EP0628780B1 - Zielesystem für Luftfahrzeug - Google Patents

Zielesystem für Luftfahrzeug Download PDF

Info

Publication number
EP0628780B1
EP0628780B1 EP94400904A EP94400904A EP0628780B1 EP 0628780 B1 EP0628780 B1 EP 0628780B1 EP 94400904 A EP94400904 A EP 94400904A EP 94400904 A EP94400904 A EP 94400904A EP 0628780 B1 EP0628780 B1 EP 0628780B1
Authority
EP
European Patent Office
Prior art keywords
sighting system
aircraft
observation
fire
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94400904A
Other languages
English (en)
French (fr)
Other versions
EP0628780A1 (de
Inventor
Jacques Brunand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Helicopters SAS
Original Assignee
Eurocopter France SA
Eurocopter SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurocopter France SA, Eurocopter SA filed Critical Eurocopter France SA
Publication of EP0628780A1 publication Critical patent/EP0628780A1/de
Application granted granted Critical
Publication of EP0628780B1 publication Critical patent/EP0628780B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/22Aiming or laying means for vehicle-borne armament, e.g. on aircraft

Definitions

  • the present invention relates to an aiming system for a aircraft, in particular a rotary wing aircraft, such as a helicopter.
  • the optical sighting system for aircraft is mounted in a nacelle comprising a first part fixed to the aircraft, a second part which can be oriented relative to said first part around a first axis, and a third part orientable with respect to said second part around a axis orthogonal to the first axis mentioned.
  • patent FR-2 570 195 relates to a device for search for targets, comprising a camera mounted on a tilting stabilization platform, on board of an aircraft.
  • the movement of the platform stabilization can be a triangular movement, sinusoidal, sawtooth, or spiral.
  • the object of the present invention is to avoid these drawbacks, and concerns a sighting system easily integrated into its carrier (aircraft) and can be easily adapted to different carriers, missions and armaments.
  • the aiming system for an aircraft is remarkable, according to the invention, in that it comprises the combination of a first individual observation device, laterally integrated into the aircraft, and a second individual axial firing device, integrated in front of the aircraft, said first and second devices being connected to the on-board computer of the aircraft.
  • the combination of observation devices and separate sight according to the invention constitutes an architecture original due to the specific fixed location of said devices integrated into the aircraft.
  • the architecture of the sighting system according to the invention thanks its modular nature, makes it possible to satisfy the whole existing and projected operational needs, while responding to the many constraints of achieving these functions on an aircraft, in particular a wing aircraft rotating, such as a helicopter.
  • the modular nature of this architecture allows, in particular, to quickly configure the carrier aircraft for a specific mission and a armament given, by the installation of detectors and appropriate guidance equipment, and reduce equipment integration and harmonization constraints on the carrier aircraft.
  • the first observation device includes two sensors integrated directly on the fuselage of the aircraft on either side of the axis, respectively longitudinal of the latter, and covering, each, approximately 180 ° in deposit and 20 ° to 40 ° on site. This allows to cover a sweep range in 360 ° bearing.
  • each sensor having a plurality of elementary detectors, may include a first optic scanning comprising a scanning prism in bearing, making it possible to obtain a reservoir sweeping layer, and a tilting prism of said sheet making it possible to perform site scanning.
  • each sensor can include a second optic, allowing the exploration of part of the total field, which includes a sweeping mirror in bearing, rotating at reduced speed, and a retractable lens.
  • the second axial firing device can be, either integrated into the nose of the aircraft, or integrated into the aircraft above its cockpit.
  • the second axial firing device comprises a thermal camera with two simultaneous fields, namely a large field for the acquisition of objectives and a small field for long-range identification and engagement of a specific target.
  • the first observation device and the second axial firing device working in the strip of 8 to 12 micrometers (infrared range).
  • the first observation device can work further in the 3 to 5 micrometer band, and / or in the band from 0.45 to 0.9 micrometer, as well as being associated with a speed camera.
  • the system aiming device comprises means for memorizing targets detected by the first observation device and / or alarms associated with the first observation device, active for fire control.
  • sensors working in the field infrared or visible allow the piloting of the aircraft in fire control mode.
  • different color symbologies are used according to the results of the identification procedure friend / enemy.
  • observation device may have a visualization by visual helmet visor, and the device axial fire, head-up display or visualization in average head. Only shooting symbologies are possibly represented on a clear viewfinder at the head high.
  • Figure 1 is a schematic perspective view of a helicopter, showing the location of the sighting system according to the invention.
  • Figure 2 shows, in a simplified and schematic way, the optical chain of a sensor of the observation device.
  • Figure 3 shows the two simultaneous images provided by the two-field thermal camera of the shooting device axial.
  • Helicopter 1 shown in Figure 1, has essentially, as is usual, a fuselage 2 extending along the longitudinal axis X-X of the helicopter, a post steering 3, a rotary wing 4, and a fin 5 fitted with an anti-torque propeller 6. Furthermore, it has two fins 7 (only one is visible in Figure 1) intended to receive armaments (missiles, rockets), a barrel which can be possibly accommodated in the nose 8 of the device.
  • armaments missiles, rockets
  • the aiming system comprises the combination a first individual observation device 9, laterally integrated into the aircraft (in this application example, helicopter 1), and a second individual device axial fire 10, integrated in the front of the aircraft, the first and second devices 9,10 being connected to the computer on board 11 of the aircraft.
  • the observation device 9 comprises two optoelectronic sensors 12a, 12b, directly integrated on the fuselage 2 of the helicopter 1 on both sides, respectively, from the latter's longitudinal axis X-X, that is to say, each on a side 2a, 2b of the helicopter, and covering, each, about 180 ° in bearing and 20 ° to 40 ° on site, as illustrated by the volumes observation 13a, 13b in Figure 1.
  • a cover 360 ° observation angle can thus be obtained.
  • each sensor 12a, 12b has an optical window with three windows planes 14a, 14b.
  • the field covered by the axial firing device 10, which can be either integrated in the nose 8 of the helicopter 1, either integrated into the helicopter 1 above cockpit 3 of this last, is designated by the reference numeral 15.
  • Figure 2 illustrates the optical chain of each of the sensors 12a, 12b.
  • Each of the sensors 12a, 12b comprising a matrix 16 of elementary detectors 17, the conjugate of the array of detectors is moved in object space by a first scanning optic comprising a prism 18 of field sweep, capable of performing an excursion of 180 °, and thus obtain a sweeping sheet 19 in deposit, while a sheet tilting prism 20 allows for site scanning, the assembly performing a superposition of horizontal layers 19, covering 180 ° in deposit and from 20 ° to 40 ° on site.
  • a second lens allows exploration part of the total field (approximately 1 ° x 1 ° among 180 ° x 40 °).
  • This second optic includes a mirror scanning in deposit 21 which, rotating at reduced speed, in an alternating movement, in a limited part of the total field, receives more photons, which allows get better contrast (better resolution).
  • the fitting a retractable lens (magnifying glass) 22 ensures moreover a better definition of the image.
  • the band the best suited spectral should be the band from 8 to 12 micrometers (infrared range). Its complement by the band from 3 to 5 micrometers can be considered.
  • the second function can be performed by a mode of sub-scanning of the total field of the first function, thanks to the second optic 21,22 described above.
  • the gain of range compared to the first function is obtained thanks to increasing the integration time of elementary detectors (up to complete scanning stop) and, possibly, by the interposition of the lens focusing 22 specific to this mode.
  • the value of the field required is of the order of the degree.
  • the spectral band of 8 to 12 micrometers offers the operator the advantages and disadvantages of thermal imaging.
  • the usefulness of supplementing it with an intensifying image of light in the visible range (0.45 to 0.9 micrometer) can be considered.
  • the first standby function can be supplemented by a active electromagnetic sensor with the advantages suitable for radar detection (range, capacity all time, Doppler effect detection).
  • this device active is not effective for target detection land, apart from helicopters, and present the disadvantage of lack of discretion inherent in the principle radar detection.
  • the third function of this observation device 9 can also be the pointing and the implementation of armaments. It requires angular measurements and distance. The angular measurements are obtained by copying position of scanning optics. Distance measurements are obtained by stadimetry, triangulation or telemetry.
  • the axial firing device 10 consists of a certain number of elements whose choice depends on the configuration mission and armament of the helicopter. These are mounted directly on the structure of helicopter 1. They are harmonized with each other and with the structure by a integrated system or ground harmonization bench.
  • the axial firing device 10 has all the functions an air-to-air optoelectronic firing line and air-ground.
  • the simultaneous acquisition of these two images can be obtained by known means (as described, for example, in the document "Multiple Function Flir - A Second Generation Pilotage and Targeting System”: Symposium AGARD-CP411, "Advances in Guidance and Control Systems and Technology ", 7-10 October 1986, London), using a single detection module using time-sharing each of two optical channels.
  • the image magnified in small field could be presented, either in inlay in the large field, at the place of detection, either in "Head Down Display” screen.
  • This principle allows a certain multi-target capacity, by rapid sequential processing of detected objectives.
  • the essential function of this device being the shooting, the tape 8 to 12 micrometers seems the most appropriate.
  • the use of a 0.45-0.9 sensor micrometer could be considered to complete it.
  • armaments is carried out from the large field image or the small field overlay, after telemetry and hooking up of automatic tracking and thanks to specific armaments guidance equipment.
  • the location, on the structure, of these different pieces of equipment can be considered at the current locations of gyro-stabilized platforms (nose, roof).
  • the first observation device 9 performs part of the functions traditionally assigned to the skipper, in its role of leading the mission and researching targets. It also allows short reflex engagement range of highly devoid targets, for self-protection or opportunity shooting.
  • the acquisition requires the completion of angular and distance measurements, for the designation of missile seeker objectives and conduct in the axis.
  • the acquisition phase must be able to be concluded, under certain conditions, by firing certain armaments (gun mounted on turret, air-to-air missiles) in engagement with short range, without necessarily using the phase to join the helicopter and take charge of objectives by the conduct of fire in the axis.
  • This short-range engagement involves the identification of short-range targets, possibly using a magnification or friend / foe identification procedure (IFF).
  • IFF magnification or friend / foe identification procedure
  • this function will hardly be used insofar as the engagement will be made at distances short enough to allow identification visual.
  • Air-to-air missile rigging is also required.
  • the helicopter rallying possibly by a mode specific autopilot, can also be asked for the implementation, at short range, of armaments axial orientable in site (guns, rocket launchers).
  • the second axial firing device 10 constitutes a pipe of multi-armament fire, available to the pilot and the skipper, capable of implementing, thanks to his high accuracy and range performance, all helicopter armaments, in their entire area shooting.
  • this principle makes it possible to mount the different elements of the fire control (infrared detectors, camera, rangefinders, equipment for guiding armaments, among others) directly on the structure of the helicopter and not, for example, on a platform gyro-stabilized.
  • This architecture gives the system a modular character for quick configuration the helicopter for a specific mission and armament given, by installation of detectors and equipment appropriate guidance, and reduce integration constraints and harmonization of equipment on the helicopter.
  • Direct target acquisition is possible by driving in the axis. It can be done by the pilot, as is the case with the "head-up" viewfinder ("Head Up Display”) or clear sight, for self-protection shots at short range with air-to-air missile or cannon. On the other hand, the care and commitment of the targets to long range (air-air and air-ground) are performed, as this is usual, by the skipper (gunner).
  • the assumption, by the firing line in the axis, of targets detected by the first observation device 9 requires a lens designation function between the observation device 9 and the axial firing device 10, via the on-board computer 11.
  • the acquisition is then done in the same way as for a detection direct, after rallying the helicopter in the direction of the detected target.
  • the performance of the observation device 9 may not always be sufficient for identification. Under these conditions, the rallying of the helicopter and handling by the firing device axial 10 (firing line in the axis) will remove the ambiguity up to the maximum system identification range in his outfit.
  • the telemetry function intervenes just before the implementation of the armament. She may be obtained in several ways: stadimetry, triangulation, telemetry.
  • the fire control function concerns the implementation armaments. It must be compatible with the largest possible number of armaments and offer all possibilities of modes and commands linked to their use (continuation automatic, manual remote control). In particular, he must be possible to integrate specific guidance equipment of these weapons (distance meters, laser illuminator, alignment laser beam generator). The performance required for the implementation of long-range armaments makes it necessary to have a harmonization function.
  • the functions of the observation device make it suitable for helmet visor control and visualization (head-up display), fast and not very demanding in range and pointing accuracy.
  • the treatment of detections in automatic mode could, in this configuration, generate a symbology of the order director type (up / down, right / left, site / deposit) for acquisition manual and observation on such a viewfinder, by rallying from the operator's head or by rallying the helicopter, for taking charge of the fire control in the axis.
  • the functions of the axial firing device can be entirely produced in the band from 8 to 12 micrometers by a camera with two simultaneous fields. Visualization suitable for this function can be considered head up. In this configuration, the use of a clear viewfinder is not possible in the current state of technology, insofar as the intensity of the infrared image delivered by the monitor may not be sufficient to be superimposed, in good conditions, in all cases of light atmospheres encountered.
  • Detection of targets from the observation system or the axial firing device generate symbologies superimposed on the optoelectronic image of the outside world (markers, identification interrogator results friend / enemy, telemetry) allowing the operator to engage in sequence and in order of priority. For that, he move a cursor on its "medium head” screen, select if necessary, the opening of the magnification window, inside which automatic tracking can be engaged and the shot made, by hooking the seeker air-to-air or air-to-ground missiles, support for guidance by passive distance meters, laser beams directors or illuminators, implementation of firing (cannon or rockets).
  • a simplified version of the axis firing device can also be considered, which does not present an image optoelectronics in the axis. Only shooting symbologies are then presented on a clear "head-up" viewfinder. In this case the infrared image of the outside world exists but it is not displayed. It is only operated by automatic detection and tracking computers which generate the associated symbologies, directly superimposed on the transmitted image of the outside world. In in particular, the embedded zoom function cannot be carried out. On the other hand, the image with a small orientable field can be presented and operated on a "head down" screen in infrared or visible, depending on the sensors used.
  • the targets detected by the first device can be stored for analysis later, for example in the on-board computer 11 of the aircraft.
  • alarms can be associated with the first observation device, active with a view to fire control, while color symbologies different may be used depending on the results of the friend / foe identification procedure (IFF).
  • IFF friend / foe identification procedure

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Claims (19)

  1. Zielsystem für ein Luftfahrzeug, insbesondere ein Drehflügelflugzeug, wie ein Hubschrauber, dadurch gekennzeichnet, daß es eine Kombination aus einer unabhängigen ersten Vorrichtung (9) für die Beobachtung, die seitlich in das Luftfahrzeug (1) integriert ist, und einer unabhängigen zweiten Vorrichtung (10) für das axiale Schießen umfaßt, die in das Vorderteil des Luftfahrzeugs (1) integriert ist, wobei die erste und zweite Vorrichtung (9, 10) mit dem Bordrechner (11) des Luftfahrzeugs (1) verbunden sind.
  2. Zielsystem nach Anspruch 1, dadurch gekennzeichnet, daß die erste Vorrichtung (9) für die Beobachtung zwei Sensoren (12a, 12b) umfaßt, die direkt am Rumpf (2) des Luftfahrzeugs (1) beiderseits der Längsachse (X-X) dieses letzteren integriert sind und jeweils ungefähr 180° in der Seitenpeilung und von 20° bis 40° in der Höhe abdecken.
  3. Zielsystem nach Anspruch 2, dadurch gekennzeichnet, daß jeder Sensor (12a, 12b), der eine Vielzahl von Elementardetektoren (17) aufweist, eine erste Abtastoptik, die ein Prisma (18) für die Seitenabtastung umfaßt, das es gestattet, eine Abtastfläche bei der Seitenpeilung (19) zu erhalten, und ein Prisma (20) für das Schwenken der Fläche(19) aufweist, das gestattet, die Höhenabtastung auszuführen.
  4. Zielsystem nach Anspruch 3, dadurch gekennzeichnet, daß jeder Sensor (12a, 12b) eine die Untersuchung eines Teils des gesamten Gebietes gestattende zweite Optik aufweist, die einen Spiegel (21) für die Seitenabtastung, der sich mit verringerter Geschwindigkeit dreht, und eine einziehbare Linse (22) umfaßt.
  5. Zielsystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die zweite Vorrichtung (10) für das axiale Schießen im Vorderteil (8) des Luftfahrzeugs (1) integriert ist.
  6. Zielsystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die zweite Vorrichtung (10) für das axiale Schießen im Luftfahrzeug (1) über dessen Pilotenraum (3) integriert ist.
  7. Zielsystem nach Anspruch 5 oder Anspruch 6, dadurch gekennzeichnet, daß die zweite Vorrichtung für das axiale Schießen eine thermische Kamera (10) mit zwei simultanen Gebieten umfaßt, nämlich ein großes Gebiet (23) für die Erfassung von Zielen (24, 25) und ein kleines Gebiet (26) für die Identifizierung und den Einsatz bei großer Schußweite zu einem bestimmten Ziel (27).
  8. Zielsystem nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die erste Vorrichtung (9) für die Beobachtung und die zweite Vorrichtung (10) für das axiale Schießen im Band von 8 bis 12 Mikrometern arbeiten.
  9. Zielsystem nach Anspruch 8, dadurch gekennzeichnet, daß die erste Vorrichtung (9) für die Beobachtung außerdem im Band von 3 bis 5 Mikrometern arbeitet.
  10. Zielsystem nach Anspruch 8 oder Anspruch 9, dadurch gekennzeichnet, daß die erste Vorrichtung (9) für die Beobachtung außerdem im Band von 0,45 bis 0,9 Mikrometern arbeitet.
  11. Zielsystem nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die erste Vorrichtung (9) für die Beobachtung mit einem Radar verbunden ist.
  12. Zielsystem nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß es Mittel für die Speicherung der von der ersten Vorrichtung (9) für die Beobachtung erfaßten Ziele umfaßt.
  13. Zielsystem nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß es der ersten Vorrichtung (9) für die Beobachtung zugeordnete Alarmsignale umfaßt, die im Blickfeld der Leitung für das Schießen aktiv sind.
  14. Zielsystem nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Sensoren, die im Infrarot- oder sichtbaren Bereich arbeiten, die Fluglagenregelung im Feuerleitmodus gestatten.
  15. Zielsystem nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß abhängig von den Ergebnissen der Prozedur der Freund/Feind-Identifizierung verschiedenfarbige Symboliken verwendet werden.
  16. Zielsystem nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Vorrichtung (9) für die Beobachtung eine Anzeige durch ein Helm-Visierschirmbild bietet.
  17. Zielsystem nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Vorrichtung (10) für das axiale Schießen eine Anzeige bei erhobenem Kopf bietet.
  18. Zielsystem nach Anspruch 17, dadurch gekennzeichnet, daß nur die Symboliken für das Schießen auf einer durchsichtigen Visiereinrichtung bei erhobenem Kopf dargestellt werden.
  19. Zielsystem nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Vorrichtung (10) für das axiale Schießen eine Anzeige bei mittlerer Kopfstellung bietet.
EP94400904A 1993-06-09 1994-04-27 Zielesystem für Luftfahrzeug Expired - Lifetime EP0628780B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9306919 1993-06-09
FR9306919A FR2706599B1 (fr) 1993-06-09 1993-06-09 Système de visée pour aéronef.

Publications (2)

Publication Number Publication Date
EP0628780A1 EP0628780A1 (de) 1994-12-14
EP0628780B1 true EP0628780B1 (de) 1998-01-28

Family

ID=9447926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94400904A Expired - Lifetime EP0628780B1 (de) 1993-06-09 1994-04-27 Zielesystem für Luftfahrzeug

Country Status (6)

Country Link
US (1) US5483865A (de)
EP (1) EP0628780B1 (de)
JP (1) JP3606601B2 (de)
DE (1) DE69408210T2 (de)
FR (1) FR2706599B1 (de)
IL (1) IL109546A (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4413916A1 (de) * 1994-04-21 1995-11-02 Bodenseewerk Geraetetech Einrichtung zur passiven Freund/Feind-Unterscheidung
FR2741363B1 (fr) * 1995-11-17 1998-02-20 Carbone Ind Procede et four d'activation d'une nappe textile tissee ou non tissee a base de fils continus ou de fils de fibres carbonees
FR2751761B1 (fr) * 1996-07-24 1998-10-23 Sfim Ind Systeme d'observation ou de visee
DE19647756C1 (de) * 1996-11-19 1998-06-04 Eurocopter Deutschland Elektrooptisches Verfahren zur statischen Harmonisierung von Waffensystemen und Luftfahrzeugen
DE19829710A1 (de) * 1998-07-03 2000-01-13 Lfk Gmbh Verfahren und Vorrichtung zur Vorbereitung der vollautomatischen Harmonisierung der Sichtlinien von Visier und Suchkopf bei einer auf einem Fluggerät eingerichteten Waffenanlage
US6166679A (en) * 1999-01-13 2000-12-26 Lemelson Jerome H. Friend or foe detection system and method and expert system military action advisory system and method
FR2800035B1 (fr) * 1999-10-25 2001-12-28 Aerospatiale Matra Missiles Dispositif de suspension pour relier un equipement embarque a la structure d'un vehicule, notamment un aeronef a voilure tournante
DE10151597C1 (de) * 2001-10-18 2003-05-15 Howaldtswerke Deutsche Werft System und Verfahren zur Erkennung und Abwehr von Laserbedrohungen und Unterwasserobjekten für Unterwasserfahrzeuge
TW593978B (en) * 2002-02-25 2004-06-21 Mitsubishi Electric Corp Video picture processing method
DE10229273B4 (de) * 2002-06-28 2007-01-25 Diehl Bgt Defence Gmbh & Co. Kg Objekt-Selbstschutzvorrichtung
US6718862B1 (en) * 2002-10-01 2004-04-13 Paul H. Sanderson Sponson tow plate-mounted helicopter armament apparatus and associated methods
CA2526105C (en) * 2003-06-20 2010-08-10 Mitsubishi Denki Kabushiki Kaisha Image display method and image display apparatus
FR2875613B1 (fr) * 2004-09-23 2007-03-16 Giat Ind Sa Interface homme machine d'un systeme de traitement de menaces
DE112006001864T5 (de) * 2005-07-14 2008-06-05 GM Global Technology Operations, Inc., Detroit System zur Beobachtung der Fahrzeugumgebung aus einer entfernten Perspektive
US7870816B1 (en) 2006-02-15 2011-01-18 Lockheed Martin Corporation Continuous alignment system for fire control
DE102009010362A1 (de) * 2009-02-25 2011-01-13 Rheinmetall Waffe Munition Gmbh Feuerleitung einer richtbaren Waffenanlage
US20110181722A1 (en) * 2010-01-26 2011-07-28 Gnesda William G Target identification method for a weapon system
SE535097C2 (sv) * 2010-03-17 2012-04-17 Bae Systems Haegglunds Ab System och förfarande för att bedöma ett potentiellt mål
US8408115B2 (en) 2010-09-20 2013-04-02 Raytheon Bbn Technologies Corp. Systems and methods for an indicator for a weapon sight
US8759735B2 (en) 2011-05-19 2014-06-24 Raytheon Company Multi-function airborne sensor system
US10782097B2 (en) * 2012-04-11 2020-09-22 Christopher J. Hall Automated fire control device
US8434397B1 (en) 2012-06-08 2013-05-07 The United States Of America As Represented By The Secretary Of The Navy Helicopter weapon mounting system
WO2017147784A1 (zh) * 2016-03-01 2017-09-08 深圳市大疆创新科技有限公司 飞行控制方法、装置、控制终端、飞行系统及处理器
US10627503B2 (en) * 2017-03-30 2020-04-21 Honeywell International Inc. Combined degraded visual environment vision system with wide field of regard hazardous fire detection system
US10800526B2 (en) * 2017-05-10 2020-10-13 Textron Innovations Inc. Aircraft adapter
KR101877214B1 (ko) * 2017-10-31 2018-07-12 엘아이지넥스원 주식회사 비행체 탑재용 탐색 장치
KR102483646B1 (ko) * 2017-12-22 2023-01-02 삼성전자주식회사 객체 검출 장치 및 방법
RU2712707C1 (ru) * 2019-08-13 2020-01-30 Илья Сергеевич Пастухов Способ управления темпом стрельбы авиационных автоматических пушек с электрозапальным стреляющим механизмом
FR3134470A1 (fr) * 2022-04-06 2023-10-13 Safran Electronics & Defense Système de surveillance infrarouge pour aéronef militaire et aéronef militire, notamment un missile, équipé d'un tel système

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2420334A (en) * 1943-01-25 1947-05-13 Sperry Gyroscope Co Inc Automatic tracking system
US5223839A (en) * 1966-06-23 1993-06-29 The United States Of America As Represented By The Secretary Of The Army Radar identification
US3457827A (en) * 1968-05-03 1969-07-29 Howell M Sumrall Turret gun directing system (aideye)
US3641261A (en) * 1969-06-04 1972-02-08 Hughes Aircraft Co Night vision system
US3711638A (en) * 1971-02-02 1973-01-16 J Davies Remote monitoring and weapon control system
US4202246A (en) * 1973-10-05 1980-05-13 General Dynamics Pomona Division Multiple co-axial optical sight and closed loop gun control system
US3924232A (en) * 1974-08-26 1975-12-02 Itek Corp Optical warning system
FR2472735B1 (fr) * 1979-12-26 1985-08-16 Sagem Perfectionnements aux dispositifs de visee pour vehicules
FR2525761A1 (fr) * 1982-04-23 1983-10-28 Sagem Dispositif de visee stabilisee multivoies
FR2545944B1 (fr) * 1983-05-11 1986-07-25 Trt Telecom Radio Electr Systeme optique a plusieurs champs, orientable dans plus de 2 p steradians sans deversement d'image
FR2565698B1 (fr) * 1984-06-06 1987-09-04 Thomson Csf Systeme aeroporte de detection optoelectrique, de localisation et de poursuite omnidirectionnelle de cible
IL76343A (en) * 1985-09-09 1989-12-15 Israel Aircraft Ind Ltd Optical sight turret with laser source,particularly for a helicopter
US4779095A (en) * 1986-10-28 1988-10-18 H & G Systems, Inc. Image change detection system
FR2653546B1 (fr) * 1989-10-20 1994-04-15 Thomson Csf Dispositif de visee.
US5359920A (en) * 1992-12-15 1994-11-01 Hughes Aircraft Company Munition impact point indicator and automatic gun aimpoint correction system

Also Published As

Publication number Publication date
DE69408210D1 (de) 1998-03-05
US5483865A (en) 1996-01-16
JPH0710091A (ja) 1995-01-13
EP0628780A1 (de) 1994-12-14
IL109546A (en) 1997-09-30
DE69408210T2 (de) 1998-05-28
FR2706599A1 (fr) 1994-12-23
JP3606601B2 (ja) 2005-01-05
FR2706599B1 (fr) 1995-08-18

Similar Documents

Publication Publication Date Title
EP0628780B1 (de) Zielesystem für Luftfahrzeug
EP0432014B1 (de) Optoelektronisches Hilfssystem für die Flugnavigation und Luftangriffsaufträge
US5001348A (en) Method and apparatus for recognizing the start and motion of objects
US7336345B2 (en) LADAR system with SAL follower
US7185845B1 (en) Faceted ball lens for semi-active laser seeker
US8284382B2 (en) Lookdown and loitering LADAR system
US6741341B2 (en) Reentry vehicle interceptor with IR and variable FOV laser radar
EP0441079B1 (de) Teilbares und rekonfigurierbares Episkophauptzielfernrohr
US7742151B2 (en) Laser-based system with LADAR and SAL capabilities
US20090260511A1 (en) Target acquisition and tracking system
US5197691A (en) Boresight module
US10057509B2 (en) Multiple-sensor imaging system
EP2711733A2 (de) Luftraumüberwachungssystem zur Erfassung von innerhalb eines zu überwachenden Gebiets startenden Raketen sowie Verfahren zur Luftraumüberwachung
US6484619B1 (en) Observation or sighting system
US8502128B1 (en) Dual-mode electro-optic sensor and method of using target designation as a guide star for wavefront error estimation
CN104977708A (zh) 多光谱共口径光学系统
RU2573709C2 (ru) Активная лазерная головка самонаведения
FR2788845A1 (fr) Conduite de tir pour projectiles non guides
EP0089273B1 (de) Feuerkontrollsystem mit doppelter Bestimmung der Winkelabweichungen
EP0090713B1 (de) Feuerleitsystem mit einem durch ein automatisches Verfolgungsgerät gesteuerten Fernrohr
Thomson Advances in electro-optic systems for targeting
Sillitto Military optoelectronics
Fouilloy et al. History of infrared optronics in France
Harrison Thermal Imaging and its Military Applications
FR2568381A1 (fr) Appareil de visee comportant une voie ecartometrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19941229

17Q First examination report despatched

Effective date: 19961016

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EUROCOPTER

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980129

REF Corresponds to:

Ref document number: 69408210

Country of ref document: DE

Date of ref document: 19980305

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040329

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070328

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090401

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100427