EP3938698A2 - Paroi de cuve comprenant une isolation améliorée autour d'une traversée - Google Patents

Paroi de cuve comprenant une isolation améliorée autour d'une traversée

Info

Publication number
EP3938698A2
EP3938698A2 EP20725887.2A EP20725887A EP3938698A2 EP 3938698 A2 EP3938698 A2 EP 3938698A2 EP 20725887 A EP20725887 A EP 20725887A EP 3938698 A2 EP3938698 A2 EP 3938698A2
Authority
EP
European Patent Office
Prior art keywords
insulation layer
tank
wall
primary
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20725887.2A
Other languages
German (de)
English (en)
Inventor
Amaury Mange
Romain DENOIX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3938698A2 publication Critical patent/EP3938698A2/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/082Mounting arrangements for vessels for large sea-borne storage vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • F17C2203/0341Perlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • F17C2203/035Glass wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0375Thermal insulations by gas
    • F17C2203/0379Inert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • Tank wall including improved insulation around a crossing
  • the field of the present invention is that of transport tanks with corrugated sealed membranes, for the storage and / or transport of a liquid, and in particular sealed and thermally insulating tanks for transporting a gas in the liquid state.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquid at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (LPG), for example having a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG), at approximately -162 ° C and at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • the tanks used for the storage of liquid at low temperature comprise several passages for the passage of the pipes which can be intended for example for the loading or the unloading of the liquid, or else for the capture of gases in the tank head. All of these pipes are surrounded by a coaming, that is, a vertical structural element that frames the pipes.
  • This opening thus generates difficulties at the level of the secondary insulation layer of the tank, because there are significant temperature differences between the secondary insulation layer and the element arranged in the opening and which passes through the wall.
  • the object of the present invention is to respond to the drawbacks mentioned above by eliminating the coaming, by grouping several pipes of the tank in a single passage and by managing the temperature differences between the passage and the secondary insulation layer.
  • the subject of the invention is therefore a wall of a tank capable of containing liquid cargo and intended to be installed in a transport vessel, the wall comprising at least one primary insulation layer extending mainly in a primary plane and a secondary insulation layer extending mainly in a secondary plane, the primary insulation layer and the secondary insulation layer being superimposed in a direction transverse to the insulation planes of the layers, the tank wall comprising at least one bushing taking the form of a hollow cylinder passing through the layers as well as a pipe extending into the bushing, characterized in that the primary insulation layer comprises a peripheral zone which extends around the bushing and into the secondary plane of the secondary insulation layer.
  • part of the primary insulation layer rises along the crossing and crosses the general extension plane of the secondary insulation layer, such a part being defined by the peripheral zone.
  • the vessel may contain liquefied gas, in particular liquid natural gas, liquefied petroleum gas and generally any liquefied hydrocarbon.
  • the transport vessel can then include several tanks, able to store and transport gas in the liquid state.
  • the primary insulation layer and the secondary insulation layer are sets of parts for thermally insulating the tank, and they may have different thicknesses.
  • the primary plane and the secondary plane are then defined as the planes passing respectively through the middle of the thickness of the primary insulation layer and through the middle of the thickness of the secondary insulation layer.
  • the crossing has a cylindrical shape, in particular circular.
  • the passage takes the form of a duct of circular section which passes right through the wall of the tank which is the subject of the invention.
  • the passage then makes it possible to pass a pipe, the latter possibly being a pipe for unloading the liquid cargo or a pipe for discharging the gas phase of the liquid cargo.
  • the discharge pipe In order to discharge the maximum of the liquid cargo, the discharge pipe extends from the outside of the tank to the immediate vicinity of a bottom of the tank.
  • the evacuation tube extends from the outside of the tank to the tank top.
  • the bushing according to the invention can of course comprise an unloading tube and at least one evacuation tube.
  • the peripheral zone is in communication with the portion of the primary insulation layer extending in the primary plane, so that they form one and the same volume.
  • the peripheral zone accommodates at least one peripheral part which extends in the secondary plane of the secondary insulation layer over a radius of between 400mm and 1000mm around an axis through which the bushing passes. It is then understood that the portion of the primary insulation layer located in the primary plane and the peripheral part are swept by the same flow of inert gas.
  • the room or zone is peripheral in the sense that it surrounds the crossing. It can be an annular or polygonal part or area. Although constituting the primary insulation layer, the peripheral part is separated from the insulation panels of the primary insulation layer and which extend in the primary plane.
  • a thickness of the peripheral zone is identical to a thickness of the secondary insulation layer. This characteristic guarantees the absence of coaming around the crossing.
  • the thicknesses are measured along a line parallel to an axis of revolution of the feed-through and the thickness of the part device is also identical or substantially identical to the thickness of the secondary insulation layer, except for manufacturing and assembly tolerances.
  • a partition extends at least around the passage, between the secondary insulation layer and the peripheral zone.
  • a partition separates an internal volume of the secondary insulation layer from an internal volume of the peripheral zone which is part of the primary insulation layer.
  • the partition may be cylindrical and may be formed of an assembly consisting of a circular ring and an insulating material which may for example be glass wool.
  • the partition provides a seal between the primary insulation layer and the secondary insulation layer. This partition therefore separates the volume of the primary insulation layer from the volume of the secondary insulation layer, in the vicinity of the peripheral zone.
  • At least one gas discharge tube extends into the passage and has an outer end which opens out outside the vessel and an internal end which opens into a head of the vessel.
  • the tank top includes the gases resulting from the evaporation of the liquid cargo and is therefore close to the top wall of the tank.
  • the gas evacuation tube then makes it possible to suck the gases present in the tank top so as to supply a thermal machine which equips the transport vessel or to adapt the pressure in the tank top.
  • the pipe is a pipe for unloading the liquid cargo, comprising in particular a first end which opens out of the internal volume of the tank and a second end which opens into the tank, in the vicinity of a bottom wall of the tank. tank.
  • the invention also covers a wall which has several feedthroughs as described above.
  • the invention also covers a transport vessel, for example an LNG carrier, comprising at least one vessel wall which has the above characteristics.
  • a transport vessel for example an LNG carrier
  • the latter comprises at least one bridge of the transport vessel, one edge of the bridge being at a non-zero distance from the crossing.
  • the deck of the transport vessel extends at a non-zero distance from the crossing in order to allow movements which result from thermal expansions between the crossing, which may be in contact with the cargo in the liquid state, and the bridge which is isolated from this cargo by at least the primary insulation layer and the secondary insulation layer.
  • the non-zero distance which separates the crossing from the edge of the bridge is filled by a thermally insulating part.
  • the edge of the bridge extends at least partially axially to the right of the peripheral zone along a straight line parallel to the crossing axis.
  • a cylinder arranged around the crossing is supported by an external face of the bridge and defines with the crossing a space containing a thermally insulating material, the space being closed by a plate.
  • the cylinder insulation can be made, for example, of glass wool, expanded foam or perlite. It is then understood that the cylinder reinforces the insulation around the bushing and that the plate allows to hermetically seal the space of the cylinder.
  • the edge of the deck is radially disposed between the crossing and an internal face of the cylinder.
  • Such an organization makes it possible to use the bridge so that it takes up the axial forces which come from the pressure inside the vessel around the crossing and which the primary insulation layer is subjected to.
  • a pipe passes through the cylinder, the peripheral zone and opens into the primary insulation layer, the pipe being configured to be connected to an inert gas supply device.
  • a first pipe opening, a second pipe opening and a third pipe opening are formed at least respectively in the cylinder, in the deck of the transport vessel and through the peripheral part, in order to to allow the passage of the pipe through a cylinder insulation and the primary insulation layer.
  • the inert gas is nitrogen.
  • the invention also covers a transport vessel comprising a wall of a tank capable of containing liquid cargo and intended to be installed in a transport vessel, the wall comprising at least one primary insulation layer extending mainly in a primary plane and a secondary insulation layer extending predominantly in a secondary plane, the primary insulation layer and the secondary insulation layer being superimposed in a direction transverse to the insulation planes of the layers, the tank wall comprising at least one crossing in the form of a hollow cylinder passing through the layers as well as a pipe extending into the crossing, the transport vessel including at least one deck of the transport vessel, one edge of the bridge being spaced apart non-zero crossing, the edge of the bridge is radially disposed between the crossing and an internal face of a cylinder arranged around the crossing and supported by an external face of the bridge.
  • the edge of the bridge extends at least partially axially to the right of the peripheral zone in a straight line parallel to the crossing axis.
  • the invention also relates to a method for loading or unloading liquid natural gas from a vessel comprising a wall according to the preceding characteristics or from a liquid natural gas transport vessel according to one of the preceding characteristics.
  • FIG. 1 is a side view of a transport vessel showing at least one tank for transporting liquid cargo as well as a passageway entering the tank;
  • FIG. 2 is a sectional view, in a vertical direction of the tank, of an upper wall of the tank in which the passage is formed;
  • FIG. 3 is a close-up view in section along the vertical direction of the vessel of the peripheral zone of penetration of the bushing into the upper wall of the vessel in FIG. 2.
  • a transport vessel for example an LNG carrier, which comprises four tanks 2 for the transport or storage of liquefied natural gas. At least one of the tanks 2 comprises a tank wall 22 which defines an internal cavity 20 in which the liquefied gas is stored.
  • the vessel wall 22 comprises a vessel bottom wall 22a, an upper vessel wall 22b, opposite the vessel bottom wall 22a in a vertical direction V of the vessel 2, and side walls 22c which extend between the vessel bottom wall 22a and the vessel top wall 22b.
  • FIG 2 illustrates a sectional view of the tank 2 and of the passage 3 formed in the upper wall of the tank 22b, in the vertical direction V of the tank illustrated in Figure 1.
  • This passage 3 takes the form of a hollow cylinder, a first end of which is located in an external environment of the tank 2 while the other end is arranged in a cap 21 of tank 2 corresponding to a part of the internal cavity 20 close to the upper wall 22b of the wall of tank 22, that is to say a portion of tank 2 where gas in the liquid state is not present in normal conditions of use.
  • the feed-through 3 extends around and along an axis of revolution, called the feed-through axis R and comprises a feed-through wall which extends peripherally around the feed-through axis R of the feed-through 3 and which defines a passage through the upper wall of the tank 22b.
  • the passage 3 then allows the passage of at least one pipe 31, in particular a pipe for unloading the liquefied gas and / or a gas discharge pipe 32.
  • the passage 3 also comprises a cover 33 covering the pipe. part outside the tank 2 and allowing the passage 3 to be sealed off once the pipe 31 and / or the gas discharge pipe 32 have been installed.
  • the gas discharge tube 32 extends from the outside of the tank to the inside of the tank 2, and opens into the part of the tank 2 called the top 21 of tank 2, where the natural gas is in the gaseous state.
  • the top 21 of tank 2 is a space near the top wall of tank 22b which contains a gas phase of the liquid cargo which results from its
  • the gas evacuation tube 32 then makes it possible to suck the gaseous phase of the liquid cargo to supply a thermal machine (not shown) which equips the transport vessel, or to allow the pressure in the sky 21 to be adapted from tank 2.
  • the upper tank wall 22b is composed of a superposition of an insulating and waterproof layer, in order to thermally insulate the internal cavity 20 and to ensure its tightness.
  • the upper wall of the tank 22b then comprises, respectively from the internal cavity 20 towards an environment outside the tank 2, at least one primary insulation layer 224 and a secondary insulation layer 226.
  • the other walls of the tank can also comprising such primary insulation layer 224 and secondary insulation layer 226.
  • the primary insulation layer 224 consists of a primary membrane 222, made up of a plurality of plates welded together and comprising waves 2221, and a plurality of primary insulation panels 221.
  • the primary membrane 222 constitutes a face in direct contact with the liquefied gas contained in the internal cavity 20.
  • the secondary insulation layer 226 consists of several secondary insulation panels 220 and a secondary membrane 225, facing the primary insulation layer 224.
  • the secondary insulation layer 226 of the upper wall of the tank 22b is then surmounted by a bridge 228 in contact with the outside of the tank 2.
  • the primary insulation layer 224 defines a volume which is swept by an inert gas, and is delimited on one side by the membrane primary 222 and on the other hand by the secondary membrane 225.
  • the secondary insulation layer 226 defines a volume, distinct from the volume of the primary insulation layer 224, which is swept by an inert gas, and which is delimited on one side by the secondary membrane 225 and on the other side by the bridge 228.
  • the circulation of inert gas in the primary insulation layer 224 and in the secondary insulation layer 226 allows for example the detection of leaks of the cargo outside the internal cavity 20 of the tank 2. The leak detection occurs. then performs separately for the primary insulation layer 224 and for the secondary insulation layer 226.
  • the inert gas used is nitrogen.
  • the upper vessel wall 22b also comprises a cylinder 233 extending radially around the bushing 3.
  • This cylinder 233 has an axis of revolution which coincides with the bushing axis R.
  • FIG. 3 shows a close-up view in section along the vertical direction V of the vessel, of the passage 3 and of its peripheral zone.
  • “superposition” is understood to mean a superposition in the vertical direction V of the tank, going from the internal cavity 20 of the tank to the outside of the tank.
  • the passage 3 defines a passage in the upper wall of the vessel 22b for the pipe 31, in particular the pipe for unloading the liquid cargo, and / or for the gas discharge pipe 32, for the suction of gases from the air 21 tank.
  • the top wall of the vessel 22b comprises the primary insulation layer 224 consisting in part of the primary membrane 222 on which the primary insulation panel 221 is superimposed.
  • the primary membrane 222 is in contact with the liquefied gas stored in the internal cavity. 20 of the tank.
  • the primary membrane 222 is composed of a plurality of plates comprising waves 2221 distributed over its surface and it surrounds the passage 3, nevertheless remaining at a non-zero distance from this passage 3.
  • Such a configuration of the primary membrane 222 gives it provides greater resistance to the stresses generated on the tank, in particular to thermal shrinkage during the cooling of the tank, the hydrostatic pressure due to the loading of the liquid cargo, as well as the dynamic pressure due to the movement of the cargo, especially in because of the swell.
  • the waves 2221 on the primary membrane 222 then allow it to deform to overcome these stresses.
  • the primary membrane 222 is
  • a bracket 236 is placed in the internal cavity 20 of the tank, so that it is in contact with the primary membrane 222 and with the bushing 3. Only the ends of the bracket 236 are welded respectively to the primary membrane 222. and to the feed-through 3.
  • Such a configuration of the bracket 236 allows it both to close the space between the primary membrane 222 and the feed-through 3, and also to give flexibility in this area to absorb the dynamic stresses of the. tank. Indeed, the crossing 3 can cut several waves 2221 so that it is necessary to restore flexibility in the passage area of the crossing 3. This flexibility is for example given by the fact that the square 236 is welded only. at its ends.
  • the primary insulation panel 221 is made of an insulating material and contributes to the thermal insulation of the tank, necessary for the storage of liquid natural gas at low temperature (-163 ° Celsius).
  • the primary insulation layer 224 is defined by a thickness Tl measured along a line parallel to the traverse axis R and this thickness extends from the primary membrane to the secondary membrane.
  • the primary insulation layer 224 extends around the bushing 3 to a non-zero distance DI, in order to adapt to the expansion and shrinkage of the bushing 3 caused by temperature variations during loading or unloading of the tank.
  • the primary insulation layer 224 has the function of forming a first thermal insulation barrier of the tank.
  • a primary plate 223 extends between the primary membrane 222 and the primary insulation panel 221.
  • the primary plate 223 is a wood plywood which may include stainless steel strips (not shown) allowing the edges of the plates to be welded.
  • primary membrane 222 is a wood plywood which may include stainless steel strips (not shown) allowing the edges of the plates to be welded.
  • the secondary insulation layer 226 comprises the secondary membrane 225, otherwise called triplex, superimposed on the primary insulation layer 224 and which extends in the vicinity of the passage 3, up to a distance D2 which is not zero and strictly greater than the DI distance mentioned above.
  • the secondary membrane 225 is a material comprising three layers, namely two outer layers of fiberglass fabrics and an intermediate layer of thin metal foil, for example an aluminum foil with a thickness of about 0.1 mm.
  • the secondary membrane 225 has flexibility in bending, allowing it to follow the deformations of the tank due to the deformation of the shell by the swell or by the cooling of the tank. By flexural flexibility is meant the ability of the material to be bent to form curves without breaking.
  • the secondary insulation panel 220 is superimposed on the secondary membrane 225.
  • the secondary insulation panel 220 is made of a thermally insulating material and participates together with the primary insulation panel 221 in the thermal insulation of the tank.
  • the secondary insulation layer 226 is then defined by a thickness T2 measured along a straight line parallel to the crossing axis R between the secondary membrane and a secondary plate 227 glued against the bridge.
  • the secondary insulation layer 226 extends around the passage 3 up to the non-zero distance D2, this distance D2 being strictly greater than the distance referenced Dl.
  • the secondary insulation layer 226 comprises a first face 2261, facing the bridge 228 and a second face 2262, facing the secondary membrane 225.
  • a secondary plate 227 extends between the bridge 228 and the secondary insulation panel 220.
  • the secondary plate 227 stiffens the secondary insulation panel 220 and may in particular be made of wood plywood.
  • a peripheral part 240 extends in a peripheral zone 229, which is defined as the zone which extends in the insulation plane P2 of the secondary insulation layer 226 and radially between the secondary insulation layer 226 and the bushing 3, at least over a radial distance equivalent to the distance D2 mentioned above.
  • the peripheral part 240 has a thickness T3 measured along a straight line parallel to the feed-through axis R which is the same or similar to the thickness T2 of the secondary insulation layer 226, with manufacturing and / or manufacturing tolerances. fitting close.
  • This thickness T3 also defines the part of the layer of primary insulation 224 which extends around the passage 3 and which is in the secondary plane P2 of the secondary insulation layer 226. In the present description, this part is the peripheral zone 229.
  • the peripheral part 240 is a part participating in the thermal insulation of the tank and may be made of materials identical to the insulating panels of the primary insulation layer 224.
  • the peripheral part 240 is housed in the peripheral zone 229.
  • the peripheral part 240 is in communication with the volume of the primary insulation layer 224 at least by virtue of a passage space 242 defined by the distance DI between the primary insulation layer 224, the peripheral part 240 , and the feedthrough 3.
  • This feedthrough space 242 can be filled with a feedthrough thermal insulator 241, preferably glass wool which allows, by virtue of its flexibility, to take up the cold effects of the feedthrough 3, while allowing circulation of inert gas. It is then understood that the peripheral zone 229 is swept by the inert gas circulating in the volume of the primary insulation layer 224. This characteristic is considered to be that the peripheral part 240 forms part of the primary insulation layer 224.
  • the secondary insulation layer 226 thus comprises a counterbore which surrounds the passage 3, this counterbore being formed by the peripheral zone 229 and filled in by the peripheral part 240.
  • the peripheral part 240 extends in the secondary plane P2 of the secondary insulation layer 226 over a radius of between 400mm and 1000mm around the axis of passage R of the passage 3.
  • a first annular plate 2291 extends between the peripheral part 240 and the bridge 228.
  • a second annular plate 2292 may be disposed between the primary insulation panel 221 and the peripheral part 240.
  • the first annular plate 2291 and the second annular plate 2292 can be, without limitation, made of densified wood or of polyurethane and their function is to stiffen the peripheral part 240.
  • the upper wall of the tank 22b comprises the bridge 228 of the transport vessel which covers the secondary plate 227 and which extends at least partially axially in line with the peripheral part 240, that is to say along a line parallel to the traverse axis R.
  • the bridge 228 therefore at least partially covers the first annular plate 2291.
  • the bridge 228 extends to a non-zero distance from the crossing 3 and comprises an edge 2280 disposed radially between the crossing 3 and an internal face. 2334 of the cylinder 233.
  • the edge 2280 thus delimits a passage 2332 between the bridge 228 and the passage 3.
  • the passage 2332 can be filled with a thermal insulator, the latter then being disposed between the edge 2280 and the passage 3.
  • the bridge 228 comprises an outer face 2281, facing the exterior environment of the tank, and an inner face 2282, facing the secondary plate 227 and the first annular plate 2291.
  • An adhesive 230 can be positioned between the face. internal 2282 of the bridge 228, the first annular plate 2291 and the secondary plate 227.
  • the adhesive 230 may for example be in the form of spots of adhesive and enables the first annular plate 2291 and the secondary plate 227 to be secured to the bridge 228.
  • a partition 232 extends parallel to the crossing axis R, radially at least between the peripheral part 240 and the secondary insulation layer 226.
  • the partition 232 emerges perpendicularly from the interior face 2282 of the deck 228 until it is at contact of the secondary membrane 225.
  • the partition 232 is composed of a ring 2321 and an insulating material 2322, for example glass wool.
  • the ring 2321 of the partition 232 has a profile of a right circular cylinder. It is then understood that the partition 232 has the function of thermally insulating and sealingly separating the peripheral part 240 from the secondary insulating layer 226, so that the inert gas circulating respectively in each of the volumes does not mix.
  • the junction between the ring 2321 and the secondary membrane 225 may for example be the subject of welding in order to make this junction waterproof. So in general, it is considered that the partition 232 separates the volume of the secondary layer 226 from the volume of the peripheral zone 229.
  • the upper wall of the vessel 22b comprises the cylinder 233 positioned resting on the outer face 2281 of the bridge 228.
  • the cylinder 233 extends radially around the passage 3 and axially in line with the peripheral part 240.
  • the cylinder 233 comprises a space 2331 fills with a thermally insulating material called cylinder insulating layer 242 and which can be for example glass wool, expanded foam or perlite.
  • the function of the cylinder 233 is to increase the thermal insulation around the passage 3.
  • the space 2331 of the cylinder 233 is delimited by the passage 3, the cylinder 233, a part of the bridge 228 with its edge 2280 and a circular plate 234.
  • the circular plate 234 overlaps the space 2331, opposite the bridge 228 and extends perpendicular to the crossing axis R and from the crossing 3 to the cylinder 233.
  • the space 2331 of the cylinder 233 is therefore
  • a pipe 235 taking the form of a tube, partly extends into the primary insulation layer 224. To this end, several openings are formed in the upper wall of the tank 22b, including a first pipe opening 2351 formed. through the cylinder 233, a second pipe opening 2352 formed through the bridge 228, close to its edge 2280, and a third pipe opening 2353 formed through the second annular plate 2292. It is then understood that the pipe 235 circulates from the outside of the tank to the primary insulation layer 224, in particular via the cylinder insulating layer 242 and the peripheral part 240, by means of the pipe openings 2351, 2352, 2353 mentioned above.
  • the pipe 235 is configured to be connected to an inert gas supply device (not shown) and its function is to participate in a gas sweep of the primary insulation layer 224.
  • the injection of inert gas into the layer d The primary insulation 224 makes it possible, by means of an external analysis device (not shown), to verify the absence of invasion of the primary insulation layer 224.
  • the invention thus achieves the object that it had set itself by eliminating the coaming and by grouping together several pipes of the tank in the same passage, while improving the thermal insulation and the tightness of this passage, by means of the peripheral zone and of the cylinder extending radially around the bushing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Insulators (AREA)

Abstract

La présente invention a pour objet une paroi de cuve comprenant une couche d'isolation primaire (224) s'étendant majoritairement dans un plan primaire (P1) et une couche d'isolation secondaire (226) s'étendant majoritairement dans un plan secondaire (P2). La paroi (22) de la cuve comprend une traversée (3) ménagée dans une paroi supérieure de cuve (22b) autour de laquelle une zone périphérique (229) s'étend dans le plan secondaire (P2) de la couche d'isolation secondaire (226).

Description

Description
Titre : Paroi de cuve comprenant une isolation améliorée autour d’une traversée
Le domaine de la présente invention est celui des cuves de transport à membranes étanches ondulées, pour le stockage et/ou le transport d’un liquide, et en particulier les cuves étanches et thermiquement isolantes pour transporter un gaz à l’état liquide.
L’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de liquide à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (GPL), présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL), à environ -162°C et à pression atmosphérique. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
Habituellement, les cuves utilisées pour le stockage de liquide à basse température comprennent plusieurs traversées pour le passage des tuyaux qui peuvent être destinés par exemple au chargement ou au déchargement du liquide, ou encore à la captation des gaz dans le ciel de cuve. L’ensemble de ces tuyaux est entouré d’un surbau, c’est-à-dire un élément de structure vertical qui encadre les tuyaux.
Dans certaines situations où le nombre de tuyaux ou leurs dimensions sont restreints, l’utilisation d’un surbau peut être évitée. Il faut néanmoins prévoir des ouvertures qui permettent aux tuyaux de traverser la paroi de la cuve.
Ces ouvertures ne sont néanmoins pas adaptées pour le passage du tube de
déchargement de la cargaison présente dans la cuve, ce dernier impliquant de réaliser une ouverture dans la paroi de la cuve de taille significative.
La taille de cette ouverture génère ainsi des difficultés au niveau de la couche d’isolation secondaire de la cuve, car il existe des différences de températures importantes entre la couche d’isolation secondaire et l’élément disposée dans l’ouverture et qui traverse la paroi.
La présente invention a pour but de répondre aux inconvénients cités précédemment en supprimant le surbau, en regroupant plusieurs tuyaux de la cuve en une même traversée et en gérant les écarts de températures entre la traversée et la couche d’isolation secondaire.
L’invention a donc pour objet une paroi d’une cuve apte à contenir une cargaison liquide et destinée à être installée dans un navire de transport, la paroi comprenant au moins une couche d’isolation primaire s’étendant majoritairement dans un plan primaire et une couche d’isolation secondaire s’étendant majoritairement dans un plan secondaire, la couche d’isolation primaire et la couche d’isolation secondaire étant superposées dans une direction transversale aux plans d’isolation des couches, la paroi de cuve comprenant au moins une traversée prenant la forme d’un cylindre creux traversant les couches ainsi qu’un tuyau qui s’étend dans la traversée, caractérisée en ce que la couche d’isolation primaire comprend une zone périphérique qui s’étend autour de la traversée et dans le plan secondaire de la couche d’isolation secondaire.
On comprend ici qu’une partie de la couche d’isolation primaire remonte le long de la traversée et croise le plan général d’extension de la couche d’isolation secondaire, une telle partie état définie par la zone périphérique.
Selon l’invention, la cuve peut contenir du gaz liquéfié, notamment du gaz naturel liquide, du gaz de pétrole liquéfié et d’une manière générale tout hydrocarbure liquéfié. Le navire de transport peut alors comprendre plusieurs cuves, aptes à stocker et transporter du gaz à l’état liquide.
La couche d’isolation primaire et la couche d’isolation secondaire sont des ensembles de pièces permettant d’isoler thermiquement la cuve, et elles peuvent présenter des épaisseurs distinctes. On définit alors le plan primaire et le plan secondaire comme les plans passant respectivement par le milieu de l’épaisseur de la couche d’isolation primaire et par le milieu de l’épaisseur de la couche d’isolation secondaire. La traversée présente une forme cylindrique, notamment circulaire. La traversée prend la forme d’un conduit de section circulaire qui traverse de part en part la paroi de la cuve objet de l’invention. La traversée permet alors de faire passer un tuyau, ce dernier pouvant être un tuyau de déchargement de la cargaison liquide ou un tube d’évacuation de la phase gazeuse de la cargaison liquide. Afin de décharger le maximum de la cargaison liquide, le tuyau de déchargement s’étend depuis l’extérieure de la cuve jusqu’au voisinage immédiat d’un fond de la cuve. Le tube d’évacuation s’étend quant à lui depuis l’extérieure de la cuve jusqu’au ciel de cuve. La traversée selon l’invention peut bien entendu comprendre un tube de déchargement et au moins un tube d’évacuation.
Selon l’invention, la zone périphérique est en communication avec la portion de la couche d’isolation primaire s’étendant dans le plan primaire, de telle sorte qu’elles ne forment qu’un seul et même volume. Cette caractéristique permet de pouvoir balayer avec un seul et même gaz inerte la portion de couche d’isolation primaire qui se situe dans le plan primaire et la partie de cette couche d’isolation primaire qui s’étend dans le plan secondaire.
Selon une caractéristique de l’invention, la zone périphérique loge au moins une pièce périphérique qui s’étend dans le plan secondaire de la couche d’isolation secondaire sur un rayon compris entre 400mm et 1000mm autour d’un axe de traversée de la traversée. On comprend alors que la portion de la couche d’isolation primaire située dans le plan primaire et la pièce périphérique sont balayées par le même flux de gaz inerte.
La pièce ou la zone est périphérique en ce sens qu’elle entoure la traversée. Il peut s’agir d’une pièce ou zone annulaire ou polygonale. Bien que constitutive de la couche d’isolation primaire, la pièce périphérique est séparée des panneaux isolants de la couche d’isolation primaire et qui s’étendent dans le plan primaire.
Selon une caractéristique de l’invention, une épaisseur de la zone périphérique est identique à une épaisseur de la couche d’isolation secondaire. Cette caractéristique garantie l’absence de surbau autour de la traversée. Les épaisseurs sont mesurées selon une droite parallèle à un axe de révolution de la traversée et l’épaisseur de la pièce périphérique est également identique ou sensiblement identique à l’épaisseur de la couche d’isolation secondaire, aux tolérances de fabrication et de montage près.
Selon une caractéristique de l’invention, une cloison s’étend au moins autour de la traversée, entre la couche d’isolation secondaire et la zone périphérique. Une telle cloison sépare un volume interne de la couche d’isolation secondaire d’un volume interne de la zone périphérique qui fait partie de la couche d’isolation primaire. La cloison peut être cylindrique et peut être formée d’un ensemble composé d’une bague circulaire et d’une matière isolante pouvant par exemple être de la laine de verre.
Selon une caractéristique de l’invention, la cloison assure une étanchéité entre la couche d’isolation primaire et la couche d’isolation secondaire. Cette cloison sépare donc le volume de couche d’isolation primaire du volume de la couche d’isolation secondaire, au voisinage de la zone périphérique.
Selon une caractéristique de l’invention, au moins un tube d’évacuation des gaz s’étend dans la traversée et possède une extrémité externe qui débouche en dehors de la cuve et une extrémité interne qui débouche dans un ciel de la cuve. Le ciel de cuve comprend les gaz résultant de l’évaporation de la cargaison liquide et est donc proche de la paroi supérieure de la cuve. Le tube d’évacuation de gaz permet alors d’aspirer les gaz présent dans le ciel de cuve de manière à alimenter une machine thermique qui équipe le navire de transport ou encore pour adapter la pression dans le ciel de cuve.
Selon un autre aspect, le tuyau est un tuyau de déchargement de la cargaison liquide, comprenant notamment une première extrémité qui débouche hors du volume interne de la cuve et une seconde extrémité qui débouche dans la cuve, au voisinage d’une paroi de fond de la cuve.
L’invention couvre également une paroi qui comporte plusieurs traversées telles que décrites ci-dessus.
L’invention couvre également un navire de transport, par exemple un méthanier, comprenant au moins une paroi de cuve qui comporte les caractéristiques précédentes. Selon une caractéristique du navire de transport, celui-ci comprend au moins un pont du navire de transport, un bord du pont étant à une distance non nulle de la traversée.
Le pont du navire de transport s’étend à une distance non nulle de la traversée afin d’autoriser des mouvements qui résultent des dilatations thermiques entre la traversée, qui peut être en contact de la cargaison à l’état liquide, et le pont qui est isolé de cette cargaison par au moins la couche d’isolation primaire et la couche d’isolation secondaire.
Selon un aspect, la distance non-nulle qui sépare la traversée du bord du pont est comblée par une pièce thermiquement isolante.
Selon une caractéristique du navire de transport, le bord du pont s’étend au moins en partie axialement au droit de la zone périphérique selon une droite parallèle à l’axe de traversée.
Selon une caractéristique du navire de transport, un cylindre disposé autour de la traversée est supporté par une face externe du pont et délimite avec la traversée un espace contenant un matériau thermiquement isolant, l’espace étant fermé par un plateau. L’isolation de cylindre peut être composée par exemple de laine de verre, de mousse expansée ou de perlite. On comprend alors que le cylindre renforce l’isolation autour de la traversée et que le plateau permet de fermer hermétiquement l’espace du cylindre.
Selon une caractéristique du navire de transport, le bord du pont est radialement disposé entre la traversée et une face interne du cylindre. Une telle organisation permet d’utiliser le pont pour qu’il reprenne des efforts axiaux qui proviennent de la pression interne à la cuve autour de la traversée et que la couche d’isolation primaire subit.
Toujours selon une caractéristique du navire de transport, une conduite traverse le cylindre, la zone de périphérique et débouche dans la couche d’isolation primaire, la conduite étant configurée pour être reliée à un dispositif d’alimentation en gaz inerte. Une première ouverture de conduite, une deuxième ouverture de conduite et une troisième ouverture de conduite sont ménagées au moins respectivement dans le cylindre, dans le pont du navire de transport et au travers de la pièce périphérique, afin de permettre le passage de la conduite au travers d’une isolation de cylindre et de la couche d’isolation primaire. De préférence, le gaz inerte est de l’azote.
L’invention couvre également un navire de transport comprenant une paroi d’une cuve apte à contenir une cargaison liquide et destinée à être installée dans un navire de transport, la paroi comprenant au moins une couche d’isolation primaire s’étendant majoritairement dans un plan primaire et une couche d’isolation secondaire s’étendant majoritairement dans un plan secondaire, la couche d’isolation primaire et la couche d’isolation secondaire étant superposées dans une direction transversale aux plans d’isolation des couches, la paroi de cuve comprenant au moins une traversée prenant la forme d’un cylindre creux traversant les couches ainsi qu’un tuyau qui s’étend dans la traversée, le navire de transport comprenant au moins un pont du navire de transport, un bord du pont étant à une distance non nulle de la traversée, le bord du pont est radialement disposé entre la traversée et une face interne d’un cylindre disposé autour de la traversée et supporté par une face externe du pont.
Selon un aspect du navire de transport, le bord du pont s’étend au moins en partie axialement au droit de la zone périphérique selon une droite parallèle à l’axe de traversée.
L’invention concerne également un procédé de chargement ou de déchargement d’un gaz naturel liquide d’une cuve comprenant une paroi selon les caractéristiques précédentes ou d’un navire de transport de gaz naturel liquide selon l’une des caractéristiques précédentes.
D’autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci- après à titre indicatif en relation avec des dessins dans lesquels :
[Fig. 1] est une vue de côté d’un navire de transport montrant au moins une cuve de transport d’une cargaison liquide ainsi qu’une traversée pénétrant la cuve ;
[Fig. 2] est une vue en coupe, suivant une direction verticale de la cuve, d’une paroi supérieure de cuve dans laquelle est ménagée la traversée ; [Fig. 3] est une vue rapprochée en coupe suivant la direction verticale de la cuve de la zone périphérique de pénétration de la traversée dans la paroi supérieure de cuve de la figure 2.
Il faut tout d’abord noter que les figures exposent l’invention de manière détaillée pour mettre en œuvre l’invention, lesdites figures pouvant bien entendu servir à mieux définir l’invention, le cas échéant.
Sur la figure 1 est représenté un navire de transport 1, par exemple un méthanier, qui comporte quatre cuves 2 pour le transport ou le stockage de gaz naturel liquéfié. Au moins une des cuves 2 comprend une paroi de cuve 22 qui délimite une cavité interne 20 dans lequel est stocké le gaz liquéfié. La paroi de cuve 22 comprend une paroi de fond de cuve 22a, une paroi supérieure de cuve 22b, opposée à la paroi de fond de cuve 22a suivant une direction verticale V de la cuve 2, et des parois latérales 22c qui s’étendent entre la paroi de fond de cuve 22a et la paroi de supérieure de cuve 22b.
La figure 2 illustre une vue en coupe de la cuve 2 et de la traversée 3 ménagée dans la paroi supérieure de cuve 22b, suivant la direction verticale V de la cuve illustrée à la figure 1. Cette traversée 3, prend la forme d’un cylindre creux dont une première extrémité est située dans un environnement extérieur de la cuve 2 tandis que l’autre extrémité est disposée dans un ciel 21 de cuve 2 correspondant à une partie de la cavité interne 20 proche de la paroi supérieur 22b de la paroi de cuve 22, c’est-à-dire une portion de la cuve 2 où le gaz à l’état liquide n’est pas présent en condition normales d’utilisation.
La traversée 3 s’étend autour et le long d’un axe de révolution, appelé axe de traversée R et comprend une paroi de traversée qui s’étend périphériquement autour de l’axe de traversée R de la traversée 3 et qui délimite un passage au travers de la paroi supérieur de cuve 22b. La traversée 3 permet alors le passage d’au moins un tuyau 31, notamment un tuyau de déchargement du gaz liquéfié et/ou d’un tube d’évacuation de gaz 32. La traversée 3 comprend également un couvercle 33 venant en recouvrement de la partie à l’extérieur de la cuve 2 et permettant de clôturer de manière étanche la traversée 3 une fois le tuyau 31 et/ou le tube d’évacuation de gaz 32 installés. Le tuyau 31, lorsqu’il s’agit d’un tuyau de déchargement du gaz à l’état liquide, s’étend dans la portion liquide de la cargaison jusqu’au voisinage immédiat de la paroi de fond de cuve 22a, pour décharger le maximum du gaz liquéfié en dehors de la cuve 2. Le tube d’évacuation de gaz 32 s’étend depuis l’extérieur de la cuve jusqu’à l’intérieur de la cuve 2, et s’ouvre dans la partie de la cuve 2 appelée ciel 21 de cuve 2, où le gaz naturel est à l’état gazeux. Le ciel 21 de cuve 2 est un espace proche de la paroi supérieure de cuve 22b qui contient une phase gazeuse de la cargaison liquide qui résulte de son
évaporation. Le tube d’évacuation de gaz 32 permet alors d’aspirer la phase gazeuse de la cargaison liquide pour alimenter une machine thermique (non représentée) qui équipe le navire de transport, ou encore pour permettre d’adapter la pression dans le ciel 21 de cuve 2.
La paroi supérieure de cuve 22b est composée d’une superposition de couche isolante et étanche, afin d’isoler thermiquement la cavité interne 20 et d’en assurer l’étanchéité. La paroi supérieure de cuve 22b comprend alors, respectivement de la cavité interne 20 vers un environnement extérieur de la cuve 2, au moins une couche d’isolation primaire 224 et une couche d’isolation secondaire 226. Les autres parois de la cuve peuvent également comprendre de telles couche d’isolation primaire 224 et couche d’isolation secondaire 226.
La couche d’isolation primaire 224 est constituée d’une membrane primaire 222, constituée d’une pluralité de plaques soudées les unes aux autres et comprenant des ondes 2221, et d’une pluralité de panneaux d’isolation primaire 221. La membrane primaire 222 constitue une face en contact direct avec le gaz liquéfié contenu dans la cavité interne 20.
La couche d’isolation secondaire 226 est constituée de plusieurs panneaux d’isolation secondaire 220 et d’une membrane secondaire 225, en regard de la couche d’isolation primaire 224. La couche d’isolation secondaire 226 de la paroi supérieure de cuve 22b est alors surmontée d’un pont 228 en contact avec l’extérieur de la cuve 2.
Selon une caractéristique de l’invention, la couche d’isolation primaire 224 définit un volume qui est balayé par un gaz inerte, et est délimité d’un côté par la membrane primaire 222 et d’un autre coté par la membrane secondaire 225. De manière équivalente, la couche d’isolation secondaire 226 définit un volume, distinct du volume de la couche d’isolation primaire 224, qui est balayé par un gaz inerte, et qui est délimité d’un côté par la membrane secondaire 225 et de l’autre côté par le pont 228.
La circulation de gaz inerte dans la couche d’isolation primaire 224 et dans la couche d’isolation secondaire 226 permet par exemple la détection des fuites de la cargaison en dehors de la cavité interne 20 de la cuve 2. La détection de fuite s’effectue alors de manière distincte pour la couche d’isolation primaire 224 et pour la couche d’isolation secondaire 226. Avantageusement, le gaz inerte utilisé est de l’azote.
La paroi supérieure de cuve 22b comprend également un cylindre 233 s’étendant radialement autour de la traversée 3. Ce cylindre 233 présente un axe de révolution qui est confondu avec l’axe de traversée R.
La figure 3 montre une vue rapprochée en coupe suivant la direction verticale V de la cuve, de la traversée 3 et de sa zone périphérique. Dans la description qui suit, on entend par superposition, une superposition suivant la direction verticale V de la cuve, allant de la cavité interne 20 de la cuve vers l’extérieur de la cuve.
La traversée 3 définit un passage dans la paroi supérieure de cuve 22b pour le tuyau 31, notamment le tuyau de déchargement de la cargaison liquide, et/ou pour le tube d’évacuation des gaz 32, pour l’aspiration des gaz depuis le ciel 21 de cuve.
La paroi supérieure de cuve 22b comprend la couche d’isolation primaire 224 constituée en partie de la membrane primaire 222 sur laquelle est superposée le panneau d’isolation primaire 221. La membrane primaire 222 est en contact avec le gaz liquéfié stocké dans la cavité interne 20 de la cuve. La membrane primaire 222 est composée d’une pluralité de plaques comprenant des ondes 2221 réparties sur sa surface et elle entoure la traversée 3, en demeurant néanmoins à une distance non-nulle de cette traversée 3. Une telle configuration de la membrane primaire 222 lui procure une plus grande résistance aux contraintes générées sur la cuve, notamment à la rétractation thermique lors de la mise à froid de la cuve, la pression hydrostatique due au chargement de la cargaison liquide, ainsi que la pression dynamique due au mouvement de la cargaison, notamment en raison de la houle. Les ondes 2221 sur la membrane primaire 222 lui permettent alors de se déformer pour palier à ces contraintes. La membrane primaire 222 est
préférentiellement en inox.
Une équerre 236 est placée dans la cavité interne 20 de la cuve, de telle sorte qu’elle soit en contact avec la membrane primaire 222 et avec la traversée 3. Seules les extrémités de l’équerre 236 sont soudées respectivement à la membrane primaire 222 et à la traversée 3. Une telle configuration de l’équerre 236 lui permet à la fois de clôturer l’espace entre la membrane primaire 222 et la traversée 3, et également de conférer une flexibilité dans cette zone pour absorber les contraintes dynamiques de la cuve. En effet, la traversée 3 peut couper plusieurs ondes 2221 si bien qu’il est nécessaire de redonner de la souplesse dans la zone de passage de la traversée 3. Cette souplesse est par exemple donnée par le fait que l’équerre 236 est soudée uniquement à ses extrémités.
Le panneau d’isolation primaire 221 est constitué d’un matériau isolant et participe à l’isolation thermique de la cuve, nécessaire pour le stockage du gaz naturel liquide à basse température (-163° Celsius).
La couche d’isolation primaire 224 est définie par une épaisseur Tl mesurée selon une droite parallèle à l’axe de traversée R et cette épaisseur s’étend de la membrane primaire à la membrane secondaire. La couche d’isolation primaire 224 s’étend autour de la traversée 3 jusqu’à une distance DI non nulle, afin de s’adapter à la dilatation et au rétrécissement de la traversée 3 provoqués par les variations de températures lors du chargement ou du déchargement de la cuve. La couche d’isolation primaire 224 a pour fonction de former une première barrière d’isolation thermique de la cuve.
Une plaque primaire 223 s’étend entre la membrane primaire 222 et le panneau d’isolation primaire 221. La plaque primaire 223 est un contreplaqué de bois qui peut comprendre des bandes en inox (non représentées) permettant de souder les bords des plaques de la membrane primaire 222.
La couche d’isolation secondaire 226 comprend la membrane secondaire 225, autrement appelé triplex, superposée sur la couche d’isolation primaire 224 et qui s’étend au voisinage de la traversée 3, jusqu’à une distance D2 non nulle et strictement supérieure à la distance DI mentionnée ci-dessus. La membrane secondaire 225 est un matériau comportant trois couches, à savoir deux couches externes de tissus de fibre de verre et une couche intermédiaire de feuille métallique mince, par exemple une feuille d’aluminium d’une épaisseur d’environ 0,1mm. La membrane secondaire 225 présente une souplesse en flexion, lui permettant de suivre les déformations de la cuve dues à la déformation de la coque par la houle ou par la mise en froid de la cuve. Par souplesse en flexion, on entend la capacité du matériau à être plié pour former des courbes sans se rompre.
Le panneau d’isolation secondaire 220 est superposé sur la membrane secondaire 225.
Le panneau d’isolation secondaire 220 est constitué d’une matière thermiquement isolante et participe conjointement avec le panneau d’isolation primaire 221 à l’isolation thermique de la cuve. La couche d’isolation secondaire 226 est alors définie par une épaisseur T2 mesurée le long d’une droite parallèle à l’axe de traversée R entre la membrane secondaire et une plaque secondaire 227 collée contre le pont.
La couche d’isolation secondaire 226 s’étend autour de la traversée 3 jusqu’à la distance D2 non nulle, cette distance D2 étant strictement supérieure à la distance référencée Dl. La couche d’isolation secondaire 226 comprend une première face 2261, en regard du pont 228 et une deuxième face 2262, en regard de la membrane secondaire 225.
Une plaque secondaire 227 s’étend entre le pont 228 et le panneau d’isolation secondaire 220. La plaque secondaire 227 permet de rigidifier le panneau d’isolation secondaire 220 et peut notamment être en contreplaqué de bois.
Selon un aspect de l’invention, une pièce périphérique 240 s’étend dans une zone périphérique 229, que l’on définit comme la zone qui s’étend dans le plan d’isolation P2 de la couche d’isolation secondaire 226 et radialement entre la couche d’isolation secondaire 226 et la traversée 3, au moins sur une distance radiale équivalente à la distance D2 mentionnée plus haut. La pièce périphérique 240 présente une épaisseur T3 mesurée le long d’une droite parallèle à l’axe de traversée R qui est identique ou similaire à l’épaisseur T2 de la couche d’isolation secondaire 226, aux tolérances de fabrication et/ou de montage près. Cette épaisseur T3 définie également la partie de la couche d’isolation primaire 224 qui s’étend autour de la traversée 3 et qui est dans le plan secondaire P2 de la couche d’isolation secondaire 226. Dans la présente description, cette partie est la zone périphérique 229.
La pièce périphérique 240 est une pièce participant à l’isolation thermique de la cuve et peut être dans des matières identiques aux panneaux isolants de la couche d’isolation primaire 224. La pièce périphérique 240 est logée dans la zone périphérique 229.
Selon l’invention, la pièce périphérique 240 est en communication avec le volume de la couche d’isolation primaire 224 au moins grâce à un espace de traversée 242 défini par la distance DI entre la couche d’isolation primaire 224, la pièce périphérique 240, et la traversée 3. Cet espace de traversée 242 peut être rempli par un isolant thermique de traversée 241 , préférentiellement de la laine de verre qui permet, de par sa souplesse, de reprendre les jeux de froid de la traversée 3, tout en autorisant une circulation du gaz inerte. On comprend alors que la zone périphérique 229 est balayée par le gaz inerte circulant dans le volume de la couche d’isolation primaire 224. On considère de part cette caractéristique que la pièce périphérique 240 fait partie de la couche d’isolation primaire 224.
La couche d’isolation secondaire 226 comprend ainsi un lamage qui entoure la traversée 3, ce lamage étant formé par la zone périphérique 229 et comblé par la pièce périphérique 240.
Préférentiellement et de manière non limitative, la pièce périphérique 240 s’étend dans le plan secondaire P2 de la couche d’isolation secondaire 226 sur un rayon compris entre 400mm et 1000mm autour de l’axe de traversée R de la traversée 3.
Une première plaque annulaire 2291 s’étend entre la pièce périphérique 240 et le pont 228. Une deuxième plaque annulaire 2292 peut être disposée entre le panneau d’isolation primaire 221 et la pièce périphérique 240. La première plaque annulaire 2291 et la deuxième plaque annulaire 2292 peuvent être de manière non limitative en bois densifiés ou en polyuréthane et ont pour fonction de rigidifier la pièce périphérique 240. Enfin, la paroi supérieure de cuve 22b comprend le pont 228 du navire de transport qui vient en recouvrement de la plaque secondaire 227 et qui s’étend au moins en partie axialement au droit de la pièce périphérique 240, c’est-à-dire le long d’une droite parallèle à l’axe de traversée R.
Le pont 228 recouvre donc au moins en partie la première plaque annulaire 2291. De plus, le pont 228 s’étend jusqu’à une distance non nulle de la traversée 3 et comprend un bord 2280 radialement disposé entre la traversée 3 et une face interne 2334 du cylindre 233. Le bord 2280 délimite ainsi un passage 2332 entre le pont 228 et la traversée 3. Une telle configuration du pont 228 permet d’autoriser les dilatations thermiques dues chargement ou déchargement de la cargaison liquide. Le passage 2332 peut être rempli par un isolant thermique, ce dernier étant alors disposé entre le bord 2280 et la traversée 3.
Le pont 228 comprend une face extérieure 2281, en regard de l’environnement extérieur de la cuve, et une face intérieure 2282, en regard de la plaque secondaire 227 et de la première plaque annulaire 2291. Un adhésif 230 peut être positionné entre la face interne 2282 du pont 228, la première plaque annulaire 2291 et la plaque secondaire 227. L’adhésif 230 peut être par exemple sous forme de plots de colle et permet de solidariser la première plaque annulaire 2291 et la plaque secondaire 227 au pont 228.
Une cloison 232 s’étend parallèlement à l’axe de traversée R, radialement au moins entre la pièce périphérique 240 et la couche d’isolation secondaire 226. La cloison 232 émerge perpendiculairement de la face intérieure 2282 du pont 228 jusqu’à être au contact de la membrane secondaire 225. La cloison 232 est composée d’une bague 2321 et d’une matière isolante 2322, par exemple de la laine de verre. Selon l’invention, la bague 2321 de la cloison 232 présente un profil de cylindre circulaire droit. On comprend alors que la cloison 232 a pour fonction d’isoler thermiquement et de séparer de manière étanche la pièce périphérique 240 de la couche d’isolation secondaire 226, afin que le gaz inerte circulant respectivement dans chacun des volumes ne se mélange pas. Suivant cette caractéristique, la jonction entre la bague 2321 et la membrane secondaire 225 peut par exemple faire l’objet d’un soudage afin de rendre cette jonction étanche. De manière générale, il est considéré que la cloison 232 sépare le volume de la couche secondaire 226 du volume de la zone périphérique 229.
La paroi supérieure de cuve 22b comprend le cylindre 233 positionné en appui sur la face extérieure 2281 du pont 228. Le cylindre 233 s’étend radialement autour de la traversée 3 et axialement au droit de la pièce périphérique 240. Le cylindre 233 comprend un espace 2331 remplit d’une matière thermiquement isolante nommée couche isolante de cylindre 242 et qui peut être par exemple de la laine de verre, de la mousse expansée ou de la perlite. Le cylindre 233 a pour fonction d’augmenter l’isolation thermique autour de la traversée 3. L’espace 2331 du cylindre 233 est délimité par la traversée 3, le cylindre 233, une partie du pont 228 avec son bord 2280 et un plateau circulaire 234. Le plateau circulaire 234 vient en recouvrement de l’espace 2331, à l’opposé du pont 228 et s’étend perpendiculairement à l’axe de traversée R et depuis la traversée 3 jusqu’au cylindre 233. L’espace 2331 du cylindre 233 est donc
communiquant avec le volume de la couche d’isolation primaire 224 et le volume occupée par la pièce périphérique 240, au moyen du passage 2332 ménagé entre le bord 2280 du pont 228 et la traversée 3.
On comprend de la caractéristique précédente que la couche d’isolation primaire 224, la pièce périphérique 240 et la couche isolante de cylindre 242 communiquent et forment un seul et même volume, balayé par le même flux de gaz inerte.
Une conduite 235, prenant la forme d’un tube, s’étend en partie dans la couche d’isolation primaire 224. A cette fin, plusieurs ouvertures sont ménagées dans la paroi supérieure de cuve 22b, dont une première ouverture de conduite 2351 ménagée au travers du cylindre 233, une deuxième ouverture de conduite 2352 ménagée au travers du pont 228, proche de son bord 2280, et une troisième ouverture de conduite 2353 ménagée au travers de la deuxième plaque annulaire 2292. On comprend alors que la conduite 235 circule depuis l’extérieur de la cuve jusqu’à la couche d’isolation primaire 224, notamment en passant par la couche isolante de cylindre 242 et la pièce périphérique 240, au moyen des ouvertures de conduite 2351, 2352, 2353 évoquaient ci-dessus. La conduite 235 est configurée pour être reliée à un dispositif d’alimentation en gaz inerte (non représenté) et a pour fonction de participer à un balayage gazeux de la couche d’isolation primaire 224. L’injection de gaz inerte dans la couche d’isolation primaire 224 permet, au moyen d’un dispositif d’analyse extérieur (non représenté), de vérifier l’absence d’envahissement de la couche d’isolation primaire 224. Il en va de même pour la couche d’isolation secondaire 226 qui elle aussi est raccordée à un dispositif d’alimentation en gaz inerte et à dispositif d’analyse extérieur vérifiant l’envahissement de la couche d’isolation secondaire 226.
L’invention atteint ainsi le but qu’elle s’était fixée en supprimant le surbau et en regroupant plusieurs tuyaux de la cuve dans une même traversée, tout en améliorant l’isolation thermique et l’étanchéité de cette traversée, au moyen de la zone périphérique et du cylindre s’étendant radialement autour de la traversée.
L’invention ne saurait toutefois se limiter aux moyens et configurations exclusivement décrits et illustrés, et s’applique également à tous les moyens ou configurations équivalents et à toute combinaison de tels moyens ou configurations. Notamment, il va de soi qu’elle s’applique à toute forme et/ou dimension de traversée.

Claims

REVENDICATIONS
1. Paroi (22) d’une cuve (2) apte à contenir une cargaison liquide et destinée à être installée dans un navire de transport (1), la paroi (22) comprenant au moins une couche d’isolation primaire (224) s’étendant majoritairement dans un plan primaire (PI) et une couche d’isolation secondaire (226) s’étendant majoritairement dans un plan secondaire (P2), la couche d’isolation primaire (224) et la couche d’isolation secondaire (226) étant superposées dans une direction transversale aux plans d’isolation (PI, P2) des couches (224, 226), la paroi (22) de cuve comprenant au moins une traversée (3) prenant la forme d’un cylindre creux traversant les couches (224, 226) ainsi qu’un tuyau (31) qui s’étend dans la traversée (3), caractérisée en ce que la couche d’isolation primaire (224) comprend une zone périphérique (229) qui s’étend autour de la traversée (3) et dans le plan secondaire (P2) de la couche d’isolation secondaire (226).
2. Paroi (22) d’une cuve (2) selon la revendication précédente, dans laquelle la zone périphérique (229) loge au moins une pièce périphérique (240) qui s’étend dans le plan secondaire (P2) de la couche d’isolation secondaire (226) sur un rayon compris entre 400mm et 1000mm autour d’un axe de traversée (R) de la traversée (3).
3. Paroi (22) d’une cuve (2) selon l’une quelconque des revendications précédentes, dans laquelle une épaisseur (T3) de la zone périphérique (229) est identique à une épaisseur (T2) de la couche d’isolation secondaire (226).
4. Paroi (22) d’une cuve (2) selon l’une quelconques des revendications précédentes, dans laquelle une cloison (232) s’étend au moins autour de la traversée (3) entre la couche d’isolation secondaire (226) et la zone périphérique (229).
5. Paroi (22) de cuve (2) selon la revendication précédente, dans laquelle la cloison (232) assure une étanchéité entre la couche d’isolation primaire (224) et la couche d’isolation secondaire (226).
6. Paroi (22) de cuve (2) selon l’une quelconque des revendications précédentes, dans laquelle au moins un tube d’évacuation (32) des gaz s’étend dans la traversée (3) et possède une extrémité externe (322) qui débouche en dehors de la cuve (2) et une extrémité interne (321) qui débouche dans un ciel (21) de la cuve (2).
7. Paroi (22) de cuve (2) selon l’une quelconque des revendications précédentes, dans laquelle le tuyau (31) est un tuyau de déchargement de la cargaison liquide.
8. Navire de transport (1) comprenant au moins une paroi (22) de cuve (2) selon l’une quelconque des revendications précédentes.
9. Navire de transport (1) selon la revendication précédente, comprenant au moins un pont (228) du navire de transport (1), un bord (2280) du pont (228) étant à une distance non nulle de la traversée (3).
10. Navire de transport (1) selon la revendication précédente, dans lequel le bord (2280) du pont (228) s’étend au moins en partie axialement au droit de la zone périphérique (229) selon une droite parallèle à l’axe de traversée (R).
11. Navire de transport (1) selon la revendication 9 ou 10, dans lequel un cylindre (233) disposé autour de la traversée (3) est supporté par une face externe (2281) du pont (228) et délimite avec la traversée (3) un espace (2331) contenant un matériau thermiquement isolant, l’espace (2331) étant fermé par un plateau (234).
12. Navire de transport (1) selon la revendication précédente, dans lequel le bord (2280) du pont (228) est radialement disposé entre la traversée (3) et une face interne (2334) du cylindre (233).
13. Navire de transport (1) selon l’une quelconque des revendications 10 , dans lequel une conduite (235) traverse le cylindre (233), la zone périphérique (229) et débouche dans la couche d’isolation primaire (224), la conduite (235) étant configurée pour être reliée à un dispositif d’alimentation en gaz inerte.
14. Navire de transport (1) comprenant une paroi (22) d’une cuve (2) apte à contenir une cargaison liquide et destinée à être installée dans un navire de transport (1), la paroi (22) comprenant au moins une couche d’isolation primaire (224) s’étendant majoritairement dans un plan primaire (PI) et une couche d’isolation secondaire (226) s’étendant majoritairement dans un plan secondaire (P2), la couche d’isolation primaire (224) et la couche d’isolation secondaire (226) étant superposées dans une direction transversale aux plans d’isolation (PI, P2) des couches (224, 226), la paroi (22) de cuve comprenant au moins une traversée (3) prenant la forme d’un cylindre creux traversant les couches (224, 226) ainsi qu’un tuyau (31) qui s’étend dans la traversée (3), le navire de transport (1) comprenant au moins un pont (228) du navire de transport (1), un bord (2280) du pont (228) étant à une distance non nulle de la traversée (3), le bord (2280) du pont (228) est radialement disposé entre la traversée (3) et une face interne (2334) d’un cylindre (233) disposé autour de la traversée (3) et supporté par une face externe (2281) du pont (228).
15. Procédé de chargement ou de déchargement d’un gaz naturel liquide d’une cuve (2) comprenant une paroi (22) selon les revendications 1 à 7 ou d’un navire de transport (1) de gaz naturel liquide selon les revendications 8 à 12.
EP20725887.2A 2019-03-15 2020-03-12 Paroi de cuve comprenant une isolation améliorée autour d'une traversée Pending EP3938698A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1902648A FR3093786B1 (fr) 2019-03-15 2019-03-15 Paroi de cuve comprenant une isolation améliorée autour d’une traversée
PCT/FR2020/050521 WO2020188195A2 (fr) 2019-03-15 2020-03-12 Paroi de cuve comprenant une isolation améliorée autour d'une traversée

Publications (1)

Publication Number Publication Date
EP3938698A2 true EP3938698A2 (fr) 2022-01-19

Family

ID=67185406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20725887.2A Pending EP3938698A2 (fr) 2019-03-15 2020-03-12 Paroi de cuve comprenant une isolation améliorée autour d'une traversée

Country Status (6)

Country Link
EP (1) EP3938698A2 (fr)
KR (1) KR20210134978A (fr)
CN (1) CN113748292B (fr)
FR (1) FR3093786B1 (fr)
SG (1) SG11202109793VA (fr)
WO (1) WO2020188195A2 (fr)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119234B1 (fr) * 1971-04-27 1976-06-16
JP5894677B2 (ja) * 2011-12-16 2016-03-30 三星重工業株式会社Samsungheavy Ind.Co.,Ltd. 液化天然ガス貯蔵タンクのポンプタワー設置構造体及びその製作方法
FR2984454B1 (fr) * 2011-12-20 2015-04-03 Gaztransp Et Technigaz Paroi de cuve comportant une conduite
KR20140075269A (ko) * 2012-12-11 2014-06-19 현대중공업 주식회사 에프엘엔지선의 엘엔지 비산방지구조
KR20140088975A (ko) * 2012-12-31 2014-07-14 대우조선해양 주식회사 리세스 타입 가스 돔 구조
FR3002515B1 (fr) * 2013-02-22 2016-10-21 Gaztransport Et Technigaz Paroi de cuve comportant un element traversant
FR3019520B1 (fr) * 2014-04-08 2016-04-15 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante logee dans un ouvrage flottant
CN105570665B (zh) * 2014-10-10 2018-01-05 南通中集能源装备有限公司 船用加注储罐系统及具有该储罐系统的lng加注趸船
FR3032258B1 (fr) * 2015-01-30 2017-07-28 Gaztransport Et Technigaz Installation de stockage et de transport d'un fluide cryogenique embarquee sur un navire
FR3052843B1 (fr) * 2016-06-15 2018-07-06 Gaztransport Et Technigaz Structure de dome gaz pour une cuve etanche et thermiquement isolante
FR3062703B1 (fr) * 2017-02-09 2020-10-02 Gaztransport Et Technigaz Structure de dome gaz pour une cuve etanche et thermiquement isolante
FR3077617B1 (fr) * 2018-02-07 2022-08-19 Gaztransport Et Technigaz Installation pour le stockage et le transport d'un gaz liquefie

Also Published As

Publication number Publication date
WO2020188195A2 (fr) 2020-09-24
SG11202109793VA (en) 2021-10-28
CN113748292A (zh) 2021-12-03
FR3093786B1 (fr) 2023-03-24
WO2020188195A3 (fr) 2020-11-19
KR20210134978A (ko) 2021-11-11
FR3093786A1 (fr) 2020-09-18
CN113748292B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
EP3164636B1 (fr) Cuve etanche et isolante disposee dans une double coque flottante
EP3320256B1 (fr) Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
EP3283813B1 (fr) Cuve équipée d'une paroi présentant une zone singulière au travers de laquelle passe un élément traversant
EP3250849B1 (fr) Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire
WO2013093261A1 (fr) Paroi de cuve comportant une conduite
FR2978748A1 (fr) Cuve etanche et thermiquement isolante
EP3365592B1 (fr) Cuve comprenant des blocs isolants de coin equipes de fentes de relaxation
EP3114387B1 (fr) Cuve étanche et isolante comportant un élément de déflexion permettant l'écoulement de gaz au niveau d'un angle
FR3077617A1 (fr) Installation pour le stockage et le transport d'un gaz liquefie
WO2019030447A1 (fr) Cuve etanche et thermiquement isolante comportant une structure de dome gaz
WO2021186049A1 (fr) Cuve étanche et thermiquement isolante
WO2021140218A1 (fr) Installation de stockage pour gaz liquéfié
EP4269863A1 (fr) Paroi de cuve comportant une conduite traversante
WO2020188195A2 (fr) Paroi de cuve comprenant une isolation améliorée autour d'une traversée
WO2021233712A1 (fr) Installation de stockage pour gaz liquéfié
WO2021144531A1 (fr) Double trappe d'accès pour une cuve de transport de gaz liquéfié
WO2021228751A1 (fr) Dôme liquide d'une cuve de stockage pour gaz liquéfié comportant une ouverture munie d'une trappe additionnelle
WO2021254999A1 (fr) Dôme liquide d'une cuve de stockage pour gaz liquéfié
EP3699475A1 (fr) Cuve étanche et thermiquement isolante
FR3118118A1 (fr) Cuve étanche et thermiquement isolante comportant un élément de pontage
FR3087873A1 (fr) Cuve etanche et thermiquement isolante
WO2023001678A1 (fr) Installation de stockage pour gaz liquéfié
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
WO2023036769A1 (fr) Installation de stockage pour gaz liquéfié
FR3135126A1 (fr) Paroi de cuve traversée par une conduite étanche d’évacuation de fluide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210909

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240318