EP0613573B1 - Procede permettant de verifier la precision d'une machine a commande numerique - Google Patents

Procede permettant de verifier la precision d'une machine a commande numerique Download PDF

Info

Publication number
EP0613573B1
EP0613573B1 EP93918978A EP93918978A EP0613573B1 EP 0613573 B1 EP0613573 B1 EP 0613573B1 EP 93918978 A EP93918978 A EP 93918978A EP 93918978 A EP93918978 A EP 93918978A EP 0613573 B1 EP0613573 B1 EP 0613573B1
Authority
EP
European Patent Office
Prior art keywords
actual
path
machine
circular
measuring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93918978A
Other languages
German (de)
English (en)
Other versions
EP0613573A1 (fr
Inventor
Juergen Barg
Waltraud Witka
Wolfgang Grimm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0613573A1 publication Critical patent/EP0613573A1/fr
Application granted granted Critical
Publication of EP0613573B1 publication Critical patent/EP0613573B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37619Characteristics of machine, deviation of movement, gauge

Definitions

  • the invention is based on a method according to the type of the main claim.
  • the so-called circular shape test was developed to record the working accuracy of NC machines.
  • a circular path executed by the NC machine is compared with a specified reference circular path.
  • a method of this kind is e.g. B. in "The circular shape test for testing NC machine tools", W. Knapp, S. Hrovat, 1986, pages 19 to 25, described.
  • the circular shape test consists in comparing a circular path that is traversed by an NC machine with a circle that is specified by a highly precise reference workpiece, the circular standard, with a known diameter.
  • the control of the NC machine is programmed a circular path corresponding to the circular standard and compared with the actual contour determined by a two-dimensional button of the circular path actually executed by the NC machine. The difference is shown graphically and / or numerically. Based on the path deviation found in a circular shape test, compliance with the tolerances of the NC machine can be checked and statements about the possible causes of deviations can be obtained.
  • a disadvantage of these known methods is in particular the large amount of time required to adjust the mechanical arrangements. This applies in particular to the adjustment of the circular standard in the Knapp / Hrovat method.
  • the RENISHAW method can be carried out more quickly, the measuring system itself has two joints which can represent an additional source of error and therefore come at the expense of accuracy.
  • the method according to the invention has the advantage that an additional external measuring device is not required. It is both simple and fast and can therefore be carried out as often as required.
  • the method according to the invention is carried out in addition to one of the known methods described above. In this way, a particularly precise analysis of the machine work accuracy can be achieved.
  • FIG. 1 shows a block diagram of a known circular shape test
  • FIG. 2 shows a block diagram of the method according to the invention
  • FIG. 3 shows a graphical representation of the results that can be achieved with the circular shape test
  • FIG. 4 shows the structure of a method for carrying out the proposed circular shape test.
  • FIG. 2 shows a simplified representation of an arrangement suitable for carrying out the method according to the invention.
  • a part of the control of a multi-axis NC machine, not shown in any more detail, is shown.
  • B. also suitable for robots.
  • the control is a conventional control, the structure and function of which are known. In FIG. 2, therefore, only the elements of the entire control system that are required below for the purpose of description are shown.
  • an interpolator 10 By definition and in a known manner, an interpolator 10 generates intermediate support points for the support points of a movement target path that come from block preparation.
  • the output signal of the interpolator 10 is a vectorial reference variable to Guiding at least two carriages of the machine along a circular nominal movement path R NC .
  • the components of the benchmark are position control signals w NC1 , w NC2 , ..., w NCi , ... for downstream servo control loops 30 , 40 , 50 for controlling the individual axes.
  • the interpolator 10 also has a pilot control device, not shown. This forms, in relation to the position control signals w NC1 , w NC2 , ..., w NCi , ..., pilot signals w vor1 , w vor2 , ..., w vori , ... which are also transmitted to the downstream ones Drive 31, 41, slide 32, 42, and position measuring system 33, 34 existing servo control loops 30, 40, 50 are connected. At least the first and the second time derivation, ie guide speed and guide acceleration, of the position control signals w NC , w NC2 , ..., w NCi , ... output by the interpolator 10 are expediently controlled results obtained from the circular shape test considerably.
  • pilot control A description of the principle of pilot control can be found, for example, in P. Stoph, "Reduction of dynamic path deviations in numerically path-controlled machine tools", Journal for Industrial Manufacturing, 1978, pages 329 to 333.
  • a method such as the so-called pilot control parameters required for carrying out the pilot control can be obtained is known from the German application file number P 40 39 620.7.
  • servo control loops 30, 40, 50 Downstream of the interpolator 10 are several, at least two, servo control loops 30, 40, 50, of which only three are shown in FIG. 2 for reasons of clarity, but more than three may be present, depending on the number of axes of the machine in question. All servo control loops 30, 40, 50 are basically constructed in the same way and each consist of an axle drive 31, 41 with one that is not shown Control device which controls a slide 32, 42 along a generally linear axis in accordance with the position control signal specified by the interpolator 10. The actual positions x M1 , x M2 , ..., x Mi , ...
  • the position measuring systems 33, 43 are expediently yardsticks for a direct length measurement, which are arranged orthogonally to one another and are optically scanned. Position measuring systems of this type and their mode of operation are described, for example, in the magazine "Konstrutation", 43, 1991, pages 401 to 410.
  • At least two of the axle drives 31, 41 act on mutually orthogonal axes that span a plane. Due to the movement caused by at least two axis drives 31, 41, the assigned slides 32, 42 are moved along the relevant axes in such a way that their relative movement is that of the interpolator 10 as a reference variable predetermined target path R NC corresponds. It is irrelevant which slides 32, 42 are moved.
  • the movement of the carriages 35, 36 can also be controlled by more than one axle drive and can take place along more than three axles.
  • the decisive factor is the relative movement of the slides 35 and 36 to one another.
  • the slide positions x M1 , x M2 , ..., x Mi , ... detected by the displacement measuring system 31, 41 are also fed to a diagnostic unit 20.
  • the diagnostic device 20 is also supplied with a signal of the desired circular path R NC , which is determined by the reference variable signal w NC , a reference signal R Ref , and a signal S V for scaling.
  • the output signal of the diagnostic unit 20, which expediently consists of two information paths x D1 , x D2 orthogonal to one another, is fed to a display unit 70, preferably in the form of a screen.
  • FIG. 1 shows a measuring arrangement known according to the prior art with a circular standard and a probe, as can be seen, for example, from Knapp / Hrovat. Elements already described with reference to FIG. 2 are provided with the same reference symbols.
  • the arrangement according to FIG. 1 has in particular a 2-D probe, essentially consisting of a probe 60 and a measuring tip 61, which are mechanically connected to one another.
  • the 2-D button is mechanically connected to at least one of the slides 32, 42, which is taken into account by a mechanical member 65.
  • the measuring tip 61 While the measuring head 60 is moved in accordance with the desired circular path R NC specified by the control, the measuring tip 61 is guided along an annular measuring body 62 designed as a circular standard on a path physically defined by it. With a view to the later evaluation of the measurement results, a distinction is made between a scan on the inside of the circular standard 62, the internal standard, and the outside of the circular standard, the external standard.
  • the output signals R 2DT of the 2-D button are fed to a summing point 63, which can also be fed with a reference signal R Ref .
  • the output signal of the summing point 63 is in turn fed to a display unit 70 in the form of a screen.
  • the interpolator 10 specifies a circular target path R NC previously programmed via the controller 11.
  • the desired circular path R NC is expediently chosen such that it lies exactly in one plane spanned by two axes.
  • the target circular path R NC is executed by the machine, only the circular plane is accordingly clamping machine axes active, while the other axes are inactive.
  • Such a machine-adapted procedure facilitates the later evaluation of the results.
  • the target circular path R NC is traversed by the machine at a constant path speed.
  • the path measuring system 33, 43 detects the actual path R M actually executed by the slides 32, 42 during the machine movement, in each case by detecting the positions of the slides 32, 42 involved in the movement.
  • the positions of the slides of at least two servo control loops 30, 40, 50 are required for a clear determination of a position of the relative slide movement path. If the driven actual path R M is not exactly in one plane with respect to the path measuring system 33, 43, at least the slide positions of three servo control loops 30, 40, 50 must be known. All detected positions of the actual path R M are transmitted to the diagnostic unit 20. For each target position specified by the position control signal w NC , ie for each interpolation step of the interpolator 10, the diagnostic unit 20 then determines the difference between the position of the slides 32 and 42 relative to one another on the target path R. NC and the associated position on the actual path R M measured by the path measuring system 40. This difference determined in the diagnostic unit 20 already represents the result of the circular shape test in the form of a path deviation ⁇ R, which is shown on the display 70.
  • a predefinable reference signal R Ref in the form of a reference circular path is then expediently added to the path deviation ⁇ R or, in a second embodiment, subtracted therefrom.
  • a clear representation of the results, which are then also visible as circles, is obtained.
  • results from various circular shape tests can be compared. If the path deviation ⁇ R found in the diagnostic unit 20 from the Circular reference path R Ref subtracted appear on the display 70 to a small actual circular path R M as too big a circle, too much actual path R M against it as too small a circle. The necessary corrections can thus be seen directly from the display 70.
  • This type of representation corresponds to a circular shape test in the manner shown in FIG.
  • the representations on the display are expediently enlarged by scaling the coordinate system on which the display is based with a predefinable magnification factor S V , suitable magnification factors being in the order of magnitude 1000.
  • the proposed method only uses the information already present in the servo control loop about the actual position of the slide and the desired target position.
  • One difficulty here is the formation of the target positions specified by the NC interpolator 10 and the actual positions measured by the direct path measuring system 33, 43 to assign a circle deviation correctly.
  • the general effect is that the setpoint specified by the control system reaches that achieved by the machine Actual value leads. This in turn means that, in the event of a circular movement, the radius of the actual circle actually machined by the machine is always smaller than the desired radius of the desired circle.
  • the target and actual path can therefore not be compared by simply evaluating the target or actual positions determined at the same times.
  • R NC denotes the nominal circular path, which is approximated as a polygon due to the digital mode of operation of the machine through a sequence of nominal positions, indicated in FIG. 3 as minute lines
  • R N denotes the actual circular path detected by the measuring system 33, 43, which in the example the figure 3 is to be run clockwise.
  • An xy plane spanned by any two orthogonal axes is shown.
  • the setpoint position x 1 , y 1 is specified by the control.
  • the machine is actually in the position x M1 , y M1 at the same time t 1 .
  • the proposed method is therefore particularly suitable for machines whose controls include a pilot control device 12. Since the aim of the precontrol is to avoid following errors, the setpoint and actual position generally correspond in the case of a control movement of this type during a circular movement.
  • pilot control can also significantly reduce the dynamic following error, but it can never ideally make it zero.
  • Applications are also conceivable in which precontrol is not possible or is undesirable.
  • step 21 the NC machine travels through a predetermined nominal circular path R NC .
  • Target positions w NC and measured actual positions x M are stored axis by axis, target positions w NC and measured actual positions x M each being recorded at the same times.
  • the path deviation found according to equation 2 is again expediently added to or subtracted from a reference signal R Ref in the form of a reference circle.
  • the reference signal R Ref and the desired representation in the internal-external standard are therefore defined, for example by interactive input.
  • subsequent step 25 the path deviations ⁇ R found are increased. This is done by setting a scaling factor, again e.g. interactive, for scaling the coordination system on which the subsequent display on the screen 70 is based.
  • the entire diagnostic method is carried out in the diagnostic device 20, which can be implemented both in the numerical control itself and in an external device.
  • the circular shape test proposed according to the invention in conjunction with a known, mechanical circular shape test method, for example the Knapp / Hrovat to perform.
  • a known, mechanical circular shape test method for example the Knapp / Hrovat to perform.
  • the latter includes the external mechanism 65.
  • the two circular shape test methods are expediently carried out one after the other, for the purpose of the example it is assumed that a test was first carried out using the method according to the invention.
  • the 2-D probe is attached to one of the slides, usually on the spindle.
  • the Machine in turn from the same programmed circular path movement R NC that it has already carried out as part of the circular shape test according to the invention previously carried out.
  • the circular path R NC coincides with the outer contour of the circular standard 62.
  • the measuring probe 61 bears against this outer contour during the machine movement, and thus moves on a circular path defined by the circular standard 62.
  • the 2-D probe detects the relative movements between probe 60 and probe 61 and converts them into an output signal. Since the probe 60 is guided along the actual path, the probe 61 along the desired circular path, the circular standard 62, this output signal corresponds to the circular deviation R. a signal R KN , which are subtracted from one another in the summing point 63.
  • ⁇ R is again expediently displayed on the screen 70.
  • a reference signal R Ref in the form of a reference circular path can be added or subtracted from the signal ⁇ R again, as already suggested in the description of the circular shape test according to the invention.
  • the diagnostic unit 20 is expediently operated using a software-implemented diagnostic menu, which in particular allows the setting of new target radii, for example R NC , other reference radii, for example R Ref , other magnification factors and changing the direction of rotation of the circular movement and specifying new circular path speeds.
  • the evaluation of the results obtained with the circular shape test is also advantageously implemented in software in the diagnostic unit. For example, the circular shape deviation, the circular deviation, the diameter deviation as well as reversal ranges can be evaluated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

L'invention concerne un procédé permettant de vérifier la précision d'une machine à commande numérique, en comparant une trajectoire circulaire théorique avec une trajectoire circulaire réelle décrivant le mouvement effectif de la machine, pour une machine à commande numérique comprenant au moins deux axes, avec au moins deux circuits de servo-régulation comportant chacun un entraînement direct pour guider un chariot selon un signal de guidage de position décrivant la trajectoire théorique de mouvement, ainsi qu'un système de mesure de déplacement pour détecter et restituer la position du chariot. La trajectoire circulaire réelle RM est dérivée des signaux de position (XM) fournis par le système de mesure de déplacement (33, 43), chaque signal de position (XM) mesuré par le système de mesure de déplacement (33, 43) étant comparé au signal de guidage de position (WNC) correspondant.

Claims (6)

  1. Procédé permettant de vérifier la précision du fonctionnement d'une machine à commande numérique par comparaison à une piste de consigne de forme circulaire (RNC) avec une piste réelle de forme circulaire décrivant le mouvement effectif de la machine pour une machine à commande numérique à au moins deux axes avec au moins deux boucles d'asservissement (30, 40), qui présentent respectivement un mécanisme d'entraînement (31, 41) pour guider un chariot (32, 42) selon un signal de guidage (WNC) de position décrivant la piste du mouvement de consigne (RNC), ainsi qu'un système de mesure de déplacement (33, 43) servant à détecter et à remettre le chariot en position (31, 41), la piste circulaire réelle (RM) étant fermée à partir des signaux de position (xM) délivrés par le système de mesure (33, 43) de déplacement,
    caractérisé en ce que
    le signal de guidage (WNC) de position, amené aux boucles d'asservissement (30, 40), a sa vitesse précommandée pour faire en sorte que la position réelle (xM1, xM2) faisant partie d'une position de consigne (x1, y1) soit réglée en même temps que celle-ci et que les signaux de position de consigne et de position réelle détectés aux mêmes instants soient comparés les uns avec les autres.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    le signal de guidage de position (WNC) a en outre son accélération précommandée.
  3. Procédé selon la revendication 1,
    caractérisé en ce que
    le signal de sortie (xM) du système de mesure (33, 43) de déplacement est soustrait du signal de sortie (WNC) de l'interpolateur (10), le résultat est soustrait ensuite d'un signal de référence (Rref) et est affiché sur un écran d'affichage (70).
  4. Procédé selon la revendication 1,
    caractérisé en ce que
    le signal de sortie (xM) du système de mesure (33, 43) de déplacement est soustrait du signal de sortie (WNC) de l'interpolateur (10), en ce qu'on additionne ensuite le résultat à un signal de référence (Rref) et en ce qu'on l'affiche sur un écran d'affichage (70).
  5. Procédé selon la revendication 3 ou 4,
    caractérisé en ce que
    le signal de référence (Rref) est une piste circulaire d'un rayon que l'on peut définir au préalable.
  6. Procédé permettant de vérifier la précision du fonctionnement d'une machine à commande numérique par comparaison à une piste de consigne de forme circulaire (RNC) avec une piste réelle de forme circulaire décrivant le mouvement effectif de la machine pour une machine à commande numérique à au moins deux axes avec au moins deux boucles d'asservissement (30, 40), qui présentent respectivement un mécanisme d'entraînement (31, 41) pour guider un chariot (32, 42) selon un signal de guidage (WNC) de position décrivant la piste du mouvement de consigne (RNC), ainsi qu'un système de mesure de déplacement (33, 43) servant à détecter et à remettre le chariot en position (31, 41), la piste circulaire réelle (RM) étant formée à partir des signaux de position (xM) délivrés par le système de mesure (33, 43) de déplacement,
    caractérisé en ce que
    l'on détecte lors d'une première séquence (21) les valeurs que l'on a aux mêmes instants (t1) pour la position de consigne et pour la position réelle (XM), mesurée par le système de mesure (XM) de déplacement, en ce que lors d'une deuxième séquence (22) on détecte à partir de ces valeurs des positions de consigne déterminant la position réelle en prenant mathématiquement considération de la distance d'entraînement.
EP93918978A 1992-09-22 1993-09-11 Procede permettant de verifier la precision d'une machine a commande numerique Expired - Lifetime EP0613573B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4231613 1992-09-22
DE4231613A DE4231613A1 (de) 1992-09-22 1992-09-22 Verfahren zur Überprüfung der Arbeitsgenauigkeit einer NC-Maschine
PCT/DE1993/000841 WO1994007187A1 (fr) 1992-09-22 1993-09-11 Procede permettant de verifier la precision d'une machine a commande numerique

Publications (2)

Publication Number Publication Date
EP0613573A1 EP0613573A1 (fr) 1994-09-07
EP0613573B1 true EP0613573B1 (fr) 1997-07-23

Family

ID=6468486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93918978A Expired - Lifetime EP0613573B1 (fr) 1992-09-22 1993-09-11 Procede permettant de verifier la precision d'une machine a commande numerique

Country Status (4)

Country Link
EP (1) EP0613573B1 (fr)
JP (1) JPH07501412A (fr)
DE (2) DE4231613A1 (fr)
WO (1) WO1994007187A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT398246B (de) * 1993-06-11 1994-10-25 Frank Adolf Dipl Ing Dr Vorrichtung zur kontrolle der geometrischen und dynamischen genauigkeit eines nc-gesteuerten arbeitskopfes
DE19602470A1 (de) * 1996-01-24 1997-07-31 Siemens Ag Bestimmung und Optimierung der Arbeitsgenauigkeit einer Werkzeugmaschine oder eines Roboters oder dergleichen
DE19821557A1 (de) * 1998-05-14 1999-11-18 Heidenhain Gmbh Dr Johannes Verfahren zur nichtlinearen Darstellung von Bahnkurven
DE102006015981B4 (de) 2005-08-19 2014-02-13 Siemens Aktiengesellschaft Verfahren zum Ermitteln des Verhaltens von zum Zwecke der Bewegung eines Werkzeugs oder einer Werkzeugaufnahme im Verbund bewegbaren Maschinenachsen einer mehrachsigen Maschine
JP5266373B2 (ja) * 2011-09-26 2013-08-21 ファナック株式会社 工具の軌跡表示機能を備えた数値制御装置
JP5249452B1 (ja) 2011-12-28 2013-07-31 ファナック株式会社 補正データを考慮した軌跡表示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1133793B (de) * 1961-06-30 1962-07-26 Licentia Gmbh Anordnung zur Pruefung des Programms fuer numerisch gesteuerte Maschinen
US4200827A (en) * 1977-06-29 1980-04-29 International Business Machines Corporation Positioning system employing feedforward and feedback control
SE441037B (sv) * 1984-08-28 1985-09-02 Johansson Ab C E Sett att oka noggrannheten hos ett lengdmetsystem genom att kalibrera detta mot ett noggrannare referenssystem
DE3438007A1 (de) * 1984-10-17 1986-04-17 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur diagnose einer bahngesteuerten maschine
JPS61209857A (ja) * 1985-03-08 1986-09-18 Yoshiaki Kakino Nc工作機械の運動精度試験方法および装置
DE3714028A1 (de) * 1987-04-27 1988-11-17 Siemens Ag Verfahren zum ermitteln von korrekturwerten fuer die von einer wegmesseinrichtung einer numerisch gesteuerten handhabungs- oder produktionsmaschine erfassten messwerte
DE3908528C2 (de) * 1988-12-24 1995-09-28 Doerries Scharmann Ag Verfahren zum Bearbeiten gekrümmter Konturen an Werkstücken mit einem Werkzeug
JP2843362B2 (ja) * 1989-07-06 1999-01-06 東芝機械株式会社 Nc装置の楕円補間制御方法およびnc装置
EP0429857A1 (fr) * 1989-11-27 1991-06-05 Wolfgang Dr. Knapp Procédé pour mesurer l'écart des mouvements d'une machine obtenus par un axe de rotation et deux axes de translation
DE4037762A1 (de) * 1989-12-20 1991-07-04 Messerschmitt Boelkow Blohm Verfahren zur korrektur des phasenganges geregelter stellantriebe
JP2578241B2 (ja) * 1990-04-05 1997-02-05 松下電器産業株式会社 自動プログラム作成装置
DE4028006C2 (de) * 1990-09-04 1994-04-14 Deutsche Aerospace Verfahren zur Kompensation von maßlichen Abweichungen von NC- oder CNC-gesteuerten Werkzeugmaschinen
JPH04177408A (ja) * 1990-11-08 1992-06-24 Fanuc Ltd 数値制御装置の精度評価方法
DE4039620A1 (de) * 1990-12-12 1992-06-17 Bosch Gmbh Robert Verfahren zur ermittlung von vorsteuerparametern fuer eine lageregelung
JPH04240050A (ja) * 1991-01-21 1992-08-27 Toyoda Mach Works Ltd 機上測定装置

Also Published As

Publication number Publication date
DE4231613A1 (de) 1994-03-24
WO1994007187A1 (fr) 1994-03-31
JPH07501412A (ja) 1995-02-09
DE59306974D1 (de) 1997-08-28
EP0613573A1 (fr) 1994-09-07

Similar Documents

Publication Publication Date Title
EP0876640B1 (fr) Determination et optimisation de la precision d'une machine-outil, d'un robot ou similaire
DE3784047T2 (de) Kalibrierungsverfahren für ein Koordinatenmessgerät und ähnliche Geräte.
DE102012108963B4 (de) Numerische Steuerung mit einer Darstellung der Werkzeug-Trajektorie
DE102010017763B4 (de) Gerät zum Anzeigen des Werkzeugwegs für Werkzeugmaschinen
DE3805500C2 (fr)
EP0211202B1 (fr) Commande pour appareils de mesure coordonnés
DE60018412T2 (de) Steuergerät für messinstrument
DE102016116523B4 (de) Vibrationsanalysevorrichtung, die einen Zyklus der Werkzeugvibration in Bezug zum Werkstück berechnet
DE102005027947A1 (de) Vorrichtung zum Überprüfen einer Störung
EP0732563A1 (fr) Machine de mesure de coördonnées avec dispositif pour la détermination de la rugosité
DE2934347A1 (de) Verfahren und pruefgeraet zum pruefen des zahnflankenprofils von zahnraedern grossen durchmessers
EP0187934A2 (fr) Dispositif pour traiter des pièces au moyen d'un rayon laser sortant d'une tête de laser
DE102013102656A1 (de) Schneidstrecken-berechnungseinrichtung für eine mehrachsen-werkzeugmaschine
DE102007048587A1 (de) Werkzeugmaschinensteuerung
EP0613573B1 (fr) Procede permettant de verifier la precision d'une machine a commande numerique
DE3640287C2 (fr)
DE4411263A1 (de) Verfahren und Anordnung zur Überprüfung der Führungsgenauigkeit einer Brennschneidmaschine
EP0729005A1 (fr) Dispositif de mesure avec 6 degrés de liberté
DE19805155B4 (de) Verfahren zum Erzeugen von Steuerdaten für Koordinatenmeßgeräte
DE4228702A1 (de) Programmgesteuerte bearbeitungsvorrichtung und verfahren zur ueberwachung ihres betriebes
DE4323992A1 (de) Verfahren zur Überprüfung der Arbeitsgenauigkeit einer NC-Maschine
DE3438007C2 (fr)
DE102020203770A1 (de) Steuergerät und Werkzeugmaschine
DE4006949C5 (de) Verfahren zum punktweisen Abtasten der Oberfläche eines Werkstücks
DE60032635T2 (de) Verfahren und vorrichtung zum testen von werkzeugmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

17Q First examination report despatched

Effective date: 19960118

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19970723

Ref country code: GB

Effective date: 19970723

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59306974

Country of ref document: DE

Date of ref document: 19970828

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970723

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110926

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121122

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59306974

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130912