EP0609146A1 - Réservoir enterré à enceinte étanche unique pour le confinement par exemple d'un gaz liquéfié, et agencement de tels réservoirs - Google Patents

Réservoir enterré à enceinte étanche unique pour le confinement par exemple d'un gaz liquéfié, et agencement de tels réservoirs Download PDF

Info

Publication number
EP0609146A1
EP0609146A1 EP94400170A EP94400170A EP0609146A1 EP 0609146 A1 EP0609146 A1 EP 0609146A1 EP 94400170 A EP94400170 A EP 94400170A EP 94400170 A EP94400170 A EP 94400170A EP 0609146 A1 EP0609146 A1 EP 0609146A1
Authority
EP
European Patent Office
Prior art keywords
tank
dome
enclosure
slab
tank according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94400170A
Other languages
German (de)
English (en)
Other versions
EP0609146B1 (fr
Inventor
Jean M. Claude
Gerardus H.M. Evers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soletanche Bachy France
Original Assignee
SOLETANCHE ENTREPRISE
Soletanche SA
Technigaz
Nouvelle Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLETANCHE ENTREPRISE, Soletanche SA, Technigaz, Nouvelle Technigaz SA filed Critical SOLETANCHE ENTREPRISE
Publication of EP0609146A1 publication Critical patent/EP0609146A1/fr
Application granted granted Critical
Publication of EP0609146B1 publication Critical patent/EP0609146B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • F17C13/126Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures for large storage containers for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/005Underground or underwater containers or vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0147Type of cavity by burying vessels

Definitions

  • the present invention relates to an underground tank with a single sealed enclosure, for the confinement of any fluid, such as in particular a liquefied cryogenic gas. More particularly, the invention relates to a liquid natural gas confinement tank, for example for a port loading terminal.
  • a type of buried tank comprising an external concrete enclosure buried in the ground and provided to allow the excavation in the latter of a cavity of corresponding shape.
  • a rigid structure is provided in the external enclosure.
  • This structure which is made of reinforced concrete or metal, includes a bottom slab and a covering dome.
  • a sealed envelope of thermal insulation is fixed inside the rigid structure, and delimits in the latter a space where the fluid to be "stored” or stored can be confined.
  • the rigid structure is constituted by a second internal enclosure of reinforced concrete, in which the bottom slab which is formed by a poured slab, is embedded.
  • Such a tank comprising an external enclosure and an internal enclosure is tedious to produce and proves to be complex and costly.
  • the present invention aims to overcome in particular the drawbacks of the prior art set out above, and to propose a buried tank whose structure is both simple, resistant and inexpensive.
  • the invention relates to a reservoir for the confinement of any fluid, such as in particular a liquefied cryogenic gas, and of the type comprising an external enclosure made of molded concrete buried in the ground, a rigid structure with a bottom slab, and possibly a covering dome as well as a waterproof envelope and thermal insulation which delimits the interior of the structure a loading space for the fluid, characterized in that the external enclosure has the form of a thick and substantially sealed wall, this enclosure as well as the covering dome being made of material and constituting with the bottom slab, the rigid structure of the tank.
  • any fluid such as in particular a liquefied cryogenic gas
  • the external enclosure has the form of a thick and substantially sealed wall, this enclosure as well as the covering dome being made of material and constituting with the bottom slab, the rigid structure of the tank.
  • the base of the above-mentioned external enclosure extends at least as far as near a substantially impermeable layer of the ground.
  • the bottom slab has the form of a reinforced concrete slab, freely resting on the one hand on one or more stops integral with the external enclosure, and on the other hand on a system drainage.
  • the reinforced concrete slab preferably has a thickness less than that of the external enclosure.
  • the aforementioned insulation envelope comprises a waterproof metal membrane, fixed inside the external enclosure and on the bottom slab, by means of a thermal insulation layer.
  • the insulation layer may advantageously comprise at least one thickness of rigid stress distribution panels, thus that at least one thickness of plastic foam panels, these panels may be impermeable and hermetically connected to each other by watertight connections so as to constitute a layer of continuous and hermetic insulation.
  • the above-mentioned insulation layer is fixed to the concrete using a preferably continuous thickness of adhesive material.
  • the aforementioned envelope comprises a tight steel dome hermetically fixed by its periphery to the metal membrane and constituting an internal coating for the covering dome, as well as a suspended aluminum roof and covered with an insulation layer. thermal, which is interposed between the waterproof membrane and the dome, in order to maintain the latter at approximately room temperature.
  • the covering dome, and possibly the aforementioned waterproof dome rest on the external enclosure of the tank by means of a crowning beam of corresponding shape.
  • the invention also relates to an arrangement of buried tanks as described above, and arranged inside a substantially sealed wall, buried and closed, for example cylindrical, and whose base extends at least up to 'near the above-mentioned substantially impermeable layer of the ground.
  • Figure 1 is a cutaway view of a buried tank according to one embodiment of the invention.
  • FIG. 2 is a view in vertical section along a diameter of the reservoir in FIG. 1.
  • FIG. 3 is an enlarged view of the detail designated at III in FIG. 2.
  • FIG. 4 is an enlarged view of the detail designated at IV in FIG. 2.
  • Figure 5 shows a vertical sectional view of an arrangement of buried tanks according to the invention.
  • the general reference numeral 1 designates a buried tank.
  • the tanks 1 are provided for the confinement of liquid natural gas.
  • many other types of fluids can also be stored or "stored" in such a tank.
  • Each tank 1 is a buried tank of the so-called "membrane" type. More specifically, the tank 1 comprises an external concrete enclosure 2, which is at least partially buried in the ground, itself designated by the reference S in the figures.
  • the enclosure 2 which is roughly cylindrical, delimits in the soil S an excavation or cavity of corresponding shape.
  • the buried tank 1 has a rigid structure, that is to say a structure guaranteeing the stability and the holding of the tank 1 under the effect of the stresses which may be applied to it.
  • the rigid structure here is provided with a covering dome 3, disposed above the enclosure 2 and projecting from the ground S.
  • the rigid structure of the tank 1 also has a bottom slab 4, placed opposite the dome 3 or the top of the tank 1, and the shape of which corresponds substantially to that of the cavity defined by the external enclosure 2.
  • the covering dome 3 as well as the bottom slab 4 are poured and reinforced concrete structures.
  • envelope 5 which delimits inside the cavity defined by the external enclosure 2 as well as by the dome 3 and the slab 4, a space for loading and confining the fluid to be stored.
  • the envelope 5 is sealed and also has the function of thermally isolating the fluid stored in the tank 1, the concrete structural elements 2, 4 and possibly 3.
  • the external enclosure 2 has the form of a thick and substantially sealed wall, with which the covering dome 3 is advantageously made of one piece, so that they constitute, with the bottom slab 4, the rigid structure of the corresponding tank 1.
  • the external enclosure 2 it is possible, and often advantageous, to provide for the external enclosure 2 to extend deep into the ground as close to a substantially impermeable layer SI thereof, so that infiltration d water inside the cavity defined by the reservoir 1 are greatly minimized.
  • the enclosure 2 projects positively inside the naturally impermeable layer SI of the ground.
  • the forces produced by the water contained in the soil S and having a tendency to raise the slab 4 are greatly reduced.
  • the tank 1 is of simpler constitution and requires much less material for its manufacture, than equivalent tanks of the prior art.
  • the thickness (and therefore the mass) of this bottom slab 4 can also be minimized. As seen in the example of FIGS. 1 and 2, the bottom slab 4 even has a thickness less than that of the external enclosure 2.
  • the thickness of the external enclosure 2 can be of the order of 2.20 m and that of the bottom slab only about 1 m.
  • the thickness of the external enclosure and of the rigid vertical structure is more than 3 m, while the bottom slab can reach 7 m in height.
  • this bottom slab 4 has the form of a reinforced concrete slab which rests freely on the one hand against one or more stops integral with the enclosure 2, and on the other hand on a drainage system 6.
  • the periphery of the bottom raft 4 is supported without embedding on a stop 24 in the form of an annular console, integrated into the enclosure 2.
  • a stop 24 in the form of an annular console, integrated into the enclosure 2.
  • the drainage system 6 essentially comprises a second slab consisting of porous aggregates arranged on the bottom of the cavity excavated in the soil S.
  • the second raft 6 to delivery pumps (not shown). As illustrated in FIG. 2, these pumps deliver into one or more wells P formed in the soil S near the reservoir 1, by means of conduits 66 produced through the enclosure 2.
  • the tank 1 is provided with a device for keeping frost-free of its concrete elements.
  • This device comprises on the one hand conduits 64 (FIG. 2) for circulation of a hot fluid, such as for example water, provided under the bottom slab 4, that is to say inside the second slab 6, and on the other hand conventional electric heating cables 28 (FIG. 2), arranged in galvanized steel tubes, themselves embedded in the concrete of the external enclosure 2 substantially up to the level of the slab 4.
  • the enclosure 2 is made of reinforced concrete and molded directly in soil S.
  • this enclosure 2 is produced by digging in the ground S a trench of corresponding shape, then by molding a concrete of suitable composition in the trench, after having placed there reinforcement cages as well as the heating cables 28.
  • a wall can, for example, be obtained using equipment of the type designated by the name "Hydrofraise” and developed by the Soletanche Company. This type of equipment makes it possible to manufacture concrete walls from 70 to 80 m deep, under conditions and with very precise dimensional tolerances (approximately 1 per 1000).
  • a coating or sealing facing is applied to the internal or excavation face of the enclosure 2, for example by spraying concrete onto a wire mesh itself fixed by anchoring on this enclosure.
  • the facing the thickness of which according to the example mentioned above is of the order of 0.15 m makes it possible to obtain a smoother surface condition of the excavation face. Essentially, the surface finish thus obtained must allow good attachment of the casing 5 to the concrete, as will be better explained below.
  • a beam of corresponding shape 32 is provided at the top of the external enclosure 2. It is clear from FIGS. 1 and 2 that this so-called crowning beam is integrated both into the enclosure 2 and into the covering dome 3, which allows a good transmission of forces inside the concrete structure, as well as a reinforcement of the external enclosure 2.
  • the annular crowning beam 32 illustrated has a cross section greater than that of the enclosure 2, and is made of prestressed and reinforced concrete. More specifically, after the erection of the enclosure 2 of molded concrete, reinforcements and prestressing cables are made integral and anchored in the latter then, concrete is poured into a formwork corresponding to the crowning beam that l 'we wish to obtain. Following this, the cables are stretched to adequately prestress the concrete thus poured.
  • the covering dome 3 is made, in the case where such a dome is provided for the tank 1.
  • the covering dome 3 is anchored at the top of the enclosure 2 via the beam 32.
  • a metal dome 35 called to form part of the envelope 5, by forming an internal coating of the dome 3 is made from a lattice of metal beams on which are welded sheet metal plates. After manufacture, the dome 35 which defines a sealed surface corresponding to the dome 3, is made integral with the beam 32. After removal and fixing of an appropriate reinforcement on the dome 35, concrete is poured until the dome 3 is obtained.
  • the thickness of the concrete of this covering dome 3 varies from 0.5 to 1.0 m from its center to its periphery. It is at this peripheral that the concrete of the dome 3 is connected to that of the beam 32. It goes without saying that the dome 35 remains within the tank 1 after pouring the concrete, and is therefore fixed to the dome 3, which itself came out of the box with beam 32 and thick enclosure 2.
  • the metal dome 35 is integral with the dome 3 and forms part of the sealed and insulating envelope 5.
  • the envelope 5 comprises a metallic membrane which is welded to a shoulder 352, itself integral of the periphery of the dome 35. This welding is obviously continuous and hermetic, so that this membrane and the dome constitute a sealed containment enclosure.
  • the metal membrane of the enclosure 5 is designated at 54 and 52. It can also be seen that the envelope 5 comprises a layer of thermal insulation 55.
  • the membrane consists of sheets of stainless steel austenitic with a thickness of the order of 1.2 mm, welded together in a leaktight manner and is fixed to the concrete by means of layer 55. These sheets which form a containment pocket, are ribbed to resist deformations linked to the mechanical and thermal stresses applied to them by the fluid stored in the tank 1.
  • the insulation layer 55 is formed by one or more thicknesses of rigid panels 57, for example of plywood, as well as by at least one thickness of foam panels made of plastic material 56, preferably waterproof.
  • the layer 55 comprises, starting from the concrete wall a series of foam panels 56, sandwiched between two plywood thicknesses 57.
  • the panels 57 have the function of distributing the stresses applied to the insulating layer 55 , and therefore allow a better positioning thereof on the concrete walls.
  • the insulating panels 56 are for example constituted by blocks of closed cell foam, based on polyurethane (PU) or polyvinyl chloride (PVC).
  • the foam panels 56 can be waterproof and hermetically connected to each other by leaktight connections, in order to constitute an additional layer of insulation, continuous and hermetic.
  • One of the faces of the panels 57 facing the concrete is bonded to the latter, for example using a layer of suitable adhesive material. It is conceivable that the layer of adhesive material is continuous and impermeable, so that it contributes to the sealing of the reservoir 1.
  • a suspended roof 36 which is fixed by means of tie rods or of cables 37 to the dome 35 and therefore to the dome 3, is interposed between the latter and the external enclosure 2.
  • This roof 36 is constituted by a lattice of aluminum beams, itself covered with a layer of insulation 365 , for example in glass wool. Near the shoulder 352 described above, the suspended roof 36 comes into contact at its periphery with the insulation envelope 5, of which it is a part. It is then understood that this suspended roof 36 as well as its layer of glass wool 365 makes it possible to thermally isolate the fluid contained in the tank 1, the dome 3 and its dome 35, so as to maintain these elements at approximately room temperature. .
  • the reference numeral 70 designates in the figures pipes for loading and unloading the fluid to be stored in the reservoir 1. These pipes 70 which are of conventional type will not be described in more detail here.
  • the wall 20 is produced by molding in a trench in the ground, of a waterproof and deformable material, such as for example a plastic concrete or a sealing grout.
  • a waterproof and deformable material such as for example a plastic concrete or a sealing grout.
  • four tanks 1 arranged in a square could be confined inside a buried wall 20 of cylindrical or parallelepiped shape.
  • this wall 20 has a thickness at most equal to that of the external enclosures 2 of the corresponding reservoirs 1, and its base projects deeper than the latter into the ground.
  • the wall 20 extends up to the interior of the substantially impermeable layer SI.
  • the reference numeral 201 designates in FIG. 5 a system for pumping the water contained inside the wall 20. It is understood that such a system 201 has the function of evacuating out of the wall 20, so that its level is constantly maintained below the level of the rafts 4 of the tanks 1 surrounded by this wall 20. Since the infiltration of water into the ground where the tanks 1 are buried is minimized by the presence of the waterproof wall 20, the pumping system 201 of the arrangement of FIG. 5, can be very simple, which makes this arrangement particularly economical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

La présente invention se rapporte à un réservoir enterrée à enceinte étanche unique, tel que notamment un gaz cryogénique liquéfié. Ce réservoir qui est du type comprenant une enceinte externe (2) en béton enterrée dans le sol, une structure rigide avec une dalle de fond (4) et éventuellement un dôme de recouvrement (3) ainsi qu'une enveloppe étanche d'isolation thermique (5) qui délimite à l'intérieur de la structure un espace de chargement pour le fluide, est caractérisé en ce que l'enceinte externe (2) a la forme d'une paroi épaisse sensiblement étanche, cette encinte (2) ainsi que le dôme de recouvrement (3) étant venus de matière et constituant avec la dalle de fond (4), la structure de rigidification du réservoir. L'invention s'applique à un réservoir de confinement, par exemple pour un terminal portuaire de chargement de gaz naturel liquide. <IMAGE>

Description

  • La présente invention se rapporte à un réservoir enterré à enceinte étanche unique, pour le confinement d'un fluide quelconque, tel que notamment un gaz cryogénique liquéfié. Plus particulièrement, l'invention concerne un réservoir de confinement de gaz naturel liquide, par exemple pour un terminal portuaire de chargement.
  • On a déjà proposé, principalement dans le cas d'installations implantées sur un sol relativement meuble, d'enterrer au moins partiellement un réservoir d'entreposage ou "stockage" d'un fluide, comme par exemple d'un carburant liquide. Une telle solution permet par rapport aux réservoirs conventionnels "aériens", de réduire la surface au sol et de limiter l'impact sur l'environnement de l'installation, tout en offrant un niveau de sécurité élevé.
  • Il existe notamment un type de réservoir enterré comprenant une enceinte externe en béton enterrée dans le sol et prévue pour permettre l'excavation dans ce dernier d'une cavité de forme correspondante. Une structure rigide est prévue dans l'enceinte externe. Cette structure qui est réalisée en béton armé ou en métal comporte une dalle de fond et une coupole de recouvrement. Une enveloppe étanche d'isolation thermique est fixée à l'intérieur de la structure rigide, et délimite dans celle-ci un espace où le fluide à "stocker" ou emmagasiner peut être confiné. En général, la structure rigide est constituée par une seconde enceinte interne en béton armé, dans laquelle la dalle de fond qui est formée par un radier coulé, est encastrée.
  • Un tel réservoir comportant une enceinte externe et une enceinte interne est fastidieux à réaliser et s'avère complexe et coûteux.
  • De plus, dans le cas d'installations côtières ou pouvant être submergées, l'eau contenue dans le sol peut exercer des efforts considérables sur la structure rigide des réservoirs enterrés conventionnels, et notamment sur leurs dalles de fond ou radiers puisque l'enceinte externe ne permet pas d'isoler correctement l'intérieur du réservoir contre les infiltrations d'eau. Ainsi, avec un réservoir conventionnel enterré d'une contenance de l'ordre de 100.000 m³, il est courant que le radier soit soumis, sous l'effet de l'eau contenue dans le sol, à un effort de soulèvement de l'ordre de 40 t/m². Alors, pour garantir la stabilité et la tenue du réservoir, l'action combinée de la masse de ce dernier et des frottements essentiellement entre le radier, les enceintes en béton et le sol, doit correspondre à peu près à celle d'une masse de 100 000 t.
  • En outre, les réservoirs enterrés conventionnels doivent être pourvus pendant leur construction de dispositifs de pompage de l'eau sous leur radier à débit important, pour permettre le maintien à sec de l'excavation.
  • Aussi, la présente invention a pour but de pallier notamment les inconvénients de l'art antérieur énoncés plus haut, et de proposer un réservoir enterré dont la structure est à la fois simple, résistante et peu coûteuse.
  • A cet effet, l'invention a pour objet un réservoir pour le confinement d'un fluide quelconque, tel que notamment un gaz cryogénique liquéfié, et du type comprenant une enceinte externe en béton moulé enterrée dans le sol, une structure rigide avec une dalle de fond, et éventuellement un dôme de recouvrement ainsi qu'une enveloppe étanche et d'isolation thermique qui délimite à l'intérieur de la structure un espace de chargement pour le fluide, caractérisé en ce que l'enceinte externe a la forme d'une paroi épaisse et sensiblement étanche, cette enceinte ainsi que le dôme de recouvrement étant venus de matière et constituant avec la dalle de fond, la structure rigide du réservoir.
  • On notera ici qu'avantageusement, la base de l'enceinte externe précitée s'étend au moins jusqu'à proximité d'une couche sensiblement imperméable du sol.
  • Suivant une autre caractéristique de l'invention, la dalle de fond a la forme d'un radier en béton armé, reposant librement d'une part sur une ou plusieurs butées solidaires de l'enceinte externe, et d'autre part sur un système de drainage.
  • On précisera encore ici que le radier en béton armé a, de préférence, une épaisseur inférieure à celle de l'enceinte externe.
  • De préférence, l'enveloppe d'isolation précitée comprend une membrane métallique étanche, fixée à l'intérieur de l'enceinte externe et sur la dalle de fond, par l'intermédiaire d'une couche d'isolation thermique.
  • Dans ce cas, la couche d'isolation pourra avantageusement comprendre au moins une épaisseur de panneaux rigides de répartition des contraintes, ainsi qu'au moins une épaisseur de panneaux de mousse en matière plastique , ces panneaux pouvant être imperméable et reliés hermétiquement entre eux par des raccords étanches afin de constituer une couche d'isolation continue et hermétique.
  • Suivant un mode de réalisation de l'invention, la couche d'isolation précitée est fixée sur le béton à l'aide d'une épaisseur de préférence continue de matière adhésive.
  • En outre, l'enveloppe précitée comporte une coupole étanche en acier hermétiquement fixée par sa périphérie à la membrane métallique et constituant un revêtement interne pour le dôme de recouvrement, ainsi qu'un toit suspendu en aluminium et recouvert d'une couche d'isolation thermique, qui est interposé entre la membrane et la coupole étanches, afin de maintenir cette dernière à peu près à température ambiante.
  • Suivant encore une autre caractéristique, le dôme de recouvrement, et éventuellement la coupole étanche précités, reposent sur l'enceinte externe du réservoir par l'intermédiaire d'une poutre de couronnement de forme correspondante.
  • L'invention a également pour objet un agencement de réservoirs enterrés tels que décrits ci-dessus, et disposés à l'intérieur d'une paroi sensiblement étanche, enterrée et close, par exemple cylindrique, et dont la base s'étend au moins jusqu'à proximité de la couche sensiblement imperméable précitée du sol.
  • L'invention sera mieux comprise et d'autres caractéristiques, et avantages de celle-ci apparaîtront plus clairement dans la description détaillée qui suit et se réfère aux dessins schématiques annexés, donnés uniquement à titre d'exemple, dans lesquels.
  • La figure 1 est une vue en écorché d'un réservoir enterré conforme à un mode de réalisation de l'invention.
  • La figure 2 est une vue en coupe verticale suivant un diamètre du réservoir de la figure 1.
  • La figure 3 est une vue agrandie du détail désigné en III sur la figure 2.
  • La figure 4 est une vue agrandie du détail désigné en IV sur la figure 2.
  • La figure 5 représente une vue en coupe verticale d'un agencement de réservoirs enterrés conformes à l'invention.
  • Sur les figures, la référence numérique générale 1 désigne un réservoir enterré. Ici, les réservoirs 1 sont prévus pour le confinement de gaz naturel liquide. Néanmoins, de nombreux autres types de fluides peuvent également être entreprosés ou "stockés" dans un tel réservoir.
  • Chaque réservoir 1 est un réservoir enterré du type dit "à membrane". Plus précisément, le réservoir 1 comprend une enceinte externe en béton 2, qui est au moins partiellement enterrée dans le sol, lui-même désigné par la référence S sur les figures. L'enceinte 2 qui est à peu près cylindrique, délimite dans le sol S une excavation ou cavité de forme correspondante.
  • Le réservoir enterré 1 comporte une structure rigide c'est-à-dire une structure garantissant la stabilité et la tenue du réservoir 1 sous l'effet des contraintes qui peuvent lui être appliquées. La structure rigide ici est pourvue d'un dôme de recouvrement 3, disposé au dessus de l'enceinte 2 et en saillie du sol S. Toutefois, on peut envisager que les réservoirs 1 ne possèdent pas de dôme de recouvrement. La structure rigide du réservoir 1 possède également une dalle de fond 4, disposée en regard du dôme 3 ou du sommet du réservoir 1, et dont la forme correspond sensiblement à celle de la cavité définie par l'enceinte externe 2. On voit sur les figures que le dôme de recouvrement 3 ainsi que la dalle de fond 4 sont des ouvrages en béton coulé et ferraillé.
  • On remarque également sur les figures une enveloppe 5 qui délimite à l'intérieur de la cavité définie par l'enceinte externe 2 ainsi que par le dôme 3 et la dalle 4, un espace de chargement et de confinement du fluide à stocker. L'enveloppe 5 est étanche et a également pour fonction d'isoler thermiquement du fluide entreposé dans le réservoir 1, les éléments structurels en béton 2, 4 et éventuellement 3.
  • Conformément à l'invention, l'enceinte externe 2 a la forme d'une paroi épaisse et sensiblement étanche, avec laquelle le dôme de recouvrement 3 est avantageusement venu de matière, de sorte qu'ils constituent, avec la dalle de fond 4, la structure rigide du réservoir 1 correspondant.
  • On comprend déjà que, puisque l'enceinte externe 2 est étanche et présente une épaisseur et une rigidité suffisantes pour résister aux contraintes internes et externes qui sont appliquées au réservoir 1, l'érection de ce réservoir est simplifiée et sa réalisation nécessite moins de matière.
  • Grâce à sa structure rigide, il est possible, et souvent avantageux, de prévoir que l'enceinte externe 2 s'étende profondément dans le sol jusqu'à proximité d'une couche sensiblement imperméable SI de celui-ci, pour que les infiltrations d'eau à l'intérieur de la cavité définie par le réservoir 1 soient grandement minimisées. Evidemment, il est aussi possible que l'enceinte 2 fasse positivement saillie à l'intérieur même de la couche naturellement imperméable SI du sol. Ainsi, les efforts produits par l'eau contenue dans le sol S et ayant tendance à soulever la dalle 4, sont grandement réduits. Aussi, grâce à la limitation des efforts externes appliqués au réservoir 1, et surtout de par le fait que l'enceinte externe 2 et la structure rigide sont intégrées l'une à l'autre, le réservoir 1 est de constitution plus simple et nécessite beaucoup moins de matière pour sa fabrication, que les réservoirs équivalents de l'art antérieur.
  • Dans le même ordre d'idée, étant donné que les infiltrations d'eau dans le réservoir 1 sont minimisées, et donc que les efforts de soulèvement de la dalle 4 sont extrêmement réduits par rapport aux réservoirs connus, l'épaisseur (et donc la masse) de cette dalle de fond 4 peut également être minimisée. Comme on le voit sur l'exemple des figures 1 et 2, la dalle de fond 4 a même une épaisseur inférieure à celle de l'enceinte externe 2.
  • Par conséquent, avec un réservoir 1 conforme à l'invention, d'une contenance en fluide de l'ordre de 100.000 m³, l'épaisseur de l'enceinte externe 2 peut être de l'ordre de 2,20 m et celle de la dalle de fond d'à peu près 1 m, seulement. Or, on sait que pour un réservoir équivalent de l'art antérieur, l'épaisseur de l'enceinte externe et de la structure verticale rigide est de plus de 3 m, tandis que la dalle de fond peut atteindre 7 m de hauteur.
  • Maintenant, cette dalle de fond 4 va être décrite plus en détail. Sur les figures, celle-ci a la forme d'un radier en béton armé qui repose librement d'une part contre une ou plusieurs butées solidaires de l'enceinte 2, et d'autre part sur un système de drainage 6.
  • Ici, la périphérie du radier de fond 4 prend appui sans encastrement sur une butée 24 en forme de console annulaire, intégrée à l'enceinte 2. Une telle disposition du radier sans encastrement dans les parois verticales du réservoir 1 se différencie complètement de l'art antérieur.
  • Pour sa part, le système de drainage 6 comprend essentiellement un second radier constitué d'agrégats poreux disposés sur le fond de la cavité excavée dans le sol S. Ainsi, lorsque de l'eau s'infiltre à l'intérieur de l'enceinte 2, celle-ci est drainée à travers le second radier 6 vers des pompes de refoulement (non représentées). Comme illustré sur la figure 2, ces pompes débitent dans un ou plusieurs puits P formés dans le sol S à proximité du réservoir 1, par l'intermédiaire de conduites 66 réalisées à travers l'enceinte 2.
  • Il convient également de souligner ici que, selon le mode de réalisation illustré, le réservoir 1 est muni d'un dispositif de maintien hors-gel de ses éléments en béton. Ce dispositif comprend d'une part des conduites 64 (figure 2) de circulation d'un fluide chaud, comme par exemple de l'eau, prévues sous la dalle de fond 4, c'est-à-dire à l'intérieur du second radier 6, et d'autre part des câbles électriques chauffants 28 (figure 2) conventionnels, disposés dans des tubes en acier galvanisé, eux-mêmes noyés dans le béton de l'enceinte externe 2 sensiblement jusqu'au niveau de la dalle 4.
  • Une autre différence majeure entre l'invention et les réservoirs connus concerne la structure proprement dite de l'enceinte externe 2. En effet, outre le fait que celle-ci est porteuse et étanche, l'enceinte 2 est en béton armé et moulé directement dans le sol S.
  • Plus précisément, cette enceinte 2 est réalisée en creusant dans le sol S une tranchée de forme correspondante, puis en moulant un béton de composition appropriée dans la tranchée, après y avoir disposé des cages de ferraillage ainsi que les câbles 28 de chauffage. Une telle paroi peut par exemple être obtenue à l'aide d'un appareillage du type de celui désigné par l'appellation "Hydrofraise" et mis au point par la Société Soletanche. Ce type d'appareillage permet de fabriquer des parois en béton de 70 à 80 m de profondeur, dans des conditions et avec des tolérances dimensionnelles très précises (approximativement 1 pour 1000).
  • Ensuite, un revêtement ou parement d'étanchéité est appliqué sur la face interne ou d'excavation de l'enceinte 2, par exemple par projection de béton sur un treillis métallique lui-même fixé par ancrage sur cette enceinte. Le parement, dont l'épaisseur suivant l'exemple évoqué plus haut est de l'ordre de 0,15 m permet d'obtenir un état de surface plus lisse de la face d'excavation. Essentiellement, l'état de surface ainsi obtenu doit permettre une bonne fixation de l'enveloppe 5 sur le béton, comme ceci sera mieux expliqué ci-après.
  • Au sommet de l'enceinte externe 2, est prévue une poutre de forme correspondante 32. On voit bien sur les figures 1 et 2 que cette poutre dite de couronnement est intégrée à la fois à l'enceinte 2 et au dôme de recouvrement 3, ce qui permet une bonne transmission des efforts à l'intérieur de l'ouvrage en béton, ainsi qu'un renforcement de l'enceinte externe 2. Ici, la poutre annulaire de couronnement 32 illustrée a une section transversale supérieure à celle de l'enceinte 2, et est réalisée en béton précontraint et armé. Plus spécialement, après l'érection de l'enceinte 2 en béton moulé, des ferraillages et des câbles de précontraintes sont rendus solidaires et ancrés dans cette dernière puis, du béton est coulé dans un coffrage de forme correspondant à la poutre de couronnement que l'on désire obtenir. Suite à cela, les câbles sont tendus pour précontraindre de manière appropriée le béton ainsi coulé.
  • C'est à partir de la poutre de couronnement 32 qu'est réalisé le dôme de recouvrement 3, dans le cas ou un tel dôme est prévu pour le réservoir 1. Dans ce cas, le dôme de recouvrement 3 est ancré à la partie supérieure de l'enceinte 2 par l'intermédiaire de la poutre 32. Une coupole métallique 35, appelée à faire partie de l'enveloppe 5, en formant un revêtement interne du dôme 3 est fabriquée à partir d'un treillis de poutres métalliques sur lesquelles sont soudées des plaques de tôle. Après fabrication, la coupole 35 qui définit une surface étanche correspondant au dôme 3, est rendue solidaire de la poutre 32. Après dépose et fixation d'un ferraillage approprié sur la coupole 35, du béton est coulé jusqu'à obtention du dôme 3. Suivant l'exemple précité, l'épaisseur du béton de ce dôme de recouvrement 3 varie de 0,5 à 1,0 m de son centre à sa périphérie. C'est au niveau de cette périphérique que le béton du dôme 3 est raccordé à celui de la poutre 32. Il va de soi que la coupole 35 reste au sein du réservoir 1 après coulée du béton, et est donc fixée au dôme 3, qui est lui-même venu de matière avec la poutre 32 et l'enceinte épaisse 2.
  • Comme indiqué plus haut, la coupole métallique 35 est solidaire du dôme 3 et fait partie de l'enveloppe étanche et d'isolation 5. Ici, l'enveloppe 5 comprend une membrane métallique qui est soudée sur un épaulement 352, lui-même solidaire de la périphérie de la coupole 35. Cette soudure est évidemment continue et hermétique, de sorte que cette membrane et la coupole constituent une enceinte étanche de confinement.
  • Sur les figures 3 et 4 respectivement, la membrane métallique de l'enceinte 5 est désignée en 54 et 52. On voit également que l'enveloppe 5 comporte une couche d'isolation thermique 55. La membrane est constituée par des tôles en acier inoxydable austénitique d'une épaisseur de l'ordre de 1,2 mm, soudées entre elles de façon étanche et est fixée sur le béton par l'intermédiaire de la couche 55. Ces tôles qui forment une poche de confinement, sont nervurées pour résister aux déformations liées aux sollicitations mécaniques et thermiques qui leurs sont appliquées par le fluide entreposé dans le réservoir 1.
  • En se reportant maintenant aux figures 3 et 4, la structure et le mode de mise en place de la couche d'isolation thermique de l'enveloppe 5 vont être décrits en détail.
  • Il apparaît sur les dessins que la couche d'isolation 55 est constituée par une ou plusieurs épaisseurs de panneaux rigides 57, par exemple en bois contre-plaqué, ainsi que par au moins une épaisseur de panneaux de mousse en matière plastique 56 de préférence imperméable. Ici, la couche 55 comprend, en partant de la paroi en béton une série de panneaux en mousse 56, pris en sandwich entre deux épaisseurs de contre-plaqué 57. Les panneaux 57 ont pour fonction de répartir les contraintes appliquées à la couche isolante 55, et permettent donc une meilleure mise en place de celle-ci sur les parois en béton. Quant à eux, les panneaux isolants 56 sont par exemple constitués par des blocs de mousse à cellules fermées, à base de polyuréthane (PU) ou de polyvinyle-chlorure (PVC).
  • Similairement, les panneaux de mousse 56 peuvent être imperméables et reliés hermétiquement entre eux par des raccords étanches, afin de constituer une couche supplémentaire d'isolation, continue et hermétique.
  • L'une des faces des panneaux 57 en regard du béton est collée à ce dernier par exemple à l'aide d'une couche de matière adhésive appropriée. On peut envisager que la couche de matière adhésive soit continue et imperméable, pour que celle-ci participe à l'étanchéité du réservoir 1.
  • Il est possible de compenser grâce à la matière adhésive les défauts de surface du béton et d'éviter la présence de poches entre le béton et la couche d'isolation 55.
  • D'autre part, on voit sur les figures 1, 2 et 5 qu'un toit suspendu 36, qui est fixé à l'aide de tirants ou de câbles 37 à la coupole 35 et donc au dôme 3, est interposé entre ce dernier et l'enceinte externe 2. Ce toit 36 est constitué par un treillis de poutres en aluminium, lui-même recouvert d'une couche d'isolation 365, par exemple en laine de verre. A proximité de l'épaulement 352 décrit plus haut, le toit suspendu 36 vient en contact par sa périphérie avec l'enveloppe d'isolation 5, dont il fait partie. On comprend alors que ce toit suspendu 36 ainsi que sa couche en laine de verre 365 permet d'isoler thermiquement du fluide contenu dans le réservoir 1, le dôme 3 et sa coupole 35, de manière à maintenir ces éléments à peu près à température ambiante.
  • La référence numérique 70 désigne sur les figures des canalisations de chargement et de déchargement du fluide à stocker dans le réservoir 1. Ces canalisations 70 qui sont de type conventionnel ne seront pas décrites plus en détail ici.
  • En se reportant maintenant à la figure 5, on voit un agencement de réservoirs 1 à peu près similaires à ceux qui viennent d'être décrits. Ces réservoirs 1 sont enterrés dans une zone du sol S qui est elle même enfermée dans une paroi sensiblement étanche, enterrée et close 20. Avantageusement, la paroi 20 est réalisée par moulage dans une tranchée du sol, d'un matériau étanche et déformable, tel que par exemple un béton plastique ou un coulis d'étanchéité. Par exemple, quatre réservoirs 1 disposés en carré pourront être confinés à l'intérieur d'une paroi enterrée 20 de forme cylindrique ou parallélépipèdique. Ici, cette paroi 20 a une épaisseur au plus égale à celle des enceintes externes 2 des réservoirs 1 correspondants, et sa base fait saillie plus profondément que ces dernières dans le sol. De préférence, la paroi 20 s'étend jusqu'à l'intérieur de la couche sensiblement imperméable SI. Une telle enceinte ou paroi enterrée 20 qui est sensiblement étanche, permet donc de minimiser les infiltrations d'eau dans la zone où sont implantés les réservoirs 1, de sorte que la hauteur et surtout l'épaisseur de ces derniers peuvent être réduites de façon considérable. La référence numérique 201 désigne sur la figure 5 un système de pompage de l'eau contenue à l'intérieur de la paroi 20. On comprend qu'un tel système 201 a pour fonction d'évacuer hors de la paroi 20, pour que son niveau soit constamment maintenu en dessous du niveau des radiers 4 des réservoirs 1 entourés par cette paroi 20. Puisque les infiltrations d'eau dans le sol où les réservoirs 1 sont enterrés sont minimisées par la présence de la paroi étanche 20, le système de pompage 201 de l'agencement de la figure 5, peut être très simple ce qui rend cet agencement particulièrement économique.
  • Evidemment, l'invention n'est nullement limitée aux modes de réalisation illustrés, mais comprend tous les équivalents des moyens techniques décrits ainsi que leurs combinaisons, si celles-ci sont effectuées suivant son esprit.

Claims (11)

  1. Réservoir pour le confinement d'un fluide quelconque, tel que notamment un gaz liquéfié, et du type comprenant une enceinte en béton (2) enterrée dans le sol (S), une structure rigide avec une dalle de fond (4) et essentiellement un dôme de recouvrement (3) ainsi qu'une enveloppe étanche d'isolation thermique (5) qui délimite à l'intérieur de la structure un espace de chargement pour le fluide, l'enceinte externe ayant la forme d'une paroi épaisse et sensiblement étanche, caractérisé en ce que cette enceinte (2) ainsi que le dôme de recouvrement (3) sont venus de matière l'un avec l'autre et constituent avec la dalle de fond (4), ladite structure rigide du réservoir (1), et que la base de l'enceinte externe précitée (2) s'étend au moins jusqu'à une couche (SI) sensiblement imperméable à l'eau, du sol (S).
  2. Réservoir selon la revendication 1, caractérisé en ce qu'il comprend un système de drainage (6) comprenant un second radier constitué d'agrégats poreux disposés sur le fond de la cavité excavée dans le sol (S) et le radier précité (4) et pourvu d'un dispositif d'évacuation de l'eau pénétrée dans le second radier (6) vers l'extérieur, à l'aide des pompes de refoulement et de puits (P) formés dans le sol (S) à proximité du réservoir (1), par l'intermédiaire de conduites (66) réalisées à travers l'enceinte (2).
  3. Réservoir selon la revendication 1 ou 2, caractérisé en ce que la dalle de fond (4) a la forme d'un radier en béton armé, reposant librement d'une part sur une ou plusieurs butées (24) solidaires de l'enceinte externe (2), et d'autre part sur le système de drainage (6).
  4. Réservoir selon l'une des revendications 1 à 3, caractérisé en ce que la dalle ou radier en béton armé (4) a une épaisseur inférieure à celle de l'enceinte externe (2) correspondante.
  5. Réservoir selon l'une des revendications 1 à 4, caractérisé en ce que l'enveloppe d'isolation (5) précitée comprend une membrane métallique étanche (52 ; 54) fixée à l'intérieur de l'enceinte externe (2) et sur la dalle de fond (4) par l'intermédiaire d'une couche d'isolation thermique (55).
  6. Réservoir selon la revendication 5, caractérisé en ce que la couche d'isolation (55) précitée comprend au moins une épaisseur de panneaux rigides (57) de répartition des contraintes, ainsi qu'au moins une épaisseur de panneaux de mousse en matière plastique.
  7. Réservoir selon la revendication 6, caractérisé en ce que les panneaux de mousse (56) précités sont imperméables et reliés hermétiquement entre eux par des raccords étanches, afin de constituer une couche d'isolation continue et hermétique.
  8. Réservoir selon la revendication 7, caractérisé en ce que la couche d'isolation (55) précitée est fixée sur le béton à l'aide d'une épaisseur de préférence continue de matière adhésive.
  9. Réservoir selon l'une des revendications 4 à 8, caractérisé en ce que l'enveloppe précitée comporte en outre une coupole étanche (35) en acier hermétiquement fixée par sa périphérie à la membrane métallique et constituant un revêtement interne pour le dôme de recouvrement, ainsi qu'un toit suspendu en aluminium (36) et recouvert d'une couche d'isolation thermique (365) qui est interposée entre la membrane et la coupole étanches afin de maintenir cette dernière à peu près à température ambiante.
  10. Réservoir selon l'une des revendications 1 à 9, caractérisé en ce que le dôme de recouvrement (3) et éventuellement la coupole étanche (35) précités, reposent sur l'enceinte externe (2) du réservoir (1) par l'intermédiaire d'une poutre de couronnement (32) de forme correspondante.
  11. Agencement de réservoirs (1) selon l'une des revendications 1 à 10, caractérisé en ce que lesdits réservoirs (1) sont disposés à l'intérieur d'une paroi sensiblement étanche, enterrée et close (20), et dont la base s'étend au moins jusqu'à proximité de la couche sensiblement imperméable (SI) du sol (S).
EP94400170A 1993-01-28 1994-01-26 Réservoir enterré à enceinte étanche unique pour le confinement par exemple d'un gaz liquéfié, et agencement de tels réservoirs Expired - Lifetime EP0609146B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9300881 1993-01-28
FR9300881A FR2700801B1 (fr) 1993-01-28 1993-01-28 Réservoir enterré à enceinte étanche unique pour le confinement par exemple d'un gaz liquéfié, et agencement de tels réservoirs.

Publications (2)

Publication Number Publication Date
EP0609146A1 true EP0609146A1 (fr) 1994-08-03
EP0609146B1 EP0609146B1 (fr) 1999-12-15

Family

ID=9443455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94400170A Expired - Lifetime EP0609146B1 (fr) 1993-01-28 1994-01-26 Réservoir enterré à enceinte étanche unique pour le confinement par exemple d'un gaz liquéfié, et agencement de tels réservoirs

Country Status (9)

Country Link
US (1) US5468089A (fr)
EP (1) EP0609146B1 (fr)
JP (1) JPH06321292A (fr)
KR (1) KR100310637B1 (fr)
DE (1) DE69422067T2 (fr)
ES (1) ES2144038T3 (fr)
FR (1) FR2700801B1 (fr)
PT (1) PT609146E (fr)
TW (1) TW343683U (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009049908A1 (fr) * 2007-10-18 2009-04-23 Eni S.P.A. Système de stockage de liquides cryogéniques placés sous le fond marin
WO2021175970A1 (fr) * 2020-03-05 2021-09-10 Porr Bau Gmbh Construction souterraine thermo-isolante et procédé de production correspondant

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5918271A (en) * 1998-02-11 1999-06-29 Mcguigan; James Deturck Pipe leak location detecting apparatus and repair method
FR2849073B1 (fr) * 2002-12-23 2005-10-07 Coflexip Installation de stockage sous-marin d'un liquide cryogenique
WO2012137826A1 (fr) * 2011-04-04 2012-10-11 株式会社Ihi Structure de réception de gnl
CN107939130A (zh) * 2017-12-27 2018-04-20 河南工业大学 一种带设备夹层的半地下式储仓
CN108086357A (zh) * 2018-02-06 2018-05-29 中船第九设计研究院工程有限公司 一种液化天然气地下储罐结构及其施工方法
CN108331033A (zh) * 2018-02-06 2018-07-27 中船第九设计研究院工程有限公司 一种lng地下储罐底板抗浮减压结构及其施工

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1407117A (fr) * 1964-06-11 1965-07-30 Texas Eastern Trans Corp Réservoir de stockage notamment pour fluides cryogéniques
FR2188654A5 (fr) * 1972-06-12 1974-01-18 Ishikawajima Harima Heavy Ind
FR2270512A1 (en) * 1974-05-10 1975-12-05 Technigaz Composite metal/plastic wall structure - partic. for insulating/sealing walls of reservoirs for liquefied petroleum gases
JPS54154822A (en) * 1978-05-29 1979-12-06 Kawasaki Heavy Ind Ltd Concrete skeleton construction for underground tanks
JPS58102898A (ja) * 1981-12-14 1983-06-18 Mitsubishi Heavy Ind Ltd 低温地下タンク
EP0266335A1 (fr) * 1986-10-30 1988-05-04 Compagnie D'entreprises Cfe, S.A. Réservoir de stockage de fluide sous pression

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2599468B1 (fr) * 1986-06-03 1988-08-05 Technigaz Structure de paroi thermiquement isolante de reservoir etanche

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1407117A (fr) * 1964-06-11 1965-07-30 Texas Eastern Trans Corp Réservoir de stockage notamment pour fluides cryogéniques
FR2188654A5 (fr) * 1972-06-12 1974-01-18 Ishikawajima Harima Heavy Ind
FR2270512A1 (en) * 1974-05-10 1975-12-05 Technigaz Composite metal/plastic wall structure - partic. for insulating/sealing walls of reservoirs for liquefied petroleum gases
JPS54154822A (en) * 1978-05-29 1979-12-06 Kawasaki Heavy Ind Ltd Concrete skeleton construction for underground tanks
JPS58102898A (ja) * 1981-12-14 1983-06-18 Mitsubishi Heavy Ind Ltd 低温地下タンク
EP0266335A1 (fr) * 1986-10-30 1988-05-04 Compagnie D'entreprises Cfe, S.A. Réservoir de stockage de fluide sous pression

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 4, no. 17 (M - 91)<130> 9 February 1980 (1980-02-09) *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 207 (M - 242)<1352> 13 September 1983 (1983-09-13) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009049908A1 (fr) * 2007-10-18 2009-04-23 Eni S.P.A. Système de stockage de liquides cryogéniques placés sous le fond marin
WO2021175970A1 (fr) * 2020-03-05 2021-09-10 Porr Bau Gmbh Construction souterraine thermo-isolante et procédé de production correspondant
EP4115023A1 (fr) * 2020-03-05 2023-01-11 Porr Bau GmbH Construction souterraine thermo-isolante et procédé de production correspondant

Also Published As

Publication number Publication date
FR2700801B1 (fr) 1995-04-21
FR2700801A1 (fr) 1994-07-29
TW343683U (en) 1998-10-21
ES2144038T3 (es) 2000-06-01
EP0609146B1 (fr) 1999-12-15
KR100310637B1 (ko) 2001-12-15
US5468089A (en) 1995-11-21
DE69422067T2 (de) 2000-08-24
PT609146E (pt) 2000-06-30
DE69422067D1 (de) 2000-01-20
JPH06321292A (ja) 1994-11-22

Similar Documents

Publication Publication Date Title
EP0022384B1 (fr) Procédé de construction d&#39;un réservoir de stockage d&#39;un liquide à basse température et réservoir obtenu
EP2959207B1 (fr) Procede de fabrication d&#39;une barriere etanche et thermiquement isolante pour cuve de stockage
EP0609146B1 (fr) Réservoir enterré à enceinte étanche unique pour le confinement par exemple d&#39;un gaz liquéfié, et agencement de tels réservoirs
FR3072758B1 (fr) Cuve etanche et thermiquement isolante a plusieurs zones
EP3631283A1 (fr) Cuve etanche et thermiquement isolante
WO2021186049A1 (fr) Cuve étanche et thermiquement isolante
EP0702656B1 (fr) Procede de mise en service d&#39;une cavite de stockage souterrain d&#39;hydrocarbure a basse temperature et installation de stockage d&#39;hydrocarbure a basse temperature
FR2485160A1 (fr) Soubassement pour installation terrestre de stockage de gaz liquefie, et procede de construction d&#39;une installation de stockage terrestre
FR2484056A1 (fr) Joint flexible de coin pour recipient cryogenique
EP0266335B1 (fr) Réservoir de stockage de fluide sous pression
EP3924662A1 (fr) Bloc isolant destine a l&#39;isolation thermique d&#39;une cuve de stockage
FR3039187A1 (fr) Procede de fabrication d&#39;un element de paroi d&#39;un reservoir etanche et thermiquement isolant
WO2022053763A1 (fr) Paroi de fond d&#39;une cuve de stockage de gaz liquéfié
WO2021058824A1 (fr) Cuve étanche et thermiquement isolante
FR2849073A1 (fr) Installation de stockage sous-marin d&#39;un liquide cryogenique
LU84201A1 (fr) Caveau monobloc prefabrique en matiere synthetique
FR3089595A1 (fr) Réservoir de stockage d’un fluide sous pression avec une couche d’isolation thermique interne
FR2749060A1 (fr) Citerne pour gaz de petrole liquefie
FR2498294A1 (fr) Reservoir de stockage de liquides volatils
FR3070673B1 (fr) Ouvrage flottant comprenant une cuve apte a contenir du gaz combustible liquefie
EP3938698A2 (fr) Paroi de cuve comprenant une isolation améliorée autour d&#39;une traversée
WO2021144531A1 (fr) Double trappe d&#39;accès pour une cuve de transport de gaz liquéfié
FR3129456A1 (fr) Cuve étanche et thermiquement isolante
FR2873392A1 (fr) Dispositif de regard, notamment pour compteur d&#39;eau
FR2712002A1 (fr) Procédé de construction d&#39;un élément de digue sur un fond immergé et utilisation s&#39;y rapportant.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL PT

17P Request for examination filed

Effective date: 19950203

17Q First examination report despatched

Effective date: 19960123

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL PT

REF Corresponds to:

Ref document number: 69422067

Country of ref document: DE

Date of ref document: 20000120

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000317

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2144038

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000315

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SOLETANCHE BACHY FRANCE;SOCIETE NOUVELLE TECHNIGAZ

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: PT

Ref legal event code: PD4A

Free format text: SOLETANCHE BACHY FRANCE FR

Effective date: 20011031

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1015613

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080128

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080204

Year of fee payment: 15

Ref country code: DE

Payment date: 20080131

Year of fee payment: 15

Ref country code: PT

Payment date: 20080128

Year of fee payment: 15

Ref country code: NL

Payment date: 20080130

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080213

Year of fee payment: 15

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20090727

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090126

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090727

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120131

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130219

Year of fee payment: 20