EP0626516B1 - Schmiermittelfreie Vakuum-Pumpeinrichtung - Google Patents

Schmiermittelfreie Vakuum-Pumpeinrichtung Download PDF

Info

Publication number
EP0626516B1
EP0626516B1 EP94103685A EP94103685A EP0626516B1 EP 0626516 B1 EP0626516 B1 EP 0626516B1 EP 94103685 A EP94103685 A EP 94103685A EP 94103685 A EP94103685 A EP 94103685A EP 0626516 B1 EP0626516 B1 EP 0626516B1
Authority
EP
European Patent Office
Prior art keywords
pump
diaphragm
piston
vacuum
reciprocating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103685A
Other languages
English (en)
French (fr)
Other versions
EP0626516A1 (de
Inventor
Erich Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KNF Neuberger GmbH
Original Assignee
KNF Neuberger GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE9305554U external-priority patent/DE9305554U1/de
Application filed by KNF Neuberger GmbH filed Critical KNF Neuberger GmbH
Publication of EP0626516A1 publication Critical patent/EP0626516A1/de
Application granted granted Critical
Publication of EP0626516B1 publication Critical patent/EP0626516B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • F04B39/041Measures to avoid lubricant contaminating the pumped fluid sealing for a reciprocating rod
    • F04B39/048Sealing between piston and carter being provided by a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows

Definitions

  • the invention relates to a lubricant-free vacuum pump device with a turbo-molecular pump, which is followed by a hybrid pump in the flow path.
  • Double piston pumps are already known, in which the two pistons are connected to one another via a piston rod and are driven by a linear drive (see brochure "LABOVAC linear diaphragm pumps and piston pumps” from SASKIA, Hochvakuum-und Labortechnik GmbH, O-6300 Ilmenau). It is also mentioned there that hermetic sealing of the pistons can be achieved in special models by installing a separating membrane.
  • piston pumps of this type with or without a separating membrane have several disadvantages: With the piston, which causes it to be pushed out, for example outdoors, condensate can form if the fluid handled is suitably humid. This leads to increased wear and leaks in the piston seals. This means a drop in performance of the entire pump unit.
  • a piston pump is also already known, in which the piston-cylinder chamber is closed off from the crank chamber with a sealing membrane. This prevents, for example, atmospheric air from getting past the piston rings or a lip seal of the piston can and thereby the vacuum generated in the piston pump deteriorates somewhat.
  • the disadvantage is also prevented that the actual delivery medium itself is contaminated by air which may or may not be contaminated, coming from the crank chamber. It should also be noted that you cannot achieve tightness in the long run when the crankshaft passes and that lubrication is necessary in the crankcase due to the mechanical movements. This also contributes to undesirable contamination of the actual delivery medium if the piston-cylinder chamber is not sealed off from the crank chamber.
  • turbomolecular pumps When such a known double linear piston pump works together with a turbo-molecular pump, the usual vibrations lead to undesirable movements in the turbo-molecular pump, which is usually combined with the double-piston pump in a single frame or even designed as a common pump block.
  • the turbo molecular pump is extremely sensitive to vibrations.
  • turbomolecular pumps of a type known per se have speeds of, for example, 30,000 rpm, but also much higher speeds.
  • the rotors of such turbo-molecular pumps are therefore usually also stored in magnetic bearings and are accordingly sensitive to shocks.
  • a piston pump is already known, the piston of which is blocked off from the crank chamber by means of a sealing sleeve which bears against the pump cylinder.
  • a sealing membrane is provided in the known piston pump, which is operated as a dry-running pump, which is arranged between the sealing sleeve and the crank chamber.
  • the intermediate space between the sealing sleeve and the sealing membrane is connected to a suction line, which discharges the pumping medium that passes through the sealing sleeve into the intermediate space and conveys it back to the suction side of the pump.
  • This known piston pump is primarily intended as a separate feed pump.
  • a vacuum pump which is designed as a double-acting diaphragm pump and has two oppositely symmetrical diaphragms.
  • the pumping chambers of the previously known vacuum pump are connected in series.
  • the performance of the known vacuum pump is still in need of improvement.
  • a pump device is known from the brochure "Vacuum chemistry hybrid pump RC 5" from VACUUBRAND, D-97877 Wertheim, in which a diaphragm pump is connected downstream of a two-stage rotary lobe pump. While the rotary lobe pump sealed by an oil in an oil reservoir forms a first pumping stage, the diaphragm pump is connected downstream of this as an oil-free, condensation and corrosion-insensitive second pumping stage.
  • the turbomolecular pump is followed by a dual displacement pump designed as a hybrid pump in the flow path.
  • the harmful effects of a possible formation of condensate in the diaphragm pump expelling the pumped medium are largely avoided, since the diaphragm pump is practically insensitive to the formation of condensate.
  • piston pump arranged in the way of the delivery medium between the turbomolecular pump and the diaphragm pump, a relatively large delivery volume can be achieved and the piston pump can be designed with respect to its volume so that the piston pump volume compressed by it matches the intake volume of the diaphragm pump.
  • This combination of piston pump and diaphragm pump can avoid the disadvantage that can occur when using two diaphragm pumps:
  • the diaphragm pump directly connected to the turbomolecular pump must because of the different suction volumes of the two pumps connected in series have relatively large dimensions, which leads to large masses to be moved and also has certain disadvantages with regard to the membrane formation in the membrane pump adjacent to the turbomolecular pump.
  • optimal conditions are achieved with the hybrid pump provided in the vacuum pump device according to the invention, that is to say when a piston pump is combined with a membrane pump connected downstream of this piston pump.
  • backing pumps with two diaphragms - as I said - are no longer optimally efficient.
  • tests have shown that backing pumps, which are to work together with turbo-molecular pumps, are of a magnitude where two diaphragm pumps connected in series can no longer be optimally designed.
  • the vacuum pump device according to the invention is thus characterized by its high performance even with a compact design.
  • the reciprocating piston pump having a pendulum piston, in conjunction with the associated sealing membrane, ensures that the delivery paths for the medium do not come into contact with any lubricated parts. For example, no lubricated parts are required in the area of the piston pump close to the pump, because a piston pin is avoided with the pendulum piston.
  • the double displacement pump downstream of the turbo-molecular pump in the vacuum pump device according to the invention therefore allows absolute freedom from lubricants and the like. This is particularly advantageous if the vacuum pump device according to the invention is used, for example, in the field of electronics component production. This is where absolute cleanliness is important, for example when chips are vapor-deposited.
  • the production process which is to be kept under vacuum here by the vacuum pump device according to the invention usually takes place under the influence of protective gas. Even very minor impurities have considerable disadvantages. Such contamination can be largely avoided by the double-displacement pump connected downstream of the turbo-molecular pump.
  • the invention Vacuum pump equipment is therefore, for example, also in the field of electronics component
  • the sealing membrane provided in the vacuum pump device according to the invention not only counteracts any contamination of the conveying paths by any lubricated parts; rather, the space provided between the pendulum piston or its associated sealing collar on the one hand and the sealing membrane on the other hand, especially when the vacuum pump device according to the invention starts up, can be evacuated via the provided suction line to such an extent that the suction process is accelerated and the operating vacuum is reached more quickly.
  • the vacuum pump device consisting of the turbomolecular pump and the downstream double displacement pump is thus ready for operation faster when starting, which further increases the performance of this pump device according to the invention.
  • the measures of claim 5 have the advantage that a minimal dead space is achieved.
  • the piston pump and the diaphragm pump volume can be designed accordingly, taking into account the needs of the turbomolecular pump, and optimal conditions of such a one Create overall device.
  • the measures of claim 8 simplify mass balancing of the parts moved back and forth, which favors the smooth running of the double displacement pump provided in the vacuum pump device according to the invention. You can design the pump device taking into account all the masses to be moved and achieve a largely quiet running, which is particularly important if the turbo-molecular pump and the double displacement pump are accommodated in a common frame or even in a common housing.
  • the double positive displacement pump 1 shows a double positive displacement pump 1 below a turbo-molecular pump 2 connected to it.
  • the double positive displacement pump 1 is designed as a hybrid pump 3, the piston 4 on the medium inlet side being a comparatively large piston pump 5 Has displacement 6, the piston-cylinder chamber 7 is sealed off from the crank chamber 8 of the hybrid pump 3 by means of a sealing membrane 9.
  • the piston pump 5 is followed by a diaphragm pump 10, the displacement 11 of which is noticeably smaller than that of the piston pump 5.
  • the displacements 6 and 11 of the hybrid pump 3 are at least approximately matched to one another in such a way that the extension volume of the piston pump 5 is equal to the suction volume of the diaphragm pump 10 at a certain operating vacuum. If necessary, intake and extension volumes can also be coordinated for an operating area in the sense of optimization.
  • the double displacement pump 1 is the turbo-molecular pump
  • turbomolecular pump 2 and the double displacement pump 1 are connected to one another with respect to their housings 16 and 17, for example by means of a frame 31 only indicated schematically in FIG.
  • the turbo molecular pump 2 and the double displacement pump 1 can of course also be accommodated in a common housing (not shown).
  • Both pumps 5 and 10 of the double displacement pump 1 are provided with pendulum pistons 18 and 19, and in the piston pump 5 of the double displacement pump 1 a disk-like sealing sleeve 20 is attached to the piston head 21 thereof. This sealing sleeve 20 seals the piston head 21 against the piston-cylinder space 7 of the piston pump 5.
  • the double positive displacement pump 1 on the one hand has a piston pump 5 and on the other hand has a diaphragm pump 10, one speaks of a “hybrid pump 3”.
  • the diaphragm pump 10 of this hybrid pump 3 has a shaped membrane 22, the upper side 24 of the adjacent pump chamber wall 23 which is adapted to it, so that there is only a practically minimal dead space in the dead center position (lower in FIG. 1).
  • the piston pump 5 and the diaphragm pump 10 of the hybrid pump 3 are driven via a common crankshaft 26.
  • the two pumps 5 and 10 are arranged opposite one another in the direction of the longitudinal axis L of the pump. Because of this and because of the common drive via the crankshaft 26, mass balancing with regard to the pumping movement of the piston pump 5 and the diaphragm pump 10 is readily possible. This results in a particularly smooth running of the hybrid pump if a mass balance of all moving masses is provided with respect to the piston and diaphragm pumps 5 and 10.
  • FIG. 1 one can also see a suction line 33, which extends from the connecting line 32, which leads from the turbomolecular pump 2 of the piston pump suction point 12, and from there to the intermediate space 30 which, on the one hand, extends between the piston head 21 of the piston pump 5 and the associated sealing membrane 9 is located.
  • the intermediate space 30 is also evacuated by this suction line 33, in particular when the hybrid pump 3 starts up. Leakages on the associated sealing collar 20 are not significant and do not have a long-term effect, so that the piston pump 5 brings about a corresponding reduction in pressure soon after the hybrid pump 3 starts up with the desired large suction volume. From the outlet port 34, the pumping medium indicated in FIG.
  • an impeller 40 which is connected to a motor M, which is only indicated schematically, and paddle wheels 41 of known construction having.
  • the impeller 40 of the turbomolecular pump runs at, for example, 30,000 revolutions per minute, but possibly also much faster, for example at around 60,000 revolutions per minute. Because of this high rotational speed, it is usually stored in magnetic bearings 43, one of which is drawn on the right side of FIG. 44 is a space, container or the like which is to be evacuated by the turbo-molecular and hybrid pump 2, 3.
  • turbomolecular pump inlet 45 leads from space 44 into this turbomolecular pump 2.
  • turbomolecular pump 2 known per se, starts up, it initially does little in the start-up stage.
  • pressure-side outlet 15 leads via the connecting line 32 into the displacement 6 of the piston pump 5.
  • the piston pump 5, as well as the diaphragm pump 10, on the inlet and outlet sides of the medium is equipped with known vacuum valves 27, which are only indicated schematically in FIG. In a conventional manner, vacuum is generated by the movement of the pendulum piston 18 in the displacement 6.
  • the medium as described above, which is usually air, but also other gases, is then conducted via the pump line 36 to the inlet port 37 of the diaphragm pump 10.
  • This sucks in gas, air or the like medium in the usual working cycle and pushes it out at its outlet connection 38.
  • the sealing membrane 9 attached to the rear of the pendulum piston 18 of the piston pump 5 prevents impurities from penetrating into the medium area.
  • the suction line 33 leads from the intermediate space 30 to the connecting line 32, which connects the turbomolecular pump to the piston pump 5.
  • the turbomolecular pump 2 only begins to be practically effective when a certain minimum vacuum has been reached by the hydride pump 3, which practically represents a backing pump for the turbomolecular pump 2. Then it works in combination with the hybrid pump 3 as follows: Due to the high speed of the impeller wheels 41 of the turbomolecular pump 2, molecules in their housing 16 receive correspondingly high impulses and are moved from the turbomolecular pump inlet 45 to their outlet 15 , which leads to the desired increase in the vacuum known per se in turbomolecular pumps. To a certain extent, the molecules are mechanically transported by these impulses in the direction of the outlet 15 of the turbomolecular pump, which results in an increase in the vacuum.
  • the double positive displacement pump 1 serving as the backing pump for the turbo-molecular pump 2 is designed as a hybrid pump 3, the piston pump 5 of which, in the sense of the medium flow, adjacent to the turbo-molecular pump 2 produces a relatively large suction volume and is nevertheless protected against contamination and leaks, but works in combination with the outlet-side diaphragm pump 10, which in turn is insensitive to condensate.
  • Curve 46 shows the suction capacity, plotted against the suction pressure, for a normal, two-stage diaphragm pump.
  • Curve 47 shows the course of the pumping speed of a two-stage hybrid pump 3 with a piston pump on the suction side and a diaphragm pump 5 and 10 on the outlet side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

  • Die Erfindung betrifft eine schmiermittelfreie Vakuum-Pumpeneinrichtung mit einer Turbo-Molekularpumpe, der eine Hybridpumpe im Strömungsweg nachgeschaltet ist.
  • Man kennt bereits Zweifach-Kolbenpumpen, bei denen die beiden Kolben über eine Kolbenstange miteinander verbunden sind und über einen Linearantrieb angetrieben werden (vgl. Prospekt "LABOVAC-Linear-Membranpumpen und Kolbenpumpen" der Firma SASKIA, Hochvakuum-und Labortechnik GmbH, O-6300 Ilmenau). Dort ist auch erwähnt, daß bei Sondermodellen durch Einbau einer Trennmembran hermetische Dichtigkeit bei den Kolben erreichbar ist. Kolbenpumpen dieser Art mit oder ohne Trennmembran haben jedoch noch mehrere Nachteile: Bei dem den Ausschub, zum Beispiel ins Freie, bewirkenden Kolben kann es bei entsprechender Feuchtigkeit des Fördermediums zur Kondensatbildung kommen. Diese führt bei den Kolbendichtungen zu erhöhtem Verschleiß und zu Undichtigkeiten. Das bedeutet einen Leistungsabfall der gesamten Pumpeneinheit.
    Man kennt auch bereits eine Kolbenpumpe, bei welcher der Kolben-Zylinderraum zum Kurbelraum hin mit einer Dichtmembran verschlossen ist. Dies verhindert, daß zum Beispiel atmosphärische Luft an den Kolbenringen oder einer Lippendichtung des Kolbens vorbeigelangen kann und dadurch sich das in der Kolbenpumpe erzeugte Vakuum etwas verschlechtert. Auch wird der Nachteil verhindert, daß das eigentliche Fördermedium von vom Kurbelraum herkommender, gegebenenfalls verunreinigter Luft selbst verunreinigt wird. Zu beachten ist auch, daß man beim Kurbelwellendurchtritt auf die Dauer keine Dichtigkeit erreichen kann und im Kurbelraum wegen der mechanischen Bewegungen eine Schmierung notwendig ist. Auch dies trägt, wenn der Kolben-Zylinderraum nicht gegenüber dem Kurbelraum abgedichtet ist, zu unerwünschten Verunreinigungen des eigentlichen Fördermediums bei.
    Durch den Prospekt "LABOVAC D65 - D1600" der Fa. SASKIA Hochvakuum-und Labortechnik GmbH, O-6300 Ilmenau, ist dort bereits der Vorschlag bekanntgeworden, eine mit zwei Gleitkolben versehene, linear arbeitende Zweifach-Kolbenpumpe, wie vorbeschrieben, als Vorpumpe für eine Turbo-Molekularpumpe einzusetzen. Dies zieht jedoch auch mehrere Nachteile nach sich. Zum einen hat die vorbekannte Zweifach-Kolbenpumpe mit Linearantrieb den bereits erwähnten Nachteil der Kondensatbildung. Zum anderen hat sie bezüglich der Kolbenbewegungen keinen Massenausgleich oder es muß ein aufwendiger, zusätzlicher Massenausgleich geschaffen werden. Wenn eine solche vorbekannte Zweifach-Linear-Kolbenpumpe mit einer Turbo-Molekularpumpe zusammenarbeitet, führen die üblichen Schwingungen zu unerwünschten Bewegungen bei der Turbo-Molekularpumpe, die gewöhnlich mit der Zweifach-Kolbenpumpe in einem einzigen Gestell zusammengefaßt oder gar als gemeinsamer Pumpenblock ausgebildet ist. Die Turbo-Molekularpumpe ist jedoch gegenüber Schwingungen äußerst empfindlich. Bekanntermaßen weisen Turbo-Molekularpumpen von an sich bekannter Bauart Drehzahlen von zum Beispiel 30.000 Umdr./min, jedoch auch noch wesentlich höhere Drehzahlen auf. Die Rotoren solcher Turbo-Molekularpumpen sind deshalb gewöhnlich auch in Magnetlagern gelagert und gegen Erschütterungen entsprechend empfindlich.
  • Aus der GB 2 126 665 ist bereits eine Kolbenpumpe bekannt, deren Kolben mittels einer an dem Pumpenzylinder anliegenden Dichtmanschette gegenüber dem Kurbelraum abgesperrt ist. Um die mit dem Fördermedium in Verbindung tretenden Teile gegenüber dem mechanischen Pumpenantriebsbereich absolut leckagefrei abtrennen zu können, ist bei der vorbekannten und als Trockenläufer betriebenen Kolbenpumpe eine Dichtmembrane vorgesehen, welche zwischen der Dichtmanschette und dem Kurbelraum angeordnet ist. Dabei ist der zwischen der Dichtmanschette und der Dichtmembrane liegende Zwischenraum an eine Absaugleitung angeschlossen, die das auf dem Kriechwege an der Dichtmanschette vorbei in den Zwischenraum gelangende Fördermedium abführt und zurück auf die Saugseite der Pumpe befördert. Diese vorbekannte Kolbenpumpe ist vor allem als separate Förderpumpe vorgesehen.
  • Demgegenüber kennt man aus der FR-21 75 507 eine Vakuumpumpe, die als doppelwirkende Membranpumpe ausgebildet ist und dazu zwei sich spiegelsymmetrisch gegenüberliegende Membranen hat. Um eine hohe Vakuumbildung zu begünstigen, sind die Pumpräume der vorbekannten Vakuumpumpe hintereinander geschaltet. Aufgrund des im Vergleich reduzierten Schöpf-Volumens solcher Membranpumpen ist die Leistung der vorbekannten Vakuumpumpe aber noch verbesserungswürdig.
  • Aus dem Prospekt "Vakuum-Chemie-Hybrid-Pumpe RC 5" der Firma VACUUBRAND, D-97877 Wertheim, ist eine Pumpeneinrichtung bekannt, bei welcher einer zweistufigen Drehkolbenpumpe eine Membranpumpe nachgeschaltet ist. Während die durch ein in einem Ölreservoir befindliches Öl gedichtete Drehkolbenpumpe eine erste Abpumpstufe bildet, ist die Membranpumpe dieser als ölfreie, kondensations- und korrosionsunempfindliche zweite Abpumpstufe nachgeschaltet.
  • Durch die Verwendung der ölgedichteten Drehkolbenpumpe kann jedoch nicht völlig ausgeschlossen werden, daß zumindest geringe Mengen des Schmiermittels mitgerissen und nach außen getragen werden, wo sie zu Verunreinigungen im Arbeitsbereich führen, die eventuell unbedingt zu vermeiden sind. Der Anwendungsbereich der vorbekannten Vakuum-Pumpeneinrichtung ist daher begrenzt.
  • Es besteht daher die Aufgabe, eine vielseitig einsetzbareund besonders leistungsfähige Vakuum-Pumpeneinrichtung der eingangs erwähnten Art zu schaffen.
  • Die erfindungsgemäße Lösung dieser Aufgabe besteht bei der Vakuum-Pumpeneinrichtung der eingangs erwähnten Art in den Merkmalen des Patentanspruches 1.
  • Bei der erfindungsgemäßen Vakuum-Pumpeneinrichtung ist der Turbo-Molekularpumpe eine als Hybrid-Pumpe ausgebildete Zweifach-Verdrängerpumpe im Strömungsweg nachgeschaltet. Man erhält dadurch ein verhältnismäßig großes Saugvolumen, ohne daß die Nachteile von zwei miteinander verbundenen, hintereinander geschalteten Kolbenpumpen in Kauf genommen werden müssen. Insbesondere werden die schädlichen Wirkungen einer eventuellen Kondensatbildung bei der das Fördermedium ausstoßenden Membranpumpe weitestgehend vermieden, da die Membranpumpe gegen Kondensatbildung praktisch unempfindlich ist. Zum anderen kann man mit Hilfe der im Wege des Fördermediums zwischen der Turbo-Molekularpumpe und der Membranpumpe angeordneten Kolbenpumpe ein verhältnismäßig großes Fördervolumen erreichen und dabei die Kolbenpumpe bezüglich ihres Volumens so auslegen, daß das bei ihr verdichtete Kolbenpumpen-Volumen zum Ansaugvolumen der Membranpumpe paßt. Man kann durch diese Kombination von Kolbenpumpe und Membranpumpe den Nachteil vermeiden, der bei der Verwendung von zwei Membranpumpen auftreten kann:
  • Die unmittelbar an die Turbo-Molekularpumpe angeschlossene Membranpumpe muß wegen der vorerwähnten unterschiedlichen Saugvolumen der beiden hintereinander geschalteten Pumpen verhältnismäßig große Abmessungen haben, was zu großen zu bewegenden Massen führt und auch bezüglich der Membran-Ausbildung bei der der Turbo-Molekularpumpe benachbarten Membranpumpe gewisse Nachteile nach sich zieht. Dagegen erreicht man mit der bei der erfindungsgemäßen Vakuum-Pumpeneinrichtung vorgesehenen Hybrid-Pumpe, also bei einer Kombination einer Kolbenpumpe mit einer dieser Kolbenpumpe nachgeschalteten Membranpumpe, optimale Verhältnisse. Oberhalb von bestimmten Leistungsgrenzen sind Vorpumpen mit zwei Membranen - wie gesagt - nicht mehr optimal leistungsfähig. Dagegen haben Versuche gezeigt, daß Vorpumpen, die mit Turbo-Molekularpumpen zusammenarbeiten sollen, gerade in einer Größenordnung liegen, wo zwei hintereinander geschaltete Membranpumpen nicht mehr optimal zu konstruieren sind. Die erfindungsgemäße Vakuum-Pumpeneinrichtung zeichnet sich somit auch bei kompakter Bauweise durch ihre hohe Leistungsfähigkeit aus.
  • Durch die einen Pendelkolben aufweisende Hubkolbenpumpe wird in Verbindung mit der zugehörigen Dichtmembran erreicht, daß die Förderwege für das Medium nicht mit irgendwelchen geschmierten Teilen in Verbindung kommen. Beispielsweise sind im pumpnahen Bereich der Kolbenpumpe keine geschmierten Teile mehr nötig, weil beim Pendelkolben ein Kolbenbolzen vermieden wird. Die der Turbo-Molekularpumpe bei der erfindungsgemäßen Vakuum-Pumpeneinrichtung nachgeschaltete Zweifach-Verdränger-Pumpe erlaubt deshalb absolute Freiheit von Schmiermitteln und dergleichen Verunreinigungen. Dies ist besonders vorteilhaft, wenn die erfindungsgemäße Vakuum-Pumpeneinrichtung beispielsweise im Bereich der Elektronik-Bauelemente-Herstellung eingesetzt wird. Dort kommt es, etwa beim Aufdampfen von Chips auf absolute Sauberkeit an. Der Produktionsprozeß,der hier durch die erfindungsgemäße Vakuum-Pumpeneinrichtung unter Vakuum gehalten werden soll, erfolgt nämlich gewöhnlich unter Schutzgas-Einfluß. Auch sehr geringfügige Verunreinigungen haben dort erhebliche Nachteile zur Folge. Solche Verunreinigungen können durch die der Turbo-Molekularpumpe nachgeschaltete zweifach-Verdrängerpumpe weitestgehend vermieden werden. Die erfindungsgemäße Vakuum-Pumpeneinrichtung ist daher beispielsweise auch im Bereich der Elektronik-Bauelemente-Herstellung und somit entsprechend vielseitig einsetzbar.
  • Da die Hubkolbenpumpe und die Membranpumpe über eine gemeinsame Kurbelwelle angetrieben sind, ist bei der erfindungsgemäßen Vakuum-Pumpeneinrichtung ein Massenausgleich der hin- und herbewegten Teile gut möglich, was insbesondere mit der gegenüber Rüttelbewegungen empfindlichen Turbo-Molekularpumpe wertvoll ist und einer hohen Leistungsfähigkeit der erfindungsgemäßen Vakuum-Pumpeneinrichtung zugute kommt.
  • Die bei der erfindungsgemäßen Vakuum-Pumpeneinrichtung vorgesehene Dichtmembran wirkt aber nicht nur eventuellen Verunreinigungen der Förderwege durch irgendwelche geschmierten Teile entgegen; vielmehr kann der zwischen dem Pendelkolben beziehungsweise seiner zugehörigen Dichtmanschette einerseits und der Dichtmembran andererseits vorgesehene Zwischenraum, namentlich beim Anlaufen dererfindungsgemäßenVakuum-Pumpeneinrichtung,überdievorgesehene Absaugleitung soweit evakuiert werden, daß der Ansaugvorgang beschleunigt und das Betriebs-Vakuum schneller erreicht wird. Die aus der Turbo-Molekularpumpe sowie der nachgeschalteten Zweifach-Verdrängerpumpe bestehende Vakuum-Pumpeneinrichtung ist somit beim Anfahren schneller betriebsbereit, was die Leistungsfähigkeit dieser erfindungsgemäßen Pumpeneinrichtung noch zusätzlich erhöht.
  • Zusätzliche Weiterbildungen der Erfindung sind in weiteren Unteransprüchen aufgeführt. Dabei erhält man durch die Merkmale des 3. und 4. Anspruches besonders günstige Verhältnisse bezüglich des Ansaugvermögens der bei der erfindungsgemäßen Vakuum-Pumpeneinrichtung vorgesehenen Zweifach-Verdrängerpumpe.
  • Die Maßnahmen des 5. Anspruches haben den Vorteil, daß man einen minimalen Totraum erreicht.
  • Durch die in Anspruch 6 vorgesehene Kombination der Turbo-Molekularpumpe mit einer gegen den Kurbelraum abgedichteten Kolbenpumpe und mit einer dieser nachgeschalteten Membranpumpe kann man durch entsprechendes Auslegen des Kolbenpumpen- und des Membranpumpen-Volumens unter Berücksichtigung der Bedürfnisse der Turbo-Molekularpumpe optimale Verhältnisse von einer solchen Gesamtvorrichtung schaffen.
  • Versuche haben gezeigt, daß die Ausgestaltung gemäß Anspruch 7 besonders vorteilhaft und auch einfach im Aufbau ist.
  • Die Maßnahmen des 8. Anspruches vereinfachen einen Massenausgleich der hin- und herbewegten Teile, was den ruhigen Lauf der bei der erfindungsgemäßen Vakuum-Pumpeneinrichtung vorgesehenen Zweifach-Verdrängerpumpe begünstigt. Man kann die Pumpeneinrichtung unter Berücksichtigung aller zu bewegenden Massen auslegen und erreicht einen weitestgehend ruhigen Lauf, was besonders wichtig ist, wenn die Turbo-Molekularpumpe und die Zweifach-Verdrängerpumpe in einem gemeinsamen Gestell oder gar in einem gemeinsamen Gehäuse untergebracht sind.
  • Weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung eines Ausführungsbeispieles in Verbindung mit den Ansprüchen und der Zeichnung. Die einzelnen Merkmale können je für sich oder zu mehreren bei einer Ausführungsform der Erfindung verwirklicht sein. Es zeigen, stärker schematisiert:
  • Fig.1
    eine im wesentlichen im Schnitt gehaltene Seitenansicht einer Zweifach-Verdrängerpumpe, die mit einer Turbo-Molekularpumpe in Verbindung steht, und
    Fig.2
    ein schematisiertes Diagramm, in dem für zwei unterschiedliche Pumpentypen deren Saugvermögen über den Ansaugdruck aufgetragen ist.
  • Fig.1 zeigt eine Zweifach-Verdrängerpumpe 1 unterhalb einer damit verbundenen Turbo-Molekularpumpe 2. Es gehört mit zur Erfindung, daß die Zweifach-Verdrängerpumpe 1 als Hybrid-Pumpe 3 ausgebildet ist, die medium-eintrittsseitig bei 4 eine Kolbenpumpe 5 mit vergleichsweise großem Hubraum 6 aufweist, wobei deren Kolben-Zylinderraum 7 gegenüber dem Kurbelraum 8 der Hybrid-Pumpe 3 mittels einer Dichtmembran 9 abgeschlossen ist. Ferner gehört mit zur Erfindung, daß bei der Hybrid-Pumpe 3 der Kolbenpumpe 5 eine Membranpumpe 10 nachgeschaltet ist, deren Hubraum 11 im Vergleich zu dem der Kolbenpumpe 5 merkbar kleiner ist. Dabei sind gemäß einer besonders vorteilhaften Ausführungsform die Hubräume 6 und 11 der Hybrid-Pumpe 3 wenigstens in etwa so aufeinander abgestimmt, daß das Ausschubvolumen der Kolbenpumpe 5 bei einem bestimmten Betriebsvakuum gleich dem Ansaugvolumen der Membranpumpe 10 ist. Gegebenenfalls können Ansaug- und Ausschubvolumen auch für einen Betriebsbereich im Sinne einer Optimierung aufeinander abgestimmt sein.
  • Bei der in den Figuren 1 und 2 dargestellten Vakuum-Pumpeneinrichtung ist die Zweifach-Verdrängerpumpe 1 der Turbo-Molekularpumpe
  • 2 im Strömungsweg derart nachgeschaltet, daß der Ansaugstutzen 12 der Kolbenpumpe 5 mit dem Auslaß 15 der Turbo-Molekularpumpe 2 in Verbindung steht. Dabei ist es zweckmäßig, wenn die Turbo-Molekularpumpe 2 und die Zweifach-Verdrängerpumpe 1 bezüglich ihrer Gehäuse 16 und 17 zum Beispiel durch ein in Fig.1 nur schematisch angedeutetes Gestell 31 miteinander in Verbindung stehen. Die Turbo-Molekularpumpe 2 und die Zweifach-Verdrängerpumpe 1 können selbstverständlich auch in einem gemeinsamen Gehäuse (nicht dargestellt) untergebracht sein. Beide Pumpen 5 und 10 der Zweifach-Verdrängerpumpe 1 sind mit Pendelkolben 18 und 19 versehen und bei der Kolbenpumpe 5 der Zweifach-Verdrängerpumpe 1 ist eine scheibenartige Dichtmanschette 20 an deren Kolbenkopf 21 angebracht. Diese Dichtmanschette 20 dichtet den Kolbenkopf 21 gegen den Kolben-Zylinderraum 7 der Kolbenpumpe 5 ab. Da die Zweifach-Verdrängerpumpe 1 zum einen eine Kolbenpumpe 5, zum anderen eine Membranpumpe 10 aufweist, spricht man von einer "Hybrid-Pumpe 3". Die Membranpumpe 10 dieser Hybrid-Pumpe 3 weist eine Formmembran 22 auf, deren der benachbarten Pumpraumwand 23 zugewandte Oberseite 24 an diese angepaßt ist, so daß sich in der (in Fig.1 unteren) Totpunktstellung nur ein praktisch minimaler Totraum ergibt.
  • Die Kolbenpumpe 5 und die Membranpumpe 10 der Hybrid-Pumpe 3 sind über eine gemeinsame Kurbelwelle 26 angetrieben. Die beiden Pumpen 5 und 10 sind, in Richtung der Pumpenlängsachse L gegenüberliegend angeordnet. Deswegen und wegen des gemeinsamen Antriebs über die Kurbelwelle 26 ist ein Massenausgleich bezüglich der Pumpbewegung von Kolbenpumpe 5 und Membranpumpe 10 gut möglich. Dabei erhält man einen besonders ruhigen Lauf der Hybrid-Pumpe, wenn bezüglich der Kolben- und der Membran-Pumpe 5 u.10 ein Massenausgleich aller bewegten Massen vorgesehen ist.
  • In Fig.1 erkennt man noch eine Absaugleitung 33, welche die Verbindungsleitung 32, die von der Turbo-Molekularpumpe 2 der Kolbenpumpen-Ansaugstelle 12 führt, ausgeht und von dort zu dem Zwischenraum 30 führt, der sich zwischen dem Kolbenkopf 21 der Kolbenpumpe 5 einerseits und der zugehörigen Dichtmembran 9 befindet. Durch diese Absaugleitung 33 wird, insbesondere beim Anlaufen der Hybrid-Pumpe 3, der Zwischenraum 30 mitevakuiert. Undichtigkeiten an der zugehörigen Dichtmanschette 20 kommen nicht wesentlich und nicht langzeitig zur Wirkung, so daß die Kolbenpumpe 5 bereits bald nach dem Anlaufen der Hybrid-Pumpe 3 bei gewünscht großem Ansaugvolumen die entsprechende Druckabsenkung bewirkt. Vom Auslaßstutzen 34 wird das in Fig.1 bei Pumpe 1 durch Punkte 35 angedeutete Fördermedium über die Pumpleitung 36 zum Einlaß 37 der Membranpumpe 10 geleitet. Diese Membranpumpe stößt dann an ihrem Auslaßstutzen 38 das von der Hybrid-Pumpe 3 oder der kombinierten Turbo-Molekular- und Hybrid-Pumpe 2,3 geförderte Medium, zum Beispiel ins Freie aus.
  • Die Arbeitsweise der kombinierten Turbo-Molekular- und Hybrid-Pumpe 2,3 läßt sich besonders gut beim Anlauf-Vorgang erläutern. Dieser erfolgt folgendermaßen:
  • Im Gehäuse 16 der Turbo-Molekularpumpe 2 befindet sich ein Laufrad 40, das mit einem nur schematisch angedeuteten Motor M in Verbindung steht und Schaufelräder 41 bekannter Bauweise aufweist. Im Gehäuse 16 befinden sich, benachbart zu den Laufschaufelrädern 41, Leitscheiben 42 oder dergleichen. Das Laufrad 40 der Turbo-Molekularpumpe läuft mit zum Beispiel 30.000 Umdr./min, ggf. aber auch noch wesentlich schneller, z.B. mit etwa 60.000 Umdr./min um. Seine Lagerung erfolgt wegen dieser hohen Umlaufgeschwindigkeit gewöhnlich in Magnetlagern 43, von denen eines auf der rechten Seite von Fig.1 gezeichnet ist. 44 ist ein Raum, Behälter oder dergleichen, der durch die Turbo-Molekular- und Hybrid-Pumpe 2,3 evakuiert werden soll. Das kann beispielsweise ein Bereich sein, bei dem es auf absolute Sauberkeit ankommt, zum Beispiel der Bereich eines Produktionsprozesses, in dem unter Vakuum und/oder Schutzgas-Einfluß empfindliche Arbeitsprozesse durchgeführt werden, beispielsweise das Aufdampfen bei Chips. Vom Raum 44 führt ein Turbo-Molekularpumpen-Einlaß 45 in diese Turbo-Molekularpumpe 2. Wenn eine solche, an sich bekannte Turbo-Molekularpumpe 2 anläuft, bewirkt sie im Anlaufstadium zunächst wenig. Ihr druckseitiger Auslaß 15 führt über die Verbindungsleitung 32 in den Hubraum 6 der Kolbenpumpe 5. Medium-eintrittsseitig und -austrittsseitig ist die Kolbenpumpe 5 ebenso wie die Membranpumpe 10 mit bekannten Vakuum-Ventilen 27 ausgerüstet, die in Fig.1 nur schematisch angedeutet sind. In üblicher Weise erhält man durch die Bewegung des Pendelkolbens 18 im Hubraum 6 eine Vakuumbildung. Über das Auslaßventil 27 des Hubraumes 6 wird dann das - wie vorstehend beschrieben - angesaugte Medium, in der Regel Luft, aber auch andere Gase, über die Pumpleitung 36 zum Einlaßstutzen 37 der Membranpumpe 10 geleitet. Diese saugt im üblichen Arbeitsspiel Gas, Luft oder dergleichen Medium an und schiebt es bei ihrem Auslaßstutzen 38 aus. Die an der Rückseite des Pendelkolbens 18 der Kolbenpumpe 5 angebrachte Dichtmembran 9 verhindert das Eindringen von Unreinlichkeiten in den Medium-Bereich. Vom Zwischenraum 30 führt die Absaugleitung 33 zu der Verbindungsleitung 32, welche die Turbo-Molekularpumpe mit der Kolbenpumpe 5 verbindet. Eventuelle Undichtigkeiten an der Dichtmanschette 20 des Pendelkolbens 5 und dadurch in den Zwischenraum 30 eingedrungenes Fördermedium kann mit Hilfe dieser Absaugleitung wieder vor des Saugventil 27 der Kolbenpumpe 5 geführt werden. Das beschleunigt den Vorgang des Ansaugens, um zu einem Betriebs-Vakuum zu kommen.
  • Die Turbo-Molekularpumpe 2 beginnt erst praktisch effektiv zu werden, wenn ein gewisses Mindestvakuum durch die Hydrid-Pumpe 3, die praktisch eine Vorpumpe für die Turbo-Molekularpumpe 2 darstellt, erreicht ist. Dann arbeitet diese in Kombination mit der Hybrid-Pumpe 3 folgendermaßen: Durch die hohe Drehzahl der Laufschaufelräder 41 der Turbo-Molekularpumpe 2 erhalten in ihrem Gehäuse 16 befindliche Moleküle entsprechend hohe Impulse und werden vom Turbo-Molekularpumpen-Einlaß 45 bis zu deren Auslaß 15 hinbewegt, was zu der erwünschten, an sich bei Turbo-Molekularpumpen bekannten Erhöhung des Vakuums führt. Die Moleküle werden gewissermaßen durch diese Impulse in Richtung des Auslasses 15 der Turbo-Molekularpumpe mechanisch tranportiert, wodurch eine Vergrößerung des Vakuums entsteht.
  • Wesentliche Vorteile der Erfindung liegen darin, daß die als Vorpumpe für die Turbo-Molekularpumpe 2 dienende Zweifach-Verdrängerpumpe 1 als Hybrid-Pumpe 3 ausgebildet ist, deren - im Sinne des Mediumflusses - der Turbo-Molekularpumpe 2 benachbarte Kolbenpumpe 5 verhältnismäßig große Saugvolumen erzeugt und dennoch vor Verunreinigungen und Undichtigkeiten geschützt ist, dabei jedoch in Kombination mit der ausgangsseitigen Membranpumpe 10 zusammenarbeitet die ihrerseits unempfindlich gegen Kondensat ist.
  • Aus Fig.2 erkennt man noch gut die Unterschiede bezüglich des Ansaugvermögens einer normalen zweistufigen Membranpumpe gegenüber einer zweistufigen Hybrid-Pumpe 3. Die Kurve 46 zeigt das Saugvermögen, aufgetragen über den Ansaugdruck, für eine normale, zweistufige Membranpumpe. Die Kurve 47 zeigt den Verlauf des Saugvermögens einer zweistufigen Hybrid-Pumpe 3 mit ansaugseitiger Kolben- und austrittsseitiger Membranpumpe 5 bzw. 10. Man erhält auf verhältnismäßig einfache Weise eine wesentliche Vergrößerung des Saugvermögens unter sonst gleichen Verhältnissen (Ansaugdruck), wenn man eine zweistufige Hybrid-Pumpe mit eingangsseitigen, größervolumigem Hubraum 6 in der vorbeschriebenen Art mit einer Membranpumpe 10 verbindet, wobei durch die Dichtmembran 9 eventuelle Nachteile der Kolbenpumpe 5 vermieden werden.
  • Alle vorbeschriebenen und/oder in den Ansprüchen aufgeführten Merkmale können alleine oder in beliebiger Kombination erfindungswesentlich sein.

Claims (8)

  1. Schmiermittelfreie Vakuum-Pumpeneinrichtung mit einer Turbo-Molekularpumpe (2), der (2) eine als Hybrid-Pumpe (3) ausgebildete Zweifach-Verdrängerpumpe (1) im Strömungsweg nachgeschaltet ist, welche (1) medium-eintrittsseitig eine Hubkolbenpumpe (5) mit einem Pendelkolben (18) hat, der (5) eine das Fördermedium austoßende Membranpumpe (10) nachgeschaltet ist, welche Hubkolben- und Membranpumpe (5, 10) über eine gemeinsame Kurbelwelle (26) angetrieben sind, wobei der Hubkolben-Zylinderraum (7) gegenüber dem Kurbelraum (8) mittels einer Dichtmembran (9) abgeschlossen ist und wobei der zwischen dem Hubkolben (18) einerseits und der Dichtmembran (9) andererseits vorgesehene Zwischenraum (30) mit einer Absaugleitung (33) verbunden ist.
  2. Vakuum-Pumpeneinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Absaugleitung (33) in Förderstromrichtung vor einem Saugventil (27) der Hubkolbenpumpe (5) mündet.
  3. Vakuum-Pumpeneinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Hubraum (11) der Membranpumpe (10) im Vergleich zu dem der Hubkolbenpumpe (5) merkbar kleiner ist.
  4. Vakuum-Pumpeneinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Hubräume (6, 11) der beiden Verdrängerpumpen (5, 10) in etwa so aufeinander abgestimmt sind, daß das Ausschubvolumen der Hubkolbenpumpe (5) bei einem bestimmten Betriebsvolumen zumindest etwa gleich dem Ansaugvolumen der Membranpumpe (10) ist.
  5. Vakuum-Pumpeneinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Membranpumpe (10) eine Formmembran (22) aufweist, deren Oberseite (24) an die benachbarte Pumpraumwand (23) der Membranpumpe (10) angepaßt ist.
  6. Vakuum-Pumpeneinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Ansaugstutzen (12) der Hubkolbenpumpe (5) mit dem Auslaß (15) der Turbo-Molekularpumpe (2) in Verbindung steht, daß die Turbo-Molekularpumpe (2) sowie die beiden Verdrängerpumpen (5, 10) bezüglich ihrer Gehäuse (16, 17) miteinander in Verbindung stehen, und daß vorzugsweise bezüglich der Hubkolben- und der Membran-Pumpe (5, 10) mindestens nahezu ein Massenausgleich aller bewegten Massen vorgesehen ist.
  7. Vakuum-Pumpeneinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Hubkolbenpumpe (5) eine scheibenartige Dichtmanschette am Kolbenkopf aufweist, die durch Einführen in den Kolben-Zylinderraum (7) einen U-förmigen Querschnitt erhält.
  8. Vakuum-Pumpeinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Hubkolbenpumpe (5) sowie die Membranpumpe (10) in Richtung einer gemeinsamen Pumpenlängsachse (L) angeordnet sind.
EP94103685A 1993-04-15 1994-03-10 Schmiermittelfreie Vakuum-Pumpeinrichtung Expired - Lifetime EP0626516B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE9305554U 1993-04-15
DE9305554U DE9305554U1 (de) 1993-04-15 1993-04-15 Zweifach-Verdrängerpumpe
DE4320963A DE4320963C2 (de) 1993-04-15 1993-06-24 Schmiermittelfreie Vakuum-Pumpeneinrichtung
DE4320963 1993-06-24

Publications (2)

Publication Number Publication Date
EP0626516A1 EP0626516A1 (de) 1994-11-30
EP0626516B1 true EP0626516B1 (de) 1997-06-04

Family

ID=25927060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103685A Expired - Lifetime EP0626516B1 (de) 1993-04-15 1994-03-10 Schmiermittelfreie Vakuum-Pumpeinrichtung

Country Status (3)

Country Link
US (2) US5387090A (de)
EP (1) EP0626516B1 (de)
JP (1) JP2882748B2 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328559C5 (de) * 1993-08-25 2004-11-25 Knf-Neuberger Gmbh Membranpumpe mit wenigstens zwei Membranen
US5979440A (en) 1997-06-16 1999-11-09 Sequal Technologies, Inc. Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator
US5988165A (en) * 1997-10-01 1999-11-23 Invacare Corporation Apparatus and method for forming oxygen-enriched gas and compression thereof for high-pressure mobile storage utilization
US7204249B1 (en) 1997-10-01 2007-04-17 Invcare Corporation Oxygen conserving device utilizing a radial multi-stage compressor for high-pressure mobile storage
US6099269A (en) * 1997-10-06 2000-08-08 Fin Robur Absorption refrigeration system having a diaphragm pump and a hydraulic piston pump
DE19940498A1 (de) 1999-08-26 2001-03-22 Knf Neuberger Gmbh Membranpumpe
FR2822200B1 (fr) 2001-03-19 2003-09-26 Cit Alcatel Systeme de pompage pour gaz a faible conductivite thermique
US6589023B2 (en) 2001-10-09 2003-07-08 Applied Materials, Inc. Device and method for reducing vacuum pump energy consumption
JP2003343469A (ja) * 2002-03-20 2003-12-03 Toyota Industries Corp 真空ポンプ
US6904913B2 (en) * 2002-10-24 2005-06-14 Acoba, Llc Method and system for delivery of therapeutic gas to a patient and for filling a cylinder
JP4218756B2 (ja) * 2003-10-17 2009-02-04 株式会社荏原製作所 真空排気装置
US7621723B2 (en) * 2004-03-22 2009-11-24 Shinano Kenshi Kabushiki Kaisha Electromagnetic pump
JP2005344569A (ja) * 2004-06-01 2005-12-15 Toyota Industries Corp ポンプ
US7900627B2 (en) 2005-01-18 2011-03-08 Respironics, Inc. Trans-fill method and system
US20070020115A1 (en) * 2005-07-01 2007-01-25 The Boc Group, Inc. Integrated pump apparatus for semiconductor processing
US8197231B2 (en) * 2005-07-13 2012-06-12 Purity Solutions Llc Diaphragm pump and related methods
US8062003B2 (en) 2005-09-21 2011-11-22 Invacare Corporation System and method for providing oxygen
JP4709016B2 (ja) * 2006-01-12 2011-06-22 アネスト岩田株式会社 複合圧縮機
US7556670B2 (en) * 2006-03-16 2009-07-07 Aylsworth Alonzo C Method and system of coordinating an intensifier and sieve beds
US7459008B2 (en) * 2006-03-16 2008-12-02 Aylsworth Alonzo C Method and system of operating a trans-fill device
WO2013116820A1 (en) 2012-02-03 2013-08-08 Invacare Corporation Pumping device
JP6616611B2 (ja) * 2015-07-23 2019-12-04 エドワーズ株式会社 排気システム
EP3299187A1 (de) * 2016-09-23 2018-03-28 The Goodyear Tire & Rubber Company Radfelgenanordnung und luftwartungssystem
CN106523333A (zh) * 2016-12-30 2017-03-22 张家港科康智能科技有限公司 一种四缸隔膜式气体压缩机
CN106678013B (zh) * 2017-03-13 2019-07-19 中石化四机石油机械有限公司 大功率模块化液力驱动往复泵系统
CN211009180U (zh) * 2019-07-02 2020-07-14 明达实业(厦门)有限公司 一种高低压一体充气泵和充气产品
US11873802B2 (en) * 2020-05-18 2024-01-16 Graco Minnesota Inc. Pump having multi-stage gas compression

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2142329A (en) * 1937-12-16 1939-01-03 Jr Louis Nika Alternating or varying pressureactuated pump
US2413851A (en) * 1945-07-03 1947-01-07 Malsbary Mfg Company Pump
BE464613A (de) * 1946-04-16
DE1195427B (de) * 1961-07-05 1965-06-24 Basf Ag Dreistufiger Hochdruckgaskompressor mit einer Kolbendichtung
US3145914A (en) * 1962-08-03 1964-08-25 Worthington Corp Enclosed motor compressor unit
FR1376714A (fr) * 1963-09-17 1964-10-31 Hispano Suiza Sa Perfectionnements apportés aux compresseurs volumétriques alternatifs hermétiques, notamment à ceux à pistons
US3578880A (en) * 1969-07-24 1971-05-18 Chandler Evans Inc Diaphragm operated priming device for centrifugal impeller pump
US3672791A (en) * 1970-07-17 1972-06-27 Ladish Co Pumping system with controlled liquid addition
GB1418993A (en) * 1972-03-08 1975-12-24 Becker E Diaphragm pump particularly for the generation of vacuum
HU168667B (de) * 1975-02-25 1976-06-28
US4505647A (en) * 1978-01-26 1985-03-19 Grumman Allied Industries, Inc. Vacuum pumping system
ES233729Y (es) * 1978-02-03 1978-08-01 Bomba de vacio perfeccionada.
DE3233853A1 (de) * 1982-09-11 1984-03-15 Erich 7812 Bad Krozingen Becker Pumpe mit kolben und gleitdichtung
DE3710782A1 (de) 1987-03-31 1988-10-20 Vacuubrand Gmbh & Co Verfahren und vorrichtung zum abpumpen von daempfen und/oder dampfhaltigen gemischen und/oder gas-dampf-gemischen oder dgl. medien
DE8808819U1 (de) * 1988-07-08 1988-09-01 Hayn, Otto, 8000 München Gaspumpe oder -verdichter
JPH02102385A (ja) * 1988-10-08 1990-04-13 Toyo Eng Corp 排気装置
US5190444A (en) * 1991-08-21 1993-03-02 Navistar International Transportation Corp. Tandem fuel pump assembly for internal combustion engine

Also Published As

Publication number Publication date
US5584669A (en) 1996-12-17
US5387090A (en) 1995-02-07
JPH06299962A (ja) 1994-10-25
JP2882748B2 (ja) 1999-04-12
EP0626516A1 (de) 1994-11-30

Similar Documents

Publication Publication Date Title
EP0626516B1 (de) Schmiermittelfreie Vakuum-Pumpeinrichtung
DE3710782A1 (de) Verfahren und vorrichtung zum abpumpen von daempfen und/oder dampfhaltigen gemischen und/oder gas-dampf-gemischen oder dgl. medien
DE102016110273A1 (de) Vakuum Pumpensystem mit Leichtgas Pumpen und einer Leckage Detektion Vorrichtung, aufweisend dieselbe
DE4333634A1 (de) Axialkolbenkompressor mit mehreren Kolben und einem Drehventil
DE10004271A1 (de) Reibungsvakuumpumpe
DE4401836C2 (de) Axialkolbenkompressor mit mehreren Kolben
DE19546490A1 (de) Kolbenkompressor mit verbesserter Auslaßventilanordnung
CH628709A5 (en) Roots pump
EP0500825A1 (de) Kolbenpumpe.
DE3617889A1 (de) Mechanische pumpe
DE4320963C2 (de) Schmiermittelfreie Vakuum-Pumpeneinrichtung
DE10114585A1 (de) Vakuumpumpe
DE3231754A1 (de) Verdraengermaschine fuer kompressible medien
EP0373229B1 (de) Mechanische Vakuumpumpe mit einer federbelasteten Rückschlagklappe
DE4042242A1 (de) Kompressor fuer gas, oel o. dgl.
DE7321836U (de) Vorrichtung zur schmierung der lager der rotoren von schraubenkompressoren
EP0394720B1 (de) Pumpe zur Förderung von Gasen und zur Erzeugung eines Differenzdruckes
DE19710419C2 (de) Flügelzellenverdichter
DE938405C (de) Vakuumpumpe mit Drehkolben und sichelfoermigem Arbeitsraum
EP0603698B1 (de) Wälzkolben-Vakuumpumpe
DD269881A1 (de) Kolbenverdichter
DE1243816B (de) Mehrstufige Drehkolbenvakuumpumpe vom Rootstyp
DE3027161A1 (de) Universalmotor fuer verschiedene materien
EP3507493B1 (de) Verdichter
DE1628208A1 (de) Mehrstufige Vakuumpumpe,insbesondere Drehkolbenpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19951123

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59402980

Country of ref document: DE

Date of ref document: 19970710

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970626

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130326

Year of fee payment: 20

Ref country code: GB

Payment date: 20130226

Year of fee payment: 20

Ref country code: FR

Payment date: 20130222

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59402980

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140309

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140311