EP0612130A1 - Apparatus for non thermal excitation and ionisation of vapors and gases - Google Patents

Apparatus for non thermal excitation and ionisation of vapors and gases Download PDF

Info

Publication number
EP0612130A1
EP0612130A1 EP94102010A EP94102010A EP0612130A1 EP 0612130 A1 EP0612130 A1 EP 0612130A1 EP 94102010 A EP94102010 A EP 94102010A EP 94102010 A EP94102010 A EP 94102010A EP 0612130 A1 EP0612130 A1 EP 0612130A1
Authority
EP
European Patent Office
Prior art keywords
electrode elements
electrode
modules
protective
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94102010A
Other languages
German (de)
French (fr)
Other versions
EP0612130B1 (en
Inventor
Ernst Dr. Rohrer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UP-TO-DATE FINANCE AG
Original Assignee
Ernst Dr. Rohrer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ernst Dr. Rohrer filed Critical Ernst Dr. Rohrer
Publication of EP0612130A1 publication Critical patent/EP0612130A1/en
Application granted granted Critical
Publication of EP0612130B1 publication Critical patent/EP0612130B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge

Definitions

  • the invention relates to a device for exciting vapors and gases by means of electrical fields, which has a plurality of electrodes.
  • Discharges are flows of electrical current through a gas. They are divided into different forms according to their current-voltage characteristics, e.g. Townsend (independent and dependent dark discharges), corona or barrier discharges, normal and abnormal glow, sparks and arc discharges.
  • Townsend independent and dependent dark discharges
  • corona or barrier discharges corona or barrier discharges
  • normal and abnormal glow sparks and arc discharges.
  • corona and glow discharges are used for weak excitations up to multi-stage ionization (cold plasma). Spark and arc discharges are not required for non-thermal processes.
  • Previously known excitation devices can be divided into two basic types: devices with plate-shaped, flat electrodes and devices with concentric, tubular electrodes.
  • polymerizations can also occur, which can result in a mist of polymers, which is deposited on the electrodes or the dielectric and thus changes the discharge conditions.
  • Such phenomena are known e.g. in the treatment of gases containing styrene or ethylene oxide. When such gases are excited, the polymerization of the monomers is initiated and the barrier material and / or the electrodes are coated with a polymer layer after a short time. As a result, an additional insulation layer is created and the discharges lose their intensity.
  • the task arises to design a device that does not have these disadvantages.
  • the device should enable the problem-free treatment of moist gases and polymerizing vapors.
  • a preferred embodiment of the excitation cell is derived from the principle of parallel plate electrodes. At least one electrode is divided into a larger number of small, rod-shaped electrode elements. Each electrode element is surrounded by a protective jacket.
  • the protective jacket preferably consists of a chemically and thermally stable material, that is also resistant to the fields and discharges.
  • An advantage of the excitation cell according to the invention is that the gas flow takes place in a non-laminar manner even at low flow rates. This largely prevents deposits on the protective sheaths of the electrodes, since the condensate cannot deposit at all or is immediately blown away again.
  • the arrangement of the electrodes is selected such that any condensate drops deposited are brought by gravity and / or the gas flow into an area of the protective jacket where the electric field is small and therefore they cannot have a strong influence on the discharge process.
  • the cell can also be constructed in such a way that the electrode spacing and thus the field strength can be varied by simple mechanical manipulation. This allows a simple adjustment of the field strength to the respective operating requirements and the achievement of very high fields.
  • FIG. 1 The basic structure of an exemplary embodiment of the device according to the invention is shown in FIG. 1.
  • the excitation cell shown here consists of a plurality of rod-shaped, horizontally lying electrode elements 1, which are held at both ends by vertically extending webs 2, 2 'and 3, 3'.
  • the cell is thus subdivided into a plurality of modules arranged upright, each module consisting of two opposing webs and the electrode elements held equidistantly therein.
  • All electrode elements of a module are electrically connected to rails 11 via leads 4.
  • the modules are alternately grounded or connected to a phase P.
  • the gas flow G through the cell is preferably from top to bottom. As discussed below, this reduces the influence of deposited condensate drops on the field distribution.
  • FIG. 2 shows a vertical section through a module with the next module located behind it.
  • Each electrode element 1 is surrounded by a protective jacket 5.
  • a tube of suitable diameter is preferably used as the protective sheath, which consists of a chemically and thermally stable material which is also resistant to the electrical fields and discharges. Pipes made of quartz, homogeneous ceramics or special glasses such as borosilicate melts are particularly suitable for this.
  • the protective jacket 5 protects the electrode element 1, which consists of a conductive material.
  • electrode material e.g. non-insulated copper strands are used. Thanks to the irregular surfaces of these strands, the discharges can start from many individual surface points and not only build up in a few places (peak discharge). This also results in greater tolerances for the positioning and alignment of the electrodes without impairing the homogeneity of the discharge or the field.
  • the protective sleeves 5 are closed at one end 6, while at the other end 7 they have an opening for the introduction of the electrode element 1. This opening is sealed gas-tight against the electrode material. Thanks to this structure, gas or plasma remains enclosed in the interior of the protective jacket. This highly reactive mixture cannot therefore escape to the outside where it could cause damage to the webs 2, 2 ', 3, 3', for example. Air, but also a suitable protective gas can be used as the gas in the interior of the protective jacket.
  • FIG. 3 shows a horizontal section through two electrode elements of adjacent modules in the area of the webs.
  • the protective jackets in the area of the webs are preferably provided with protective electrodes 9, 10. It can e.g. are at least weakly electrically conductive foils, hoses or coatings, as are known to the person skilled in the art. These protective earths are arranged between the protective jackets and the bars.
  • the end 6 of the one protective jacket, the electrode element of which is in phase is provided with a protective electrode 9 which is grounded.
  • the protective electrode 10 of the end 7 of the second protective jacket, the electrode element of which is on earth, is also connected to the earth. The field in the area of the webs 2, 2 'between the electrode elements is thus small.
  • adjacent modules can be arranged offset from one another, so that, for example, each electrode element of a module comes to lie at the height between the electrode elements of the adjacent modules. This results in an optimally homogeneous field.
  • FIG. 4 shows a vertical section through the webs.
  • the cell is preferably constructed in such a way that adjacent modules can be displaced in the vertical direction relative to one another, as is indicated by the arrows S. This makes it possible to regulate the electrode spacing and thus the electrical field and the discharge.
  • FIG. 4 shows a possible structure of the webs 2, 2 '.
  • the webs here consist of strips of an elastic material, e.g. based on silicone. In these webs are formed on one side edge at regular intervals for receiving the electrode elements, respectively. protective coats attached. Thanks to the elastic design of the webs, the protective sleeves can be snapped into these recesses.
  • This construction has the advantage that damaged electrode elements can be easily replaced, since they can easily be removed from the web and reinserted therein.
  • the connections of the electrode elements to the rails 11 are preferably designed to be pluggable.
  • FIG. 5 shows an alternative web structure, in which the webs 2, 2 'each consist of a spacer strip 13 and a strip 12, the electrode elements 1 and the protective sleeves 5 being arranged in the strip 12.
  • the strip 12 may e.g. are a layer of a curable, electrically insulating and durable sealing material, in which the protective sheaths 5 are integrated.
  • FIG. 6 shows a possible constructive embodiment of the termination of a protective jacket 5 in the end region of the electrode element 1.
  • the tube in the region 14 was heated and squeezed together. So that results a tight seal of the protective jacket.
  • the cross section of the protective jacket can be selected in the region 14. In the present example, a square cross section was chosen.
  • Figure 7 shows a section through webs that hold such closed protective sheaths. Thanks to the narrowing of the protective sleeves in the area of the webs caused by the crushing, the protective sleeves are held very well in the webs.
  • a gas stream is passed through the cell from above. Thanks to the many individual electrode rods, the gas flow does not flow through the cell in a laminar manner, even with small gas flows. This results in better gas mixing and a longer gas path, which increases the efficiency of the excitation. In addition, the turbulence has the effect that any condensate deposited on the protective sleeves of the electrode rods is carried away and that the deposition of condensate is made more difficult.
  • FIG. 1 shows only one of the possibilities for building an excitation cell according to the invention.
  • part of the electrode elements can be replaced by electrode plates.
  • the electrodes can also be used in other directions and do not necessarily all have to be arranged in parallel.
  • the individual electrode elements or the protective shells do not necessarily have to be round.
  • oval and flattened cross sections are also conceivable.
  • each electrode element is held by two webs. However, it is also possible to use more than two webs per module. Modules can also be produced with only one web, the electrode elements in this case benefiting from the additional hold provided by the busbar 11.
  • the described invention makes it possible to construct a modular, efficient and less pollution-prone excitation device which can be used in many areas of application.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The excitation cell has a multiplicity of rod-shaped electrode elements (1). Each electrode element is surrounded by a chemically and thermally stable protective jacket which can also withstand electric fields. The electrode elements are held in vertically running bridges (2, 2', 3, 3'). This provides a construction in a plurality of modules, each of which modules consists of electrode elements arranged one on top of another and two bridges. The electrode elements of each module are electrically connected to a conducting rail (11) and are at the same potential. The modules are alternately applied to phase and earth. The excitation cell described is largely insensitive to condensates, so that even humid or polymerising gases can be excited. In addition, the modular construction allows individual electrode elements to be replaced with ease. <IMAGE>

Description

Die Erfindung betrifft eine Vorrichtung zur Anregung von Dämpfen und Gasen mittels elektrischer Felder, die mehrere Elektroden aufweist.The invention relates to a device for exciting vapors and gases by means of electrical fields, which has a plurality of electrodes.

Die nichtthermische Anregung von Gasen und Dämpfen erfährt immer weitere industrielle Verbreitung bei der Spaltung und dem Abbau, sowie auch bei der Synthese von einfachen bis hochmolekularen Verbindungen organischer und anorganischer Natur.The non-thermal excitation of gases and vapors is becoming increasingly widespread in the field of fission and degradation, as well as in the synthesis of simple to high molecular weight compounds of organic and inorganic nature.

Wegen der apparativen Einfachheit werden vor allem elektrische Felder und Entladungen zur Anregung verwendet. Entladungen sind Flüsse von elektrischem Strom durch ein Gas. Sie werden entsprechend ihrer Strom-Spannungs-Charakteristik in verschiedene Formen unterteilt, wie z.B. Townsend- (selbständige und unselbständige Dunkelentladungen), Korona- oder Barrierenentladungen, normale und anormale Glimm-, Funken sowie Bogenentladungen.Because of the simplicity of the equipment, electric fields and discharges are used for excitation. Discharges are flows of electrical current through a gas. They are divided into different forms according to their current-voltage characteristics, e.g. Townsend (independent and dependent dark discharges), corona or barrier discharges, normal and abnormal glow, sparks and arc discharges.

In der Technik werden für schwache Anregungen bis zur mehrstufigen Ionisation (Kaltplasma) Korona- und Glimmentladungen eingesetzt. Funken- und Bogenentladungen entfallen für nichtthermische Verfahren.In technology, corona and glow discharges are used for weak excitations up to multi-stage ionization (cold plasma). Spark and arc discharges are not required for non-thermal processes.

Bisher bekannte Anregungsvorrichtungen können in zwei Grundtypen unterteilt werden: Geräte mit plattenförmigen, flachen Elektroden und Geräte mit konzentrischen, röhrenförmigen Elektroden.Previously known excitation devices can be divided into two basic types: devices with plate-shaped, flat electrodes and devices with concentric, tubular electrodes.

Durch die Anregung, die partielle oder die vollständige Ionisation der Gase kommt es in den Anregungskammern sehr häufig zur Bildung von Clustern, welche sich infolge von Kollisionen zu grösseren Aggregaten zusammenschliessen, Aerosole und schliesslich grössere Tröpfchen bilden. Die Erfahrung zeigt, dass auch bei feuchten Gasen Kondensationen an den Entladungsflächen auftreten (Taupunkterniedrigung). Derartige Kondensate, die sich an den Elektroden bzw. deren Beschichtungen ablagern, können durch örtliche Veränderungen des elektrischen Widerstandes den Stromdurchgang stark beeinflussen. So kann eine örtlich erhöhte Leitfähigkeit, z.B. durch Wassertröpfchen, lokal zu Funkenentladungen, Durchschlägen, ja sogar Bogenentladungen führen. Dies führt zur Beschädigung der Barrieren rsp. Beschichtungen der Elektroden, zu übermässiger Stromaufnahme sowie zu unerwünschter Erhitzung.As a result of the excitation, the partial or the complete ionization of the gases, clusters very often form in the excitation chambers, which form collisions as a result of collisions, form aerosols and finally larger droplets. Experience shows that too with moist gases, condensation occurs on the discharge surfaces (lowering of the dew point). Such condensates, which are deposited on the electrodes or their coatings, can strongly influence the passage of current through local changes in the electrical resistance. For example, locally increased conductivity, for example due to water droplets, can locally lead to spark discharges, breakdowns and even arcing. This leads to damage to the barriers rsp. Coatings of the electrodes, excessive current consumption and undesired heating.

Je nach Gaszusammensetzung kann es auch zu Polymerisationen und damit zu einem Nebel von Polymeren kommen, der sich auf den Elektroden oder dem Dielektrikum niederschlägt und damit die Entladungsverhältnisse verändert. Bekannt sind solche Erscheinungen z.B. bei der Behandlung von Styrol- oder Ethylenoxid-haltigen Gasen. Bei der Anregung derartiger Gase wird die Polymerisation der Monomere eingeleitet und das Barrierenmaterial und/oder die Elektroden werden nach kurzer Zeit mit einer Polymerschicht überzogen. Als Folge davon entsteht eine zusätzliche Isolationsschicht, und die Entladungen verlieren ihre Intensität.Depending on the gas composition, polymerizations can also occur, which can result in a mist of polymers, which is deposited on the electrodes or the dielectric and thus changes the discharge conditions. Such phenomena are known e.g. in the treatment of gases containing styrene or ethylene oxide. When such gases are excited, the polymerization of the monomers is initiated and the barrier material and / or the electrodes are coated with a polymer layer after a short time. As a result, an additional insulation layer is created and the discharges lose their intensity.

Deshalb stellt sich die Aufgabe, ein Gerät zu konstruieren, welches diese Nachteile nicht aufweist. Insbesondere soll das Gerät die problemlose Behandlung feuchter Gase und polymerisierender Dämpfe ermöglichen.Therefore, the task arises to design a device that does not have these disadvantages. In particular, the device should enable the problem-free treatment of moist gases and polymerizing vapors.

Diese Aufgabe wird durch die im ersten Patentanspruch beschriebene Vorrichtung gelöst.This object is achieved by the device described in the first claim.

Eine bevorzugte Ausführung der Anregungszelle leitet sich aus dem Prinzip paralleler Plattenelektroden ab. Dabei wird mindestens eine Elektrode in eine grössere Anzahl kleiner, stabförmiger Elektrodenelemente aufgeteilt. Jedes Elektrodenelement ist dabei von einem Schutzmantel umgeben. Der Schutzmantel besteht vorzugsweise aus einem chemisch und thermisch stabilen Material, das auch gegenüber den Feldern und Entladungen beständig ist.A preferred embodiment of the excitation cell is derived from the principle of parallel plate electrodes. At least one electrode is divided into a larger number of small, rod-shaped electrode elements. Each electrode element is surrounded by a protective jacket. The protective jacket preferably consists of a chemically and thermally stable material, that is also resistant to the fields and discharges.

Ein Vorteil der erfindungsgemässen Anregungszelle besteht darin, dass der Gasdurchfluss schon bei kleinen Durchflussraten in nicht-laminarer Weise erfolgt. Dadurch werden Ablagerungen auf den Schutzmänteln der Elektroden weitgehend verhindert, da das Kondensat sich gar nicht erst ablagern kann oder sofort wieder fortgeblasen wird.An advantage of the excitation cell according to the invention is that the gas flow takes place in a non-laminar manner even at low flow rates. This largely prevents deposits on the protective sheaths of the electrodes, since the condensate cannot deposit at all or is immediately blown away again.

In einer bevorzugten Ausführung der Zelle ist die Anordnung der Elektroden so gewählt, dass allfällige abgelagerte Kondensattropfen durch die Schwerkraft und/oder den Gasfluss in einen Bereich des Schutzmantels gebracht werden, wo das elektrische Feld klein ist und sie somit den Entladungsprozess nicht stark beeinflussen können.In a preferred embodiment of the cell, the arrangement of the electrodes is selected such that any condensate drops deposited are brought by gravity and / or the gas flow into an area of the protective jacket where the electric field is small and therefore they cannot have a strong influence on the discharge process.

Dank der Aufteilung der Elektroden in sehr viele kleine Elektrodenelemente mit eigenen Schutzbarrieren werden ausserdem die Kosten für eine allfällige Reparatur verringert. Falls zum Beispiel durch unkontrollierte Bogenentladung ein Schutzmantel eines Elektrodenelements beschädigt wird, so genügt es, dieses einzelne Elektrodenelement bzw. seinen Schutzmantel zu ersetzen. Der Ersatz eines solchen kleinen Elements ist relativ billig. Bei herkömmlichen Apparaturen muss für derartige Reparaturen jeweils eine ganze Elektrode, bzw. deren Barriere ausgetauscht werden. Da es sich dabei um viel grössere Elemente handelt, sind die Kosten entsprechend höher.Thanks to the division of the electrodes into a large number of small electrode elements with their own protective barriers, the costs for any repairs are also reduced. If, for example, a protective jacket of an electrode element is damaged by uncontrolled arc discharge, it is sufficient to replace this individual electrode element or its protective jacket. The replacement of such a small element is relatively inexpensive. In conventional apparatuses, an entire electrode or its barrier must be replaced for such repairs. Since these are much larger elements, the costs are correspondingly higher.

Durch geeignete Anordnung der Elektrodenelemente und Wahl der Halterungen kann die Zelle auch so konstruiert werden, dass durch einfache mechanische Manipulation der Elektrodenabstand und somit die Feldstärke variiert werden kann. Dies erlaubt eine einfache Anpassung der Feldstärke an jeweilige Betriebsanforderungen sowie das Erreichen sehr hoher Felder.By suitably arranging the electrode elements and selecting the holders, the cell can also be constructed in such a way that the electrode spacing and thus the field strength can be varied by simple mechanical manipulation. This allows a simple adjustment of the field strength to the respective operating requirements and the achievement of very high fields.

Weitere Vorteile der Erfindung werden aus der folgenden Beschreibung eines Ausführungsbeispiels anhand der Figuren ersichtlich. Dabei zeigen:

  • Figur 1 eine schematische Gesamtansicht einer bevorzugten Ausführung;
  • Figur 2 einen Schnitt durch ein Modul von Elektrodenelementen mit dem versetzt dahinterliegenden nächsten Modul;
  • Figur 3 einen horizontalen Schnitt durch zwei nebeneindanderliegende Elektrodenelemente;
  • Figur 4 einen vertikalen Schnitt durch die Stege;
  • Figur 5 eine alternative Ausführungsform der Stege;
  • Figur 6 eine alternative Ausführung des Abschlusses der Schutzmäntel, und
  • Figur 7 einen vertikalen Schnitt durch die Stege mit Schutzmänteln nach Figur 6.
Further advantages of the invention will become apparent from the following description of an embodiment using the figures. Show:
  • Figure 1 is a schematic overall view of a preferred embodiment;
  • FIG. 2 shows a section through a module of electrode elements with the next module located behind them;
  • FIG. 3 shows a horizontal section through two adjacent electrode elements;
  • Figure 4 shows a vertical section through the webs;
  • Figure 5 shows an alternative embodiment of the webs;
  • Figure 6 shows an alternative embodiment of the closure of the protective sheaths, and
  • 7 shows a vertical section through the webs with protective sleeves according to FIG. 6.

Der prinzipielle Aufbau eines Ausführungsbeispiels der erfindungsgemässen Vorrichtung wird in Fig. 1 gezeigt.The basic structure of an exemplary embodiment of the device according to the invention is shown in FIG. 1.

Die hier dargestellte Anregungszelle besteht aus einer Vielzahl von stabförmigen, horizontal liegenden Elektrodenelementen 1, die von vertikal verlaufenden Stegen 2, 2' und 3, 3' an beiden Enden gehalten werden. Damit wird die Zelle in mehrere, stehend angeordnete Module unterteilt, wobei jedes Modul aus zwei gegenüberliegenden Stegen und aus den darin äquidistant gehaltenten Elektrodenelementen besteht.The excitation cell shown here consists of a plurality of rod-shaped, horizontally lying electrode elements 1, which are held at both ends by vertically extending webs 2, 2 'and 3, 3'. The cell is thus subdivided into a plurality of modules arranged upright, each module consisting of two opposing webs and the electrode elements held equidistantly therein.

Alle Elektrodenelemente eines Moduls sind über Zuführungen 4 elektrisch mit Schienen 11 verbunden. Dabei sind die Module abwechslungsweise auf Erde gelegt oder mit einer Phase P verbunden.All electrode elements of a module are electrically connected to rails 11 via leads 4. The modules are alternately grounded or connected to a phase P.

Der Gasfluss G durch die Zelle geschieht im vorliegenden Beispiel vorzugsweise von oben nach unten. Wie weiter unten diskutiert wird, verringert sich dadurch der Einfluss abgelagerter Kondensattropfen auf die Feldverteilung.In the present example, the gas flow G through the cell is preferably from top to bottom. As discussed below, this reduces the influence of deposited condensate drops on the field distribution.

Der Aufbau der Elektrodenelemente wird aus Figur 2 ersichtlich, die einen vertikalen Schnitt durch ein Modul mit dem versetzt dahinterliegenden nächsten Modul zeigt.The structure of the electrode elements can be seen in FIG. 2, which shows a vertical section through a module with the next module located behind it.

Jedes Elektrodenelement 1 ist von einem Schutzmantel 5 umgeben. Als Schutzmantel wird vorzugsweise ein Rohr von geeignetem Durchmesser verwendet, welches aus einem chemisch und thermisch stabilen Material besteht, das auch gegenüber den elektrischen Feldern und Entladungen beständig ist. Dazu sind besonders Rohre aus Quarz, homogener Keramik oder Spezialgläsern, wie z.B Borsilikatschmelzen, geeignet.Each electrode element 1 is surrounded by a protective jacket 5. A tube of suitable diameter is preferably used as the protective sheath, which consists of a chemically and thermally stable material which is also resistant to the electrical fields and discharges. Pipes made of quartz, homogeneous ceramics or special glasses such as borosilicate melts are particularly suitable for this.

Der Schutzmantel 5 schützt das Elektrodenelement 1, welches aus einem leitenden Material besteht. Als Elektrodenmaterial werden z.B. nicht isolierte Kupfer-Litzen verwendet. Dank der unregelmässigen Oberflächen dieser Litzen kann erreicht werden, dass die Entladungen von vielen einzelnen Oberflächenpunkten ausgehen und sich nicht nur an einigen wenigen Stellen aufbauen (Spitzenentladung). Damit ergeben sich auch grössere Toleranzen für die Positionierung und Ausrichtung der Elektroden, ohne dass die Homogenität der Entladung bzw. des Feldes beeinträchtigt wird.The protective jacket 5 protects the electrode element 1, which consists of a conductive material. As electrode material e.g. non-insulated copper strands are used. Thanks to the irregular surfaces of these strands, the discharges can start from many individual surface points and not only build up in a few places (peak discharge). This also results in greater tolerances for the positioning and alignment of the electrodes without impairing the homogeneity of the discharge or the field.

Die Schutzmäntel 5 sind an einem Ende 6 geschlossen, währenddem sie am anderen Ende 7 eine Oeffnung zur Einführung des Elektrodenelements 1 aufweisen. Diese Oeffnung ist gegen das Elektrodenmaterial gasdicht abgedichtet. Dank diesem Aufbau wird erreicht, dass Gas oder Plasma im Innenraum des Schutzmantels eingeschlossen bleibt. Somit kann dieses hoch reaktive Gemisch auch nicht nach aussen dringen, wo es z.B. Schäden an den Stegen 2, 2', 3, 3' bewirken könnte. Als Gas im Innenraum des Schutzmantels kann Luft, aber auch ein geeignetes Schutzgas verwendet werden.The protective sleeves 5 are closed at one end 6, while at the other end 7 they have an opening for the introduction of the electrode element 1. This opening is sealed gas-tight against the electrode material. Thanks to this structure, gas or plasma remains enclosed in the interior of the protective jacket. This highly reactive mixture cannot therefore escape to the outside where it could cause damage to the webs 2, 2 ', 3, 3', for example. Air, but also a suitable protective gas can be used as the gas in the interior of the protective jacket.

Die Endbereiche der Schutzmäntel werden in Figur 3 im Detail dargestellt. Diese Figur zeigt einen horizontalen Schnitt durch zwei Elektrodenelemente benachbarter Module im Bereich der Stege.The end regions of the protective sheaths are shown in detail in FIG. 3. This figure shows a horizontal section through two electrode elements of adjacent modules in the area of the webs.

Schäden an den Stegen können auftreten, wenn diese zu hohen Feldern ausgesetzt werden. So können hohe elektrische Felder zum Beispiel bei Stegen auf Silikon-Basis zu einer Zersetzung des Materials führen. Um dies zu verhindern, werden die Schutzmäntel im Bereich der Stege vorzugsweise mit Schutzelektroden 9, 10 versehen. Dabei kann es sich z.B. um mindestens schwach elektrisch leitende Folien, Schläuche oder Beschichtungen handeln, wie sie dem Fachmann bekannt sind. Diese Schutzerden werden zwischen den Schutzmänteln und den Stegen angeordnet.Damage to the webs can occur if they are exposed to fields that are too high. High electrical fields, for example in the case of webs based on silicone, can lead to decomposition of the material. To prevent this, the protective jackets in the area of the webs are preferably provided with protective electrodes 9, 10. It can e.g. are at least weakly electrically conductive foils, hoses or coatings, as are known to the person skilled in the art. These protective earths are arranged between the protective jackets and the bars.

Im vorliegenden Ausführungsbeispiel gemäss Fig. 3 ist das Ende 6 des einen Schutzmantels, dessen Elektrodenelement auf Phase liegt, mit einer Schutzelektrode 9 versehen, die geerdet ist. Die Schutzelektrode 10 des Endes 7 des zweiten Schutzmantels, dessen Elektrodenelement auf Erde liegt, ist ebenfalls mit der Erde verbunden. Damit ist das Feld im Bereich der Stege 2, 2' zwischen den Elektrodenelementen klein.In the present exemplary embodiment according to FIG. 3, the end 6 of the one protective jacket, the electrode element of which is in phase, is provided with a protective electrode 9 which is grounded. The protective electrode 10 of the end 7 of the second protective jacket, the electrode element of which is on earth, is also connected to the earth. The field in the area of the webs 2, 2 'between the electrode elements is thus small.

An den gegenüberliegenden Enden der Elektrodenelemente, im Bereich der Stege 3, 3' (nicht gezeigt), sind ähnliche Schutzelektroden vorgesehen, welche vorzugsweise mit der Erde oder allenfalls mit einem anderen, definierten Potential verbunden sind.At the opposite ends of the electrode elements, in the area of the webs 3, 3 '(not shown), similar protective electrodes are provided, which are preferably connected to the earth or at most to another, defined potential.

Es ist auch denkbar, dass nicht alle Elektrodenelemente bzw. Schutzmäntel mit Schutzelektroden versehen sind.It is also conceivable that not all electrode elements or protective jackets are provided with protective electrodes.

Wie bereits aus den Figuren 1 und 2 ersichtlich wurde, können benachbarte Module versetzt zueinander angeordnet sein, sodass z.B. jedes Elektrodenelement eines Moduls auf der Höhe zwischen den Elektrodenelementen der benachbarten Module zu liegen kommt. Damit ergibt sich ein optimal homogenes Feld.As already apparent from FIGS. 1 and 2, adjacent modules can be arranged offset from one another, so that, for example, each electrode element of a module comes to lie at the height between the electrode elements of the adjacent modules. This results in an optimally homogeneous field.

Die Anordnung der Elektrodenelemente wird auch aus Fig. 4 ersichtlich, welche einen vertikalen Schnitt durch die Stege zeigt.The arrangement of the electrode elements can also be seen in FIG. 4, which shows a vertical section through the webs.

Vorzugsweise ist die Zelle so aufgebaut, dass benachbarte Module in vertikaler Richtung gegeneinander verschoben werden können, wie es durch die Pfeile S angedeutet wird. Damit ist es möglich, den Elektrodenabstand und somit das elektrische Feld und die Entladung zu regeln.The cell is preferably constructed in such a way that adjacent modules can be displaced in the vertical direction relative to one another, as is indicated by the arrows S. This makes it possible to regulate the electrode spacing and thus the electrical field and the discharge.

Figur 4 zeigt einen möglichen Aufbau der Stege 2, 2'. Die Stege bestehen hier aus Streifen eines elastischen Materials, z.B. auf Silikonbasis. In diese Stege sind an einer Seitenkante in regelmässigen Abständen Ausformungen zur Aufnahme der Elektrodenelemente resp. derer Schutzmäntel angebracht. Dank der elastischen Ausführung der Stege können die Schutzmäntel in diesen Ausparungen eingeschnappt werden. Diese Konstruktion hat den Vorteil, dass beschädigte Elektrodenelemente einfach ausgewechselt werden können, da sie leicht aus dem Steg entnehmbar und wieder darin einsetzbar sind. Zur Vereinfachung des Auswechselns der Elektrodenelemente bzw. der Schutzmäntel sind die Verbindungen der Elektrodenelemente mit den Schienen 11 (siehe Fig. 2) vorzugsweise steckbar ausgeführt.Figure 4 shows a possible structure of the webs 2, 2 '. The webs here consist of strips of an elastic material, e.g. based on silicone. In these webs are formed on one side edge at regular intervals for receiving the electrode elements, respectively. protective coats attached. Thanks to the elastic design of the webs, the protective sleeves can be snapped into these recesses. This construction has the advantage that damaged electrode elements can be easily replaced, since they can easily be removed from the web and reinserted therein. To simplify the replacement of the electrode elements or the protective sheaths, the connections of the electrode elements to the rails 11 (see FIG. 2) are preferably designed to be pluggable.

Figur 5 zeigt einen alternativen Stegaufbau, in welchem die Stege 2, 2' je aus einen Abstandsstreifen 13 sowie aus einem Streifen 12 bestehen, wobei im Streifen 12 die Elektrodenelemente 1 bzw. die Schutzmäntel 5 angeordnet sind. Dabei kann es sich beim Streifen 12 z.B. um eine Schicht eines aushärtbaren, elektrisch isolierenden und beständigen Dichtungsmaterials handeln, in welchem die Schutzmäntel 5 eingebunden sind.FIG. 5 shows an alternative web structure, in which the webs 2, 2 'each consist of a spacer strip 13 and a strip 12, the electrode elements 1 and the protective sleeves 5 being arranged in the strip 12. The strip 12 may e.g. are a layer of a curable, electrically insulating and durable sealing material, in which the protective sheaths 5 are integrated.

Figur 6 zeigt eine mögliche konstruktive Ausführung des Abschlusses eines Schutzmantels 5 im Endbereich des Elektrodenelements 1. Hier wurde zum Verschliessen des rohrförmigen Schutzmantels 5 das Rohr im Bereich 14 erwärmt und zusammengequetscht. Damit ergibt sich ein dichter Abschluss des Schutzmantels. Je nach Form des verwendeten Werkzeugs kann dabei der Querschnitt des Schutzmantels im Bereich 14 gewählt werden. Im vorliegenden Beispiel wurde ein quadratischer Querschnitt gewählt. Figur 7 zeigt einen Schnitt durch Stege, die derartig verschlossene Schutzmäntel halten. Dank der durch die Quetschung bewirkten Verengung der Schutzmäntel im Bereich der Stege wird ein sehr guter Halt der Schutzmäntel in den Stegen erreicht.FIG. 6 shows a possible constructive embodiment of the termination of a protective jacket 5 in the end region of the electrode element 1. Here, in order to close the tubular protective jacket 5, the tube in the region 14 was heated and squeezed together. So that results a tight seal of the protective jacket. Depending on the shape of the tool used, the cross section of the protective jacket can be selected in the region 14. In the present example, a square cross section was chosen. Figure 7 shows a section through webs that hold such closed protective sheaths. Thanks to the narrowing of the protective sleeves in the area of the webs caused by the crushing, the protective sleeves are held very well in the webs.

Es ist jedoch denkbar, den Schutzmantel auch in anderer Weise zu verschliessen (siehe auch Fig. 3), z.B. durch Verschmelzen oder durch einen Pfropfen eines geeigneten Dichtungsmaterials.However, it is conceivable to close the protective jacket in another way (see also FIG. 3), e.g. by fusing or by grafting a suitable sealing material.

Im Betrieb wird, wie anfangs erwähnt, ein Gasstrom von oben her durch die Zelle geleitet. Dank der vielen einzelnen Elektrodenstäbe wird erreicht, dass der Gasstrom schon bei kleinen Gasflüssen nicht laminar durch die Zelle fliesst. Dadurch ergibt sich eine bessere Gasdurchmischung sowie ein längerer Gasweg, was die Effizienz der Anregung erhöht. Ausserdem bewirken die Turbulenzen, dass allfälliges, auf den Schutzmänteln der Elektrodenstäben abgelagertes Kondensat fortgetragen wird und das die Ablagerung von Kondensat erschwert wird.In operation, as mentioned at the beginning, a gas stream is passed through the cell from above. Thanks to the many individual electrode rods, the gas flow does not flow through the cell in a laminar manner, even with small gas flows. This results in better gas mixing and a longer gas path, which increases the efficiency of the excitation. In addition, the turbulence has the effect that any condensate deposited on the protective sleeves of the electrode rods is carried away and that the deposition of condensate is made more difficult.

Falls sich trotzdem Kondensattropfen auf den Schutzmänteln der Elektrodenstäbe ablagern sollten, so werden sich diese im unteren Bereich der Stäbe sammeln, da sie von der Schwerkraft und vom Gasfluss nach unten gedrängt werden. In diesem Bereich sind die elektrischen Felder aber am kleinsten, da übereinanderliegende Elektrodenelemente auf dem gleichen Potential liegen. Somit stören diese Kondensattropfen die Entladung nicht.If condensate drops should nevertheless deposit on the protective sheaths of the electrode rods, they will collect in the lower area of the rods, since they are pushed down by gravity and the gas flow. The electrical fields are smallest in this area, however, since electrode elements lying one above the other have the same potential. This means that these condensate drops do not disturb the discharge.

Der Grundaufbau gemäss Figur 1 zeigt nur eine der Möglichkeiten, eine erfindungsgemässe Anregungszelle aufzubauen. So kann z.B. ein Teil der Elektrodenelemente durch Elektrodenplatten ersetzt werden. Auch können die Elektroden unter anderen Richtungen eingesetzt werden und brauchen nicht unbedingt alle parallel angeordnet zu sein.The basic structure according to FIG. 1 shows only one of the possibilities for building an excitation cell according to the invention. For example, part of the electrode elements can be replaced by electrode plates. The electrodes can also be used in other directions and do not necessarily all have to be arranged in parallel.

Die einzelnen Elektrodenelemente bzw. die Schutzmäntel brauchen nicht unbedingt rund ausgeführt zu sein. Es sind z.B. auch ovale und abgeplattete Querschnitte denkbar.The individual electrode elements or the protective shells do not necessarily have to be round. For example oval and flattened cross sections are also conceivable.

Im vorliegenden Aufbau wird jedes Elektrodenelement von zwei Stegen gehalten. Es ist jedoch auch möglich, mehr als zwei Stege pro Modul zu verwenden. Auch können Module mit nur einem Steg hergestellt werden, wobei die Elektrodenelemente in diesem Falle vom zusätzlichen Halt durch die Stromschiene 11 profitieren.In the present structure, each electrode element is held by two webs. However, it is also possible to use more than two webs per module. Modules can also be produced with only one web, the electrode elements in this case benefiting from the additional hold provided by the busbar 11.

Die beschriebene Erfindung erlaubt es in jedem Fall, ein modulares, effizientes und wenig verschmutzungsanfälliges Anregungsgerät zu konstruieren, welches in vielen Anwendungsbereichen zum Einsatz kommen kann.In any case, the described invention makes it possible to construct a modular, efficient and less pollution-prone excitation device which can be used in many areas of application.

Claims (14)

Vorrichtung zur Anregung von Dämpfen und Gasen mittels elektrischer Felder, die mehrere Elektroden aufweist, dadurch gekennzeichnet, dass mindestens einige oder alle der Elektroden als beabstandete, im wesentlichen stabförmige Elektrodenelemente (1) ausgeführt sind, wobei jedes Elektrodenelement von einem Schutzmantel (5,6,7) umgeben ist.Device for exciting vapors and gases by means of electrical fields, which has a plurality of electrodes, characterized in that at least some or all of the electrodes are designed as spaced, essentially rod-shaped electrode elements (1), each electrode element being protected by a protective jacket (5, 6, 7) is surrounded. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Elektrodenelemente im wesentlichen parallel zueinander ausgerichtet sind.Device according to claim 1, characterized in that the electrode elements are aligned essentially parallel to one another. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrodenelemente (1) im wesentlichen horizontal ausgerichtet sind.Device according to one of the preceding claims, characterized in that the electrode elements (1) are aligned substantially horizontally. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrodenelemente (1) in Module zusammengefasst sind, wobei jedes Modul mehrere parallele, in einer Ebene angeordnete Elektrodenelemente umfasst, wobei die Elektrodenelemente eines Moduls über mindestens einen Steg (2,2',3,3') miteinander mechanisch verbunden sind.Device according to one of the preceding claims, characterized in that the electrode elements (1) are combined in modules, each module comprising a plurality of parallel electrode elements arranged in one plane, the electrode elements of a module via at least one web (2, 2 ', 3 , 3 ') are mechanically connected to each other. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Elektrodenelemente (1) eines Moduls untereinander elektrisch verbunden sind.Device according to claim 4, characterized in that the electrode elements (1) of a module are electrically connected to one another. Vorrichtung nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass sie mehrere, nebeneinander angeordnete Module aufweist.Device according to one of claims 4 or 5, characterized in that it has a plurality of modules arranged side by side. Vorrichtung nach den Ansprüchen 5 und 6, dadurch gekennzeichnet, dass die Module abwechslungsweise auf einem ersten und einem zweiten elektrischen Potential liegen, so dass nebeneinander liegende Module jeweilen auf veschiedenen Potentialen liegen.Device according to claims 5 and 6, characterized in that the modules alternately at a first and a second electrical potential lie, so that modules lying next to each other each have different potentials. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Elektrodenelemente (1) in jedem Modul äquidistant angeordnet sind, und dass die Module gegeneinander verschiebbar sind.Apparatus according to claim 7, characterized in that the electrode elements (1) are arranged equidistantly in each module and that the modules are displaceable relative to one another. Vorrichtung nach einem der vorangehenden Ansprüche und Anspruch 4, dadurch gekennzeichnet, dass der mindestens eine Steg (2,2',3,3') mit den Schutzmänteln (5,6,7) der Elektroden verbunden (1) ist, wobei mindestens ein Teil der Schutzmäntel im Bereich des Steges von einer mindestens teilweise leitenden Schicht (9,10) umgeben ist, die auf einem gegebenen Potential liegt, so dass im Bereich des Steges das elektrische Feld vermindert ist.Device according to one of the preceding claims and claim 4, characterized in that the at least one web (2,2 ', 3,3') with the protective sheaths (5,6,7) of the electrodes is connected (1), at least one Part of the protective sheath in the area of the web is surrounded by an at least partially conductive layer (9, 10) which is at a given potential, so that the electric field is reduced in the area of the web. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jeder Schutzmantel (5,6,7) im wesentlichen als Rohr ausgebildet ist, wobei das erste Ende (6) des Rohrs verschlossen und durch das zweite Ende (7) das Elektrodenelement eingeführt ist, und wobei das Rohr am zweiten Ende gegen das Elektrodenelement (1) abgedichtet ist.Device according to one of the preceding claims, characterized in that each protective jacket (5, 6, 7) is essentially designed as a tube, the first end (6) of the tube being closed and the electrode element being inserted through the second end (7), and wherein the tube is sealed at the second end against the electrode element (1). Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Oberflächen der Elektrodenelemente (1) zur Verbesserung der Feldhomogenität uneben ausgestaltet sind.Device according to one of the preceding claims, characterized in that the surfaces of the electrode elements (1) are designed to be uneven to improve the field homogeneity. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass als Elektrodenelemente (1) Litzen verwendet werden.Device according to one of the preceding claims, characterized in that strands are used as electrode elements (1). Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schutzmäntel (5,6,7) mindestens teilweise aus Keramik oder Glas, insbesondere Quarzglas oder Borsilikatglas, bestehen.Device according to one of the preceding claims, characterized in that the protective sheaths (5,6,7) at least partially consist of ceramic or glass, in particular quartz glass or borosilicate glass. Modul für eine Vorrichtung gemäss einem der vorangehenden Ansprüche und Anspruch 4.Module for a device according to one of the preceding claims and claim 4.
EP94102010A 1993-02-19 1994-02-10 Apparatus for non thermal excitation and ionisation of vapors and gases Expired - Lifetime EP0612130B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH52993A CH685961A5 (en) 1993-02-19 1993-02-19 Apparatus for the non-thermal excitation and ionization of Dompfen and gases.
CH529/93 1993-02-19

Publications (2)

Publication Number Publication Date
EP0612130A1 true EP0612130A1 (en) 1994-08-24
EP0612130B1 EP0612130B1 (en) 1997-01-22

Family

ID=4189096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94102010A Expired - Lifetime EP0612130B1 (en) 1993-02-19 1994-02-10 Apparatus for non thermal excitation and ionisation of vapors and gases

Country Status (6)

Country Link
US (1) US5483117A (en)
EP (1) EP0612130B1 (en)
AT (1) ATE148007T1 (en)
CA (1) CA2115679C (en)
CH (1) CH685961A5 (en)
DE (1) DE59401623D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2069047A1 (en) * 2006-09-14 2009-06-17 Cmtech Co., Ltd Plasma reactor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029442A (en) 1996-12-18 2000-02-29 Litex, Inc. Method and apparatus for using free radicals to reduce pollutants in the exhaust gases from the combustion of fuel
US6800256B2 (en) * 2000-12-18 2004-10-05 Delphi Technologies, Inc. Scaleable inter-digitized tine non-thermal plasma reactor
JP4046224B2 (en) * 2003-02-14 2008-02-13 日鉄鉱業株式会社 Electrode for gas excitation
JP2006100031A (en) * 2004-09-28 2006-04-13 Nittetsu Mining Co Ltd Gas excitation apparatus with insulator coating layer supported electrode and gas excitation method
KR100775911B1 (en) 2005-03-24 2007-11-15 한국기계연구원 High Temperature Plasma Generator
WO2006129693A1 (en) 2005-05-31 2006-12-07 Nittetsu Mining Co., Ltd. Gas excitation device having bridged electrode and gas excitation method
ITCE20100007A1 (en) * 2010-06-09 2011-12-10 Aldo Mango COLD PLASMA GENERATOR MODULE FOR CHEMICAL-PHYSICAL TREATMENTS ON AIR, GAS AND FUMES, ANY DUCTED
JP5505107B2 (en) * 2010-06-14 2014-05-28 株式会社村田製作所 Gas transfer device
JP2015182904A (en) * 2014-03-20 2015-10-22 日本碍子株式会社 electrode and electrode structure
JP2015189649A (en) * 2014-03-28 2015-11-02 日本碍子株式会社 ozone generator
JP6259346B2 (en) 2014-03-31 2018-01-10 日本碍子株式会社 Ozone generator
CN112105135B (en) * 2020-09-16 2023-02-28 中科新天地(合肥)环保科技有限公司 Stainless steel injection type discharging module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1001239B (en) * 1953-06-23 1957-01-24 Metallgesellschaft Ag Corrosion-resistant electrode for electrostatic precipitators
US4940894A (en) * 1987-12-10 1990-07-10 Enercon Industries Corporation Electrode for a corona discharge apparatus
US5061462A (en) * 1987-11-12 1991-10-29 Nagatoshi Suzuki Apparatus for producing a streamer corona

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908123A (en) * 1974-04-16 1975-09-23 Us Energy Extraction electrode geometry for a calutron
US4126434A (en) * 1975-09-13 1978-11-21 Hara Keiichi Electrostatic dust precipitators
US3985636A (en) * 1975-09-26 1976-10-12 Aqua-Chem, Inc. Electrodialysis apparatus electrode system
US4910637A (en) * 1978-10-23 1990-03-20 Rinoud Hanna Modifying the discharge breakdown
US4375364A (en) * 1980-08-21 1983-03-01 Research-Cottrell, Inc. Rigid discharge electrode for electrical precipitators
US5242587A (en) * 1990-12-20 1993-09-07 Analytic Systems Laboratories, Inc. Filter with porous media and electrostatic and magnetic plates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1001239B (en) * 1953-06-23 1957-01-24 Metallgesellschaft Ag Corrosion-resistant electrode for electrostatic precipitators
US5061462A (en) * 1987-11-12 1991-10-29 Nagatoshi Suzuki Apparatus for producing a streamer corona
US4940894A (en) * 1987-12-10 1990-07-10 Enercon Industries Corporation Electrode for a corona discharge apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2069047A1 (en) * 2006-09-14 2009-06-17 Cmtech Co., Ltd Plasma reactor
EP2069047A4 (en) * 2006-09-14 2011-09-14 Cmtech Co Ltd Plasma reactor

Also Published As

Publication number Publication date
ATE148007T1 (en) 1997-02-15
CA2115679C (en) 2003-12-30
DE59401623D1 (en) 1997-03-06
EP0612130B1 (en) 1997-01-22
CA2115679A1 (en) 1994-08-20
US5483117A (en) 1996-01-09
CH685961A5 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
EP0612130B1 (en) Apparatus for non thermal excitation and ionisation of vapors and gases
EP2155398B1 (en) Method and device for precipitating impurities from a stream of gas
DE2727973C2 (en) Process for separating high-resistance dust from gases
EP3552710B1 (en) Electrostatic filter unit and extraction hood device with electrostatic filter unit
DE3529057A1 (en) ELECTROSTATIC SEPARATOR
DE4031382C2 (en) Emission control device
WO1998042166A1 (en) Active discharge electrode for minimizing positive and/or negative charges on moving material webs
DE202017107554U1 (en) Fluid treatment device, electrode grid therefor and assembly of a plurality of such electrode grid
DE2438670B2 (en) Electric dust collector
DE4413118A1 (en) Gas-cleaning apparatus
DE19913614C1 (en) Electrical discharge method for treating exhaust fumes in which extensions on earthed electrode are perforated to allow passage of gas through them
DE102018132773B4 (en) Plasma wound treatment system
DE3242085C2 (en)
DE4320607C2 (en) Arrangement for trace gas analysis
DE19850218C1 (en) Device and method for coating substrates in a vacuum
DE2258446A1 (en) AIR FILTER FOR SPACE TRAP OF CHARGED PARTICLES
DE102020104533A1 (en) Fluid treatment device, electrode grids therefor, structural unit made up of a plurality of such electrode grids and use of EEG and / or EKG contact gel
DE60130403T2 (en) Device for eliminating static charge by means of DC-corona with extended structure
DE2363284C2 (en) Ionization device
WO1990006181A1 (en) Device for electrostatic separation of solid particles and aerosols from gases
EP1131866B1 (en) Device for generating ionized gases using corona discharges
EP2991084B1 (en) Surge arrester
DE102020214136B3 (en) Lightning protection spark gap
DE102021128964B3 (en) Process and device for generating plasmas with increased pulse energy by means of dielectrically impeded electrical discharges
DE2512873C2 (en) Device for promoting electron discharge for a gas discharge display device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IE NL SE

17P Request for examination filed

Effective date: 19950207

17Q First examination report despatched

Effective date: 19951220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IE NL SE

REF Corresponds to:

Ref document number: 148007

Country of ref document: AT

Date of ref document: 19970215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970122

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59401623

Country of ref document: DE

Date of ref document: 19970306

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 71733

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: UP-TO-DATE FINANCE AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20021218

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030131

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030206

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040130

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040204

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040210

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040227

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040901

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050211

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050206

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060214

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070901