öffnungen in der Brennerrohrwand, so daß Abgase aus der Brennkammer angesaugt und zusammen mit der Verbrennungsluft über einen an der Brennerrohrinnenwand verlaufenden Ringkanal dem Randbereich der Flamme zugeführt werden.
  • Im übrigen sind auch Brenner zur Reduzierung von Stickstoffwerten bekannt, die für die Verbrennung von flüssigen oder gasförmigen Brennstoffen ausgelegt sind.
  • Die DE 40 09 222 A1 (ELCO) beschreibt hierzu einen Brenner mit interner Abgasrückführung mit: einem Brennerrohr, einer darin angeordneten Brennstoffdüse, einer die Brennstoffdüse umgebenden Luftzuführungsleitung, sowie einer sich daran anschließenden Stauscheibe. Das Brennerrohr ist in dem der Stauscheibe zugekehrten Bereich mit Schlitzen versehen, durch welche Abgas infolge der Strömungsinjektorwirkung in die Brennzone des Brennerrohrs eingesogen wird. Diese Abgase erreichen jedoch nicht immer ausreichend die Bereiche größter NOx-Produktion.
  • Die EP 0 378 517 A2 (FÜLLEMANN) offenbart einen Brenner mit einem Brennerrohr, an das sich ein Mischkopf anschließt. Der Brenner enthält eine Brennstoffdüse zur Ölzuführung, welche den Brennstoff gegen die heiße Brennerrohr-Innenwand sprüht, um eine bessere Zerstäubung und Verdampfung des Brennstoffes zu erreichen.
  • Schließlich ist in der DE 82 21 304 U1 (KLAMKE) ein Brenner mit interner Abgasrückführung über mehrere am Umfang des Brennerrohres verteilte Zuführkanäle beschrieben.
  • Auch die EP 0 288 031 B1 (WEISHAUPT) beschreibt einen NOx-armen Brenner für die Verbrennung von Brennöl oder Brenngas. Im Unterschied zu den bisher beschriebenen Systemen handelt es sich dabei um einen Brenner mit sogenannter externer Abgasrückführung, d.h. mit einer außerhalb des Kesselraumes verlaufenden Abgasleitung und einem in dieser Leitung eingesetzten Rezirkulationsgebläse. Eine derartige externe Abgasrückführung ist mit wesentlich höherem apparativem Aufwand verbunden als die interne Abgasrückführung. Darüber hinaus können aufgrund von Kondensatbildung bzw. Verschmutzungserscheinungen in der Abgasrückführleitung leicht Betriebsstörungen auftreten.
  • Ausgehend von vorstehend beschriebenen Stand der Technik zielt die Erfindung darauf ab, eine anderes Verfahren und einen anderen Brenner zur Verbrennung von flüssigen oder gasförmigen Brennstoffen zur Verfügung zu stellen, der insbesondere die Schadstoffemission, besondere die NOx-Emission reduziert.
  • Dieses Ziel wird durch die Gegenstände der Patentansprüche 1 und 4 erreicht.
  • Danach werden: - über entsprechend angeordnete und ausgebildete Brennstoffdüsen - ein beachtlicher Teil des Brennstoffs einem stromab der Stauscheibe liegenden und an die Brennerrohrinnenwand angrenzenden Bereich zugeführt, im Brennraum befindliche Abgase durch interne Rezirkulation in stromab der Stauscheibe (im Brennerrohr) aufgebaute Unterdruckgebiete rückgeführt und hierzu das Brennerrohr durchbrechende in die Unterdruckgebiete führende Leiteinrichtungen verwendet.
  • Nach der Erfindung wird eine beachtliche Brennstoffkonzentration in einem von der Stauscheibe stromabwärts verlagerten, an die Brennerrohrinnenwand angrenzenden Bereich aufgebaut. Dabei bildet sich stromab der Stauscheibe und an die Brennerrohrinnenwand anliegend eine Art Brennstoffmantel aus. Demzufolge sind auch heiße Zonen der Flamme und damit Bereiche größter NOx-Produktion von der Stauscheibe stromabwärts und vom Zentrum des Brennerrohrs radial nach außen verlagert. Hierdurch erfolgt insgesamt eine Aufweitung der Flamme bzw. der Flammenfront, so daß die über die Leiteinrichtungen aus dem Brennraum rückgeführten Abgase direkt in die heißen Zonen der Flamme eindringen. Hierdurch werden die Flammentemperatur und der Sauerstoff-Partialdruck effektiv besonders dort gesenkt, wo die NOx-Bildung am größten ist. Mit anderen Worten, die Flammenbereiche mit der an sich größten NOx-Bildungsgefahr werden dorthin verlagert, wo sie bequem mit Abgas beaufschlagbar sind, insbesondere solchem Abgas, das bereits kühler ist und nur noch eine geringen unverbrannten Anteil hat.
  • Bei bekannten Ölbrennern gelangt zwar häufig ohnehin ein Teil des Brennstoffes in den Randbereich des Brennerrohres. Jedoch weisen derartige Ölbrenner nicht die erfindungsgemäßen Leiteinrichtugnen auf.
  • Bevorzugt werden die Leiteinrichtungen als Strömungsstau- und/oder Drallflächen verwendet (Anspruch 2).
  • Werden derartige Strömungsstauflächen vom Brennstoff-Verbrennungsluftgemisch angeströmt, so bilden sich stromauf der Stauflächen Überdruckzonen und stromab davon Unterdruckzonen aus, wobei letztere sowohl eine Flammenstabilisierung aufgrund heißer Rückstromzonen, als auch eine verstärkte Injektion durch Ansaugung der Abgase aus der Brennkammer bewirken. Werden die Leiteinrichtungen als Strömungsdrallflächen verwendet, wo wird das Brennstoff-Verbrennungsluft-Gemisch in eine Drallbewegung versetzt. Dies hat eine verbesserte Durchmischung des Brennstoffes mit der Verbrennungsluft und damit eine möglichst vollständige Verbrennung des Brennstoffs zur Folge.
  • Vorzugsweise wird die zugeführte Menge des Brennstoffs in Abhängigkeit von der Leistung der Feuerungsanlagen und damit ernergiesparend gesteuert (Anspruch 3).
  • Bevorzugt sind eine oder mehrere Brennstoffdüsen, insbesondere Brenngasdüsen, bis an die Brennerrohrinnenwand geführt, - insbesondere derart, daß sie den Brennstoff in axialer Richtung entlang der Brennerrohrinnenwand und/oder radial dagegen blasen (Ansprüche 5 bis 7). Hierdurch läßt sich der erfindungsgemäße Brennstoff-, insbesondere Brenngastransport, in einen stromab der Stauscheibe befindlichen und an die Brennerrohrinnenwand angrenzenden Bereich besonders einfach realisieren.
  • Die vom Brennstoff angeströmten Leiteinrichtungen sind vorzugsweise über den Umfang des Brennerrohres gleichmäßig verteilt und als Stau- und/oder Drallflächen ausgebildet (Anspruch 8). Eine derartige Anordnung der Leiteinrichtungen ermöglicht eine besonders effektive Abgasinjektion in die Flamme, insbesondere infolge der sich hinter derartigen Stauflächen ausbildenden Unterdruckzonen. Im übrigen bewirken derartige Unterdruckzonen im Schatten der Leiteinrichtungen, daß noch heiße Abgase direkt aus der Flamme in turbulenter Strömung zur Flammenwurzel zurückgeführt werden. Dies führt zu einer stabilen Verlagerung von Flammwurzelbereichen zu den Leiteinrichtungen und damit insgesamt zu einer stabilen Aufweitung der Flamme in Richtung der Brennerrohrinnenwand.
  • Bevorzugt sind die Leiteinrichtungen als Rohrstücke ausgebildet (Anspruch 9). Eine derartige Ausgestaltung der Leiteinrichtungen ist technisch besonders einfach realisierbar. Im übrigen können derartige Rohrstücke mit ihrer Mündung in beliebige sich stromab der Stauscheibe befindliche Unterdruckgebiete hineinragen und die Stauwirkung derartiger Unterdruckgebiete, beispielsweise im Strömungsschatten unmittelbar hinter der Stauscheibe, für die Abgasrückführung ausnützen. Zusätzlich erfahren die kühlen Abgase in den durch die Flamme erhitzten Rohrstücken eine Erwärmung, die deren Strömungsgeschwindigkeit erhöht.
  • Besonders zweckmäßig ist es, wenn die Rohrstückmündung bis in einen stromab der Stauscheibe liegenden an die Brennerrohrinnenwand angrenzenden Strömungsbereich des Brennstoff-Verbrennungsluft-Gemischs hineinragt (Anspruch 10). Durch das an der Rohrstückmündung mit hoher Geschwindigkeit vorbeiströmende Brennstoff-Verbrennungsluft-Gemisch wird Abgas (in der Art einer Wasser- bzw. Dampfstrahlpumpe) "mitgerissen", so daß ständig Abgas aus dem Brennraum in die Brennzone des Brennerrohrs gesaugt wird. Dieser Effekt wird noch erhöht, wenn die Rohrstücke derart gegen die Brennerrohrwand geneigt angeordnet sind, daß die Rohrstückmündung stromab vom Rohrstückeingang liegt (Anspruch 11).
  • Alternativ dazu umfassen die Leiteinrichtungen vorzugsweise jeweils eine der Abgaszirkulation dienende Öffnung in der Brennerrohrwand und eine von der stromaufwärtigen Begrenzungskante der Öffnung in die Brennkammer ragende Leitplatte (Anspruch 12). An derartigen Leitplatten baut sich anströmseitig ein Staugebiet und abströmseitig ein Unterdruckgebiet auf, was sich - wie vorstehend beschrieben - bei entsprechendem Anstellwinkel günstig auf die Abgasrezirkulation auswirkt. Die Leitplatten üben bei entsprechender Schrägstellung gegen die Brennerrohrachse und/oder geeigneter Formgebung zusätzlich eine Drallwirkung auf das Brenngas-Verbrennungsluft-Gemisch aus. Die Ansaugung der Abgase aus dem Brennraum wird ferner dadurch erhöht, daß die Leitplatten in den stromab der Stauscheibe liegenden, an die Brennerrohrinnenwand angrenzenden Strömungsbereich des Brennstoff-Verbrennungsluft-Gemischs hineinragen (Anspruch 13). Auch hier bewirkt die an der Brennerrohrinnenwand entlanglaufende Strömung des Brennstoff-Verbrennungsluft-Gemischs eine Verstärkung der Abgasinjektion.
  • Vorzugsweise besitzen die Leitplatten eine polygonalen und/oder gekrümmten, insbesondere Deltaflügel-förmigen Grundriß (Anspruch 14). Hierdurch können in der Strömung des Brennstoff-Verbrennungsluft-Gemisch Wirbel unterschiedlichster Geometrie und insbesondere Deltaflügel-Effekte erzeut werden. Im Zusammenwirken mit der Stabilisierung der Flamme an derartigen Leitplatten wird hierdurch im Bereich der Flammenwurzel ein besonders homogenes Brennstoff-Verbrennungsluft-Gemisch erzielt, so daß eine vollständige Verbrennung bei weitgehend homogener Temperaturverteilung entsteht.
  • Ferner ist es von Vorteil, wenn die Leitplatte ein aus der Brennerrohrwand freigeschnittener und danach nach innen gebogener Wandabschnitt ist (Anspruch 15). Eine derartige Ausgestaltung der Leitplatte ist besonders einfach und kostengünstig herzustellen.
  • Vorzugsweise sind an der Außenwand des Brennerrohres stromab der Abgas-Rückführöffnungen Rücksaugabweiser angeordnet, um eine Rezirkulation von Abgasen mit zu hohem unverbranntem Anteil durch die Abgasrückführöffnungen zu verhindern (Anspruch 16). Die noch heißen Abgase führen zu keiner effektiven Kühlung der Flamme, höchstens dienen sie unter Umständen der Verbesserung einer Flammenstabilität. Deshalb ist es vorteilhaft, eine Rezirkulationsströmung der aus dem Brennerrohr austretenden Abgase mit zu hohem unverbranntem Anteil durch entsprechende Rücksaugabweiser an der Außenwand des Brennerrohrs zu verhindern.
  • Vorzugsweise sind von den Eingangsöffnungen der Abgas-Leiteinrichtungen Strömungsleitungen in den radial außerhalb des Brennerrohres befindlichen Raum geführt, derart, daß Abgase aus vorgegebenen Stellen des Brennraumes rezirkulierbar sind (Anspruch 17). Dies hat den Vorteil, daß kühlere Abgase mit einem besonders geringen unverbrannten Anteil gezielt aus bestimmten Stellen des Brennraumes abgesaugt und zu den NOx-Produktions-gefährdeten Stellen rückgeführt werden können. Bei sog. Flammenumkehrkessel besteht insbesondere die Möglichkeit, daß Abgase aus der innerhalb des Brennraumes befindlichen Abgasumkehrströmung über derartige Strömungsleitungen in das Brennerrohr gesaugt und zur Flamme rückgeführt werden.
  • Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele. Darin wird auf die beigefügte schematische Zeichnung Bezug genommen. In der Zeichnung zeigen:
  • Fig. 1
    ein Ausführungsbeispiel des erfindungsgemäßen Brenners im Längsschnitt;
    Fig. 2a,b
    einen Längs- und einen Querschnitt durch den mit Leiteinrichtungen einer ersten Ausführungsform bestückten Abschnitt des Brennerrohres;
    Fig. 3a,b
    einen Längs- und einen Querschnitt durch den mit Leiteinrichtungen einer zweiten Ausführungsform bestückten Abschnitt des Brennerrohres; und
    Fig. 4a-f
    jeweils einen Ausschnitt aus einer Abwicklung des mit den Leiteinrichtungen bestückten Brennerrohrabschnittes, wobei jede Figur ein anderes Ausführungsbeispiel der Leiteinrichtungen veranschaulicht.
  • Der in Fig. 1 dargestellte Brenner ist für die schadstoffarme Verbrennung von Brenngas ausgelegt. Dies ist jedoch nicht einschränkend zu verstehen, da erfindungdsgemäße Brenner auch für die Verbrennung von flüssigen Brennstoffen geeignet sind.
  • Der Brenner weist im wesentlichen ein Brennerrohr 1 auf, das in einen Brennraum 3 eines durch seine Wand angedeuteten Heizkessels 5 hineinragt. Die Verbrennungsluft wird dem Brennerrohr 1 in Richtung des Pfeiles I zugeführt, und zwar vorzugsweise mit Hilfe eines entsprechenden Gebläses oder einer Saugvorrichtung. Der Brennstoff wird über eine - nicht dargestellte - Brennstoffleitung im Brennerrohr 1 angeordneten Brennerlanzen 13 zugeführt, die in Brennstoffdüsen 15 münden.
  • Im Brennerrohr 1 ist stromab der Brennerstoffdüsen 15 eine Stauscheibe 17 angeordnet, die sich senkrecht zur Brennerrohr-Längsachse erstreckt, und in üblicher Weise eine zentrale Öffnung 19 für den Durchlaß eines Teiles des Brennstoff-Verbrennungsluft-Gemisches aufweist. Zwischen der zentralen Öffnung 19 und der äußeren Begrenzungskante der Stauscheibe 17 können radial verlaufende Schlitze für die Zufuhr und Verwirbelung von Verbrennungsluft vorgesehen sein. Ein weiterer Anteil der Brennstoff-Verbrennungsluft-Gemischs strömt durch den Zwischenraum zwischen der Außenkante der Stauscheibe 17 und der Brennerrohrinnenwand.
  • Stromabwärts schließt sich an die Stauscheibe eine Brennzone 23 an, in der das eingebrachte Brennstoff-Luftgemisch gezündet wird. Die Flamme tritt dann aus dem stromabwärtigen Ende des Brennerrohres 1 in den Brennraum 3 des Kessels 5.
  • Nach der Erfindung wird eine beachtlicher Teil des Brennstoffs einem stromab der Stauscheibe 17, an die Brennerrohrinnenwand angrenzenden Bereich zugeführt. Demgemäß herrscht dort eine hohe, beim dargestellten Beispiel höchste, Brennstoffkonzentration. Hierzu sind mehrere Brennerlanzen 13 in Nähe der Brennerrohrinnenwand koaxial zur Brennerrohrachse und gleichmäßig über den Brennerrohrumfang verteilt angeordnet. Deren Brennstoffdüsen 15 sind stromauf der Stauscheibe 17 bis an die Brennerrohrinnenwand geführt.
  • Fig. 1 illustriert unterschiedliche Ausrichtungen der Brennstoffdüsen 15. Bevorzugt sind die Brennstoffdüsen 15 so ausgerichtet, daß sie den Brennstoff in axialer Richtung entlang der Brennerrohrinnenwand blasen (durchgezogene Linie). Alternativ blasen sie den Brennstoff radial gegen die Brennerrohrinnenwand (gestrichelte Linie) oder mit einer axialen und einer radialen Komponenete. Hierdurch wird der Brennstoff zusammen mit der von hinten anströmenden Verbrennungsluft in den erwünschten Bereich transportiert. Man erhält eine Art Strömungsmantel des BrennstoffVerbrennungsluft-Gemischs, dessen Schichtdicke stromab nahe der Stauscheibe eine Größenordnung von 30 mm hat. Dabei ist ein Großteil des Brennstoffs innerhalb einer an die Brennerrohrinnenwand angrenzenden, ca. 10 mm starken Mantelschicht angereichtert.
  • Im dargestellten Ausführungsbeispiel verläuft eine weitere, zentral angeordnete Brennerlanze 13' längs der Brennerrohrachse und bläst mit ihrer Brennstoffdüse 15' einen vergleichsweise geringen Brennstoffanteil durch die zentrale Öffnung 19 der Stauscheibe 17 in die Brennzone 23 des Brennerrohrs 1.
  • Nach der Erfindung sind daher heiße Zonen der Flamme und damit die Flammenbereiche mit der an sich größten NOx-Produktion von der Stauscheibe 17 stromabwärts und radial nach außen in Richtung der Brennerrohrinnenwand verlagert. Dort sind sie vergleichsweise einfach durch interne Abgasrückführung mit kühlem Abgas beaufschlagbar.
  • Hierzu sind stromab der Stauscheibe 17 (in einem Abstand von ca. 40 mm) in der Brennerrohrwand - gleichmäßig über den Umfang des Brennerrohres 1 verteilt - Abgasrückführöffnungen 25 eingebracht. Von der stromaufwärtigen Begrenzungskante dieser Öffnungen 25 ragt jeweils eine Leitplatte 27 in die Brennzone 23 des Brennerrohres 1. Die Leitplatten 27 können die Form eines Deltaflügels (vgl. Fig. 2a, b) oder eine sonstige geeignete Strömungsform haben, etwa eine der in Fig. 4a, c, d, e und/oder f dargestellten Formen. Sie bestehen aus einem aus der Brennerrohrwand freigeschnittenen und danach nach innen gebogenen Brennerrohrwandabschnitt.
  • Jede Leitplatte 27 bewirkt vor sich, d.h. stromaufwärts, einen Stau und hinter sich, d.h. stromab, eine Unterdruckzone in dem an die Brennerrohrinnenwand angrenzenden Brennstoff-Verbrennungsluft-Strömungsmantel. Diese Unterdruckzonen saugen die Abgase aus der Brennkammer 3 an und führen somit zur Abgasrezirkulation. Die erfindungsgemäße Formgebung in der Art eines Deltaflügels führt zu "stehenden Wirbeln" an den Leitplatten 27, die zur Flammenstabilisierung beitragen. Hierdurch wird eine Aufweitung der Flamme in Richtung der Brennerrohrinnenwand und Verlagerung von Flammenwurzelbereichen zu den Leitplatten 27 hin erzielt. Demzufolge werden die rückgeführten Abgase in die heißen Zonen der Flamme und damit in die Bereiche größter NOx-Produktion injiziert.
  • Auch die Unterdruckgebiete unmittelbar stromab der Stauscheibe 17, die sich infolge des Strömungsabrisses an den Begrenzungskanten der Stauscheibe 17 ausbilden, tragen zur Verstärkung der Ansaugung der Abgase aus dem Brennraum 3 bei.
  • Ferner ist um die Außenwand des Brennerrohres 1 herum stromab der Abgas-Rückführöffnungen 25 eine Ringblende 28 als Rücksaugabweiser angeordnet, um eine Rezirkulation von Abgasen mit zu hohem unverbranntem Anteil direkt aus der Brennzone 23 zu verhindern.
  • Bei der in den Fig. 2a und 2b dargestellten Ausführungsform sind mehrere - hier achtzehn - radial nach innen ragende Leitplatten 27 gleichmäßig über den Umfang des Brennerrohres 1 verteilt und haben jeweils etwa die Form eines Deltaflügels bzw. eines gleichseitigen oder nur gleichschenkeligen Dreiecks.
  • In den Fig. 3a und 3b ist ein weiteres bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Abgasleiteinrichtungen dargestellt. Dort sind die erfindungsgemäßen Leiteinrichtungen als Rohrstücke 29 ausgebildet, welche die Brennerrohrwand stromab der Stauscheibe 17 durchbrechen und dabei derart geneigt sind, daß die Rohrstückmündung stromab vom Rohrstückeingang liegt. Die Rohrstückmündung ragt hier in den stromab der Stauscheibe 17 liegenden, an die Brennerrohrinnenwand angrenzenden Strömungsmantel des BrennstoffVerbrennungsluft-Gemischs. Das an den Rohrstückmündungen vorbeiströmende Gas-Luft-Gemisch reißt kühle Abgase aus dem Brennraum 3 des Kessels 5 mit (Bernoulli-Prinzip), was zur internen Abgasrezirkulation führt.
  • Fig. 3a zeigt die gleichmäßige Verteilung der - hier achtzehn - Rohrstücke 29 über den Umfang der Brennerrohrwand.
  • Die Figuren 4a, b, c, d, e und f veranschaulichen unterschiedliche Ausgestaltungen der Leiteinrichtungen 27 bzw. 29. Dabei stellt jede Figur schematisch einen Ausschnitt aus einer Abwicklung des mit den Leiteinrichtungen 27, 29 bestückten Abschnittes des Brennerrohres 1 dar.
  • In den Figuren 4a und c-f sind die Leiteinrichtungen 27 jeweils als ein aus der Brennerrohrwand freigeschnittener und danach nach innen gebogener Wandabschnitt ausgebildet. Deren Biegekante 31 verläuft in den Figuren 4c-e rechtwinklig zur Längsachse des Brennerrohres 1; in den Figuren 4a und 4f hingegen jedoch schräg zur Brennerlängsachse. Durch unterschiedlich starkes Umbiegen der Leitplatten 27 um ihre Biegekante 31 läßt sich der Strömungs-Anstellwinkel der Leitplatten 27 verändern. Sind die Leitplatten 27 - in Strömungsrichtung gesehen - symmetrisch ausgestaltet und haben sie eine zur Brennerrohrlängsachse rechtwinklig verlaufende Biegekante 31, dann haben sie praktisch keine Drallwirkung auf das Brennstoff-Verbrennungsluft-Gemisch. Entsprechende Ausgestaltungen sind in den Figuren 4c, d und e dargestellt. Verlaufen hingegen die Biegekanten 31 schräg zur Brennerrohrlängsachse und/oder sind die Leitplatten 27 - in Strömungsrichtung gesehen - assymmetrisch ausgestaltet, dann üben die Leitplatten 27 auch einen Dralleffekt auf das Brennstoff-Verbrennungsluft-Gemisch aus. Entsprechende Ausgestaltungen sind in den Figuren 4a und 4f dargestellt. Zusätzlich läßt sich ein Dralleffekt auf das Strömungsgemisch auch dadurch ausüben, daß die Leitplatten - in Strömungsrichtung gesehen - assymmetrisch ausgebildet sind. Auch hierzu wird wiederum auf die Figuren 4a und 4f verwiesen. Schließlich läßt sich ein Dralleffekt auch dadurch auf das Strömungsgemisch ausüben, daß die Leitplatten in sich verdreht und/oder - quer zur Brennerrohrlängsachse - eine unterschiedliche Krümmung haben.
  • Gemäß Fig. 4a sind die Leitplatten 27 im wesentlichen in Form rechtwinkliger Lappen ausgebildet, jedoch mit schräg zur Brennerrohrlängsachse verlaufender Biegekante 31. Die Leitplatten 27 gemäß Fig. 4d stimmen im wesentlichen der Fig. 4a überein, haben jedoch eine rechtwinklig zur Brennerrohrlängsachse verlaufende Biegekante 31. In Fig. 4b sind rohrförmige Leiteinrichtungen 29 dargestellt, die sich zum Brennerrohrinnern hin verjüngen. Fig. 4c veranschaulicht Leitplatten 27 in Form gleichschenkeliger Dreiecke mit stromaufwärts gelegener Basis bzw. Biegekante 31 und stromabwärts gerichteter Spitze.
  • Fig. 4e veranschaulicht Leitplatten 27 in Form eines symmetrischen Trapezes, dessen schmale Seite die stromaufwärts gelegene Biegekante 31 ist. Diese Leitplatte 27 steht ebenfalls nach Art eines Deltaflügels gegen die Strömung an. In Fig. 4f haben die Leitplatten 27 die Form eines rechtwinkeligen Dreiecks, dessen rechtwinkelig zueinander liegende Kanten quer zur und in Richtung der Brennerrohrlängsachse liegen und dessen Basis schräg zur Brennerrohrachse verläuft.
  • Zusammenfassend wird ein Brenner gelehrt, der aufgrund der erfindungsgemäßen Brennstoffzuführung sowie der erfindungsgemäßen Ausgestaltung und Anordnung der Abgasleiteinrichtungen in der Verbrennungszone des Brennerrohrs eine besonders effektive Reduzierung der NOx-Emission erzielt. Im übrigen zeichnet sich der erfindungsgemäße Brenner durch eine nahezu vollständige Verbrennung des Brennstoff-Verbrennungsluft-Gemischs aus, sodaß neben den NOx-Werten auch die anderen Schadstoffemissionswerte in erheblichem Maße reduziert werden. Der hierfür erforderliche Aufwand für die Konstruktion des erfindungsgemäße Brenners ist gering, da sich insbesondere die erfindungsgemäße Brennstoffzuführung sowie die Leiteinrichtungen kostengünstig realisieren lassen.

Claims (17)

  1. Verfahren zur schadstoffarmen, insbesondere NOx-armen Verbrennung von flüssigen oder gasförmigen Brennstoffen in Feuerungsanlagen mit einem in einen Brennraum (3) eines Kessels (5) ragenden Brenner, dessen Brennerrohr (1) wenigstens eine darin angeordnete Brennstoffdüse (15; 15') für die Zufuhr des Brennstoffs und eine sich daran anschließende Stauscheibe (17) aufweist, bei welchem:
    a) ein beachtlicher Teil des Brennstoffs einem stromab der Stauscheibe (17) liegenden und an die Brennerrohrinnenwand angrenzenden Bereich zugeführt,
    b) im Brennraum befindliche Abgase durch interne Rezirkulation in stromab der Stauscheibe (17) aufgebaute Unterdruckgebiete im Brennerrohr (1) rückgeführt und
    c) hierzu ein oder mehrere das Brennerrohr (1) durchbrechende und in die Unterdruckgebiete ragende Leiteinrichtungen (27, 25; 29) verwendet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Leiteinrichtungen (27, 25; 29) als Stau- und/oder -drallflächen für die Strömung verwendet werden.
  3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die zugeführte Menge des Brennstoffs in Abhängigkeit von der Leistung des Brenners gesteuert wird.
  4. Brenner, insbesondere zur Durchführung des Verfahrens nach einem der vorstehenden Ansprüche, mit einem in einen Brennraum (3) eines Kessels (5) ragenden Brennerrohr (1), wenigstens einer darin angeordneten Brennstoffdüse (15; 15') für die Zufuhr des Brennstoffs und einer sich daran anschließenden Stauscheibe (17), wobei:
    a) die Brennstoffdüsen (15; 15') derart im Brennerrohr (1) angeordnet sind, daß ein beachtlicher Teil des Brennstoffs einem stromab der Stauscheibe (17) befindlichen und an die Brennerrohrinnenwand angrenzenden Bereich zugeführt wird und
    b) eine oder mehrere, das Brennerrohr (1) durchbrechende Abgas-Leiteinrichtungen (25, 27; 29) in stromab der Stauscheibe (17) aufgebaute Unterdruckgebiete im Brennerrohr (1) führen, derart, daß sie im Brennraum (3) befindliche Abgase durch interne Rezirkulation in die Unterdruckgebiete rückführen.
  5. Brenner nach Anspruch 4, dadurch gekennzeichnet, daß wenigstens eine Brennstoffdüse (15), insbesondere Brenngasdüse, bis an die Brennerrohrinnenwand geführt ist.
  6. Brenner nach Anspruch 5, dadurch gekennzeichnet, daß die Brennstoffdüse (15) den Brennstoff in axialer Richtung entlang der Brennerrohrinnenwand bläst.
  7. Brenner nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Brennstoffdüse (15) den Brennstoff radial gegen die Brennerrohrinnenwand bläst.
  8. Brenner nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die vom Brennstoff angeströmten Leiteinrichtungen (25, 27; 29) über den Umfang des Brennerrohres (1) gleichmäßig verteilt angeordnet und als Stau- und/oder Drallflächen ausgebildet sind.
  9. Brenner nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die Leiteinrichtungen (25, 27; 29) als Rohrstücke (29) ausgebildet sind.
  10. Brenner nach Anspruch 9, dadurch gekennzeichnet, daß die Rohrstückmündung bis in einen stromab der Stauscheibe (17) liegenden, an die Brennerrohrinnenwand angrenzenden Strömungsbereich des Brennstoff-Verbrennungsluft-Gemischs hineinragt.
  11. Brenner nach Anspruch 10, dadurch gekennzeichnet, daß die Rohrstücke (29) derart gegen die Brennerrohrwand geneigt angeordnet sind, daß die Rohrstückmündung stromab vom Rohrstückeingang liegt.
  12. Brenner nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, die Leiteinrichtungen (25, 27; 29) jeweils eine der Abgaszirkulation dienende Öffnung (25) in der Brennerrohrwand und eine von der stromaufwärtigen Begrenzungskante (31) der Öffnung in das Brennerrohr (1) ragende Leitplatte (27) umfaßt.
  13. Brenner nach Anspruch 12, dadurch gekennzeichnet, daß die Leitplatten (27) in den stromab der Stauscheibe (17) liegenden, an die Brennerrohrinnenwand angrenzenden Strömungsbereich des Brennstoff-Verbrennungsluft-Gemischs hineineinragen.
  14. Brenner nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß die Leitplatten (27) einen polygonalen und/oder gekrümmten, insbesondere Deltaflügel-förmigen Grundriß haben.
  15. Brenner nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß eine oder mehrer Leitplatten (27) jeweils als ein aus der Brennerrohrwand freigeschnittener und danach nach innen gebogener Wandabschnitt ausgebildet sind.
  16. Brenner nach einem der Ansprüche 4 bis 15, dadurch gekennzeichnet, daß an der Außenwand des Brennerrohres (1) stromab der Abgasrückführöffnungen (25) Rücksaugabweiser (28) angeordnet sind, um eine Rezirkulation von Abgasen mit zu hohem unverbrannten Anteil durch die Abgasrückführöffnungen (25) zu verhindern.
  17. Brenner nach einem der Ansprüche 4 bis 16, dadurch gekennzeichnet, daß von den Eingangsöffnungen (25) der Abgas-Leiteinrichtungen (25, 27; 29) Strömungsleitungen in den radial außerhalb des Brennerrohres (1) befindlichen Raum geführt sind, derart, daß Abgase aus vorgegebenen Stellen des Brennraumes (3) rezirkulierbar sind.
EP94109301A 1993-07-20 1994-06-16 Verfahren und Brenner zur Verbrennung von flüssigen oder gasförmigen Brennstoffen Expired - Lifetime EP0635676B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4324298 1993-07-20
DE4324298A DE4324298C2 (de) 1993-07-20 1993-07-20 Verfahren zur Verbrennung von flüssigen oder gasförmigen Brennstoffen in Feuerungsanlagen und Brenner zur Durchführung des Verfahrens

Publications (2)

Publication Number Publication Date
EP0635676A1 true EP0635676A1 (de) 1995-01-25
EP0635676B1 EP0635676B1 (de) 1997-09-03

Family

ID=6493257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94109301A Expired - Lifetime EP0635676B1 (de) 1993-07-20 1994-06-16 Verfahren und Brenner zur Verbrennung von flüssigen oder gasförmigen Brennstoffen

Country Status (6)

Country Link
EP (1) EP0635676B1 (de)
AT (1) ATE157759T1 (de)
DE (3) DE9321525U1 (de)
DK (1) DK0635676T3 (de)
ES (1) ES2107086T3 (de)
GR (1) GR3025471T3 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774621A3 (de) * 1995-11-16 1997-09-17 Tokyo Gas Co Ltd Verbrennungsverfahren und Vorrichtung mit niedriger Stickstoffoxid-Erzeugung
EP0867659A1 (de) * 1997-03-24 1998-09-30 VTH Verfahrentechnik für Heizung AG Verfahren und Vorrichtung zur Verbrennung von gasförmigem Brennstoff
EP0857915A3 (de) * 1997-02-07 1999-06-16 ELCO KLÖCKNER HEIZTECHNIK GmbH Verfahren und Brennkopf zur Verbrennung von flüssigen oder gasförmigen Brennstoffen
US6367634B1 (en) 1993-12-22 2002-04-09 Baxter International Inc. Blood collection systems including an integral, flexible filter
EP1754937A2 (de) 2005-08-16 2007-02-21 E.C.B. GmbH Brennkopf und Verfahren zur Verbrennung von Brennstoff
DE102005049245A1 (de) * 2005-10-14 2007-04-19 BSH Bosch und Siemens Hausgeräte GmbH Brenner
WO2018145702A1 (de) * 2017-02-10 2018-08-16 Lübbers Anlagen- und Umwelttechnik GmbH Lufterhitzer für einen trockenturm und trockenturm zum trocknen eines zu trocknenden gutes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20010178A1 (it) * 2001-03-26 2002-09-26 Riello Spa Bruciatore
ES2379548T3 (es) * 2004-10-28 2012-04-27 Kärcher Futuretech GmbH Tubo de combustión para un quemador para generar gas caliente y procedimiento para la fabricación de dicho tubo
DE102016125526B3 (de) * 2016-12-22 2018-05-30 Max Weishaupt Gmbh Mischvorrichtung und Brennerkopf für einen Brenner mit reduziertem NOx-Ausstoß
US11835228B2 (en) * 2020-07-13 2023-12-05 Gastech Engineering Llc Cylindrical burner apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB973204A (en) * 1962-03-14 1964-10-21 Hans Maile Improvements in automatic gas-burning arrangements for heating installations
US3330485A (en) * 1965-06-28 1967-07-11 Siemon Mfg Company Gas burner having an air deflector plate
JPS60202225A (ja) * 1984-03-27 1985-10-12 Tokyo Gas Co Ltd 輝炎発生燃焼装置
DE8422852U1 (de) * 1984-08-01 1985-12-05 Reichstein, Manfred, 5600 Wuppertal Mischeinrichtung für Ölbrenner
US5195884A (en) * 1992-03-27 1993-03-23 John Zink Company, A Division Of Koch Engineering Company, Inc. Low NOx formation burner apparatus and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8221304U1 (de) * 1982-07-27 1982-10-21 Klamke-Record Öl- und Gasbrenner GmbH, 5200 Siegburg Flammrohr fuer einen leichtoelbrenner
ATE89390T1 (de) * 1988-06-21 1993-05-15 Walter Dreizler Brennerkopf fuer einen geblaesegasbrenner.
DK0378517T3 (da) * 1989-01-09 1995-02-13 Fuellemann Patent Ag Brænder til forbrænding af gasformige brændstoffer og/eller flydende brændstoffer i gasformig tilstand
DE9007612U1 (de) * 1989-07-13 1993-05-06 Elco Energiesysteme AG, Vilters Brenner zur stöchiometrischen Verbrennung von flüssigen oder gasförmigen Brennstoffen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB973204A (en) * 1962-03-14 1964-10-21 Hans Maile Improvements in automatic gas-burning arrangements for heating installations
US3330485A (en) * 1965-06-28 1967-07-11 Siemon Mfg Company Gas burner having an air deflector plate
JPS60202225A (ja) * 1984-03-27 1985-10-12 Tokyo Gas Co Ltd 輝炎発生燃焼装置
DE8422852U1 (de) * 1984-08-01 1985-12-05 Reichstein, Manfred, 5600 Wuppertal Mischeinrichtung für Ölbrenner
US5195884A (en) * 1992-03-27 1993-03-23 John Zink Company, A Division Of Koch Engineering Company, Inc. Low NOx formation burner apparatus and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 10, no. 55 (M - 458) 5 March 1986 (1986-03-05) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6367634B1 (en) 1993-12-22 2002-04-09 Baxter International Inc. Blood collection systems including an integral, flexible filter
EP0774621A3 (de) * 1995-11-16 1997-09-17 Tokyo Gas Co Ltd Verbrennungsverfahren und Vorrichtung mit niedriger Stickstoffoxid-Erzeugung
EP0857915A3 (de) * 1997-02-07 1999-06-16 ELCO KLÖCKNER HEIZTECHNIK GmbH Verfahren und Brennkopf zur Verbrennung von flüssigen oder gasförmigen Brennstoffen
EP0867659A1 (de) * 1997-03-24 1998-09-30 VTH Verfahrentechnik für Heizung AG Verfahren und Vorrichtung zur Verbrennung von gasförmigem Brennstoff
EP1754937A2 (de) 2005-08-16 2007-02-21 E.C.B. GmbH Brennkopf und Verfahren zur Verbrennung von Brennstoff
DE102005038662B4 (de) * 2005-08-16 2007-08-23 E.C.B. Gmbh Brennkopf und Verfahren zur Verbrennung von Brennstoff
EP1754937A3 (de) * 2005-08-16 2014-08-20 ELCO Burners GmbH Brennkopf und Verfahren zur Verbrennung von Brennstoff
DE102005049245A1 (de) * 2005-10-14 2007-04-19 BSH Bosch und Siemens Hausgeräte GmbH Brenner
WO2018145702A1 (de) * 2017-02-10 2018-08-16 Lübbers Anlagen- und Umwelttechnik GmbH Lufterhitzer für einen trockenturm und trockenturm zum trocknen eines zu trocknenden gutes

Also Published As

Publication number Publication date
DE59403939D1 (de) 1997-10-09
DE4324298C2 (de) 1999-01-21
ES2107086T3 (es) 1997-11-16
DE9321525U1 (de) 1999-01-28
ATE157759T1 (de) 1997-09-15
DE4324298A1 (de) 1995-01-26
DK0635676T3 (da) 1998-03-16
GR3025471T3 (en) 1998-02-27
EP0635676B1 (de) 1997-09-03

Similar Documents

Publication Publication Date Title
DE2936073C2 (de) Verbrennungsverfahren zur Reduzierung der Emission von Stickstoffoxiden und Rauch
DE69519849T2 (de) Brennstoffdüse mit tangentialer einspritzung
EP0436113B1 (de) Verfahren zum Betrieb einer Feuerungsanlage
DE69312208T2 (de) Gasturbinenbrennkammer
DE69427843T2 (de) Vibrationsbeständiger Brenner mit niedrigem NOx-Gehalt
EP0629817B1 (de) Feuerungsanlage
EP0684428A2 (de) Injektor zum Einblasen von Luft in den Verbrennungsraum eines Fackelbrenners und Fackelbrenner
EP0635676B1 (de) Verfahren und Brenner zur Verbrennung von flüssigen oder gasförmigen Brennstoffen
DE2113659C2 (de) Verfahren zur Verbrennung von Brennstoffen und Brenner zur Durchführung des Verfahrens
DE2552374C2 (de) Brenner für flüssigen oder gasförmigen Brennstoff
WO2004038291A1 (de) Verbrennungsverfahren und brennerkopf, sowie brenner mit einem solchen bbrennerkopf und heizkessel mit einem solchen brennerkopf
EP0433789A1 (de) Verfahren für eine Vormischverbrennung eines flüssigen Brennstoffes
EP0394911B1 (de) Feuerungsanlage
DE2158215C3 (de) Brennkammer für Gasturbinentriebwerke
EP0857915B1 (de) Verfahren und Brennkopf zur Verbrennung von flüssigen oder gasförmigen Brennstoffen
DE60016106T2 (de) Brenner mit Abgasrückführung
CH682009A5 (de)
DE4328130A1 (de) Verfahren und Vorrichtung zum emissionsarmen Verbrennen von fließfähigen und/oder gasförmigen Brennstoffen mit interner Rauchgasrezirkulation
DE4215763A1 (de) Brenner
EP0602396A1 (de) Prozesswärmeerzeuger
DE2514652A1 (de) Vorrichtung zum zufuehren vorerwaermter sekundaerluft fuer oelfeuerungen
DE4008692A1 (de) Mischeinrichtung fuer oelgeblaesebrenner
DE4201060C2 (de) Brenner für vergasten flüssigen Brennstoff
DE4244400A1 (de) Brenner zur Heißgaserzeugung
AT393886B (de) Geblaese-gasbrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19950221

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961112

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 157759

Country of ref document: AT

Date of ref document: 19970915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970905

REF Corresponds to:

Ref document number: 59403939

Country of ref document: DE

Date of ref document: 19971009

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2107086

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 76215

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3025471

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19971127

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040511

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040513

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040514

Year of fee payment: 11

Ref country code: DK

Payment date: 20040514

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040517

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040519

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20040520

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20040525

Year of fee payment: 11

Ref country code: MC

Payment date: 20040525

Year of fee payment: 11

Ref country code: LU

Payment date: 20040525

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20040526

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040607

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040616

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050616

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050616

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050616

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050616

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050617

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050616

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060101

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050617

BERE Be: lapsed

Owner name: *ELCO KLOCKNER HEIZTECHNIK G.M.B.H.

Effective date: 20050630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080523

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101