EP0608073B1 - Spiralverdichter mit Überhitzungsschutz - Google Patents

Spiralverdichter mit Überhitzungsschutz Download PDF

Info

Publication number
EP0608073B1
EP0608073B1 EP94300229A EP94300229A EP0608073B1 EP 0608073 B1 EP0608073 B1 EP 0608073B1 EP 94300229 A EP94300229 A EP 94300229A EP 94300229 A EP94300229 A EP 94300229A EP 0608073 B1 EP0608073 B1 EP 0608073B1
Authority
EP
European Patent Office
Prior art keywords
motor
scroll
deactivating
disposed
scroll member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94300229A
Other languages
English (en)
French (fr)
Other versions
EP0608073A1 (de
Inventor
Donald Wayne Forma Scientific Rode
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copeland Corp LLC
Original Assignee
Copeland Corp LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copeland Corp LLC filed Critical Copeland Corp LLC
Publication of EP0608073A1 publication Critical patent/EP0608073A1/de
Application granted granted Critical
Publication of EP0608073B1 publication Critical patent/EP0608073B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • F04C28/265Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels being obtained by displacing a lateral sealing face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature

Definitions

  • the present invention relates to scroll machines. More particularly, the present invention relates to scroll compressors having unique means for protecting the scroll machine from overheating.
  • a typical scroll compressor has a first scroll member which has a spiral wrap located on one face thereof, a second scroll member which has a spiral wrap located on one face thereof with the spiral wraps of the scroll members being intermeshed with one another, and means for causing the first scroll member to rotate on a separate axis with respect to the second scroll member whereby the spiral wraps will create pockets of progressively decreasing volume from a suction zone to a discharge zone.
  • the means for causing the first scroll member to rotate on a separate axis with respect to the second scroll member is in many cases an electric motor.
  • These electrical motors can be equipped with thermal protection devices to stop the operation of the motor when an over temperature condition exists.
  • These thermal protection devices are normally a temperature sensor or sensors which are located within the proximity of the windings of the motor. When the temperature sensor or sensors encounter an over temperature condition, a signal is sent to a control device to stop the operation of the motor.
  • three phase electrical current is supplied to the electric motor.
  • a separate temperature sensor can be imbedded within the windings for each phase of current. These three temperature sensors are then wired in series such that any one of the individual phase windings could signal the control device to stop the operation of the motor due to an over temperature condition.
  • thermistors can be used for the temperature sensors.
  • a thermistor is a resistive circuit component having a high positive temperature coefficient of resistance (as temperature increases, resistance also increases). The resistance of the thermistor or the series of thermistors is monitored by the solid state motor protection controls and upon reaching a threshold value, the controls will trip a relay to shut down the electrical motor and thus the compressor.
  • a typical scroll compressor when operating, can generate excessively high discharge gas pressures due to the compressor functioning at a pressure ratio much greater than that which is designed into the machine in terms of its predetermined fixed volume ratio.
  • These excessive discharge pressures can be caused by many different field encountered problems including loss of working fluid charge, blocked condenser fan in a refrigeration condition, or for a variety of other reasons.
  • the excessively high discharge gas pressures will in turn cause excessively high discharge gas temperatures. If the compressor is allowed to continue to operate in these conditions, damage to the compressor will result.
  • Another prior art method of monitoring the temperature of the discharge gas is to position a temperature sensor within the discharge area of the scroll compressor.
  • the lead wires from this sensor are directed through the hermetic shell of the compressor to an outside control unit which will shut down the compressor when a specified discharge gas temperature is experienced. While this prior art method eliminates the inherent delay in the reaction to the increased gas discharge temperature, the penetration through the hermetic shell to provide access to the temperature sensor is a costly and troublesome design.
  • the penetration of the shell requires additional sealing in order to maintain the integrity of the hermetic shell and once the temperature sensor's lead wires are outside the shell, additional control connections are required by the user.
  • Another prior art method of monitoring the temperature of the discharge gas is to position a temperature sensor on the exterior of the shell as close as possible to the discharge area of the scroll compressor.
  • prior art compressor assemblies are provided with a deep drawn cup on the upper portion of the shell which extends into the discharge area. The temperature sensor is then positioned at the bottom of the deep drawn cup on the exterior of the shell. While this prior art design eliminates the need for additional penetration of the shell and shortens the delay in responding to the increase in discharge gas temperatures, there still is a significant amount of delay in responding to the higher temperatures due to the shell acting as a heat sink.
  • US-A-5 118 260 discloses an apparatus in accordance with the preamble of claim 1.
  • a protector is positioned in the discharge chamber of the compressor.
  • heaters in the protector heat a bimetal switch, causing it to open to deactivate the motor.
  • the protector is positioned in the discharge chamber, overheating of the scroll wraps, and the corresponding increase in temperature of the discharged gas, also causes the bimetal switch to open.
  • What is needed is a system for monitoring and reacting to the temperature of the discharge gas of a scroll machine which has the improved ability to track actual compressor temperatures.
  • the system should not require any type of additional shell penetration or additional control connections by the user and should be manufacturable at a relatively low cost.
  • a powered work producing apparatus comprising:
  • the hereinafter described and illustrated embodiments of apparatus in accordance with the present invention provide the art with a thermal protection system for a scroll machine which ameliorates the above mentioned disadvantages of the prior art systems.
  • the embodiments comprise a temperature sensor which is positioned directly within the discharge port of the scroll compressor.
  • the lead wires from the temperature sensor are wired in series with the normal motor temperature sensor circuit to provide the scroll discharge temperature control function as an integral part of the motor temperature control system located within the hermetic shell of the compressor.
  • An embodiment not only detects discharge gas temperatures but it also has the ability to detect the actual temperature of a selected compressor component.
  • the embodiments thus provide the improved ability to track actual scroll compressor temperatures and react to these temperatures without having the requirement of additional shell penetration and without requiring additional control connections by the user.
  • the entire system is incorporated within the interior of the hermetically sealed shell at a relatively low cost.
  • the present invention is suitable for incorporation in many different types of scroll machines.
  • a hermetic scroll refrigerant motor compressor of the type where the motor and the compressor are cooled by the suction gas within the hermetic shell as illustrated in the vertical section shown in Figure 1.
  • Compressor 10 comprises a cylindrical hermetic shell 12 having welded at the upper end thereof a cap 14.
  • Cap 14 is provided with a refrigerant discharge fitting 16 optionally having the usual discharge valve therein (not shown).
  • Other elements affixed to cylindrical shell 12 include a transversely extending partition 18 which is welded about its periphery at the same point cap 14 is welded to shell 12, a lower bearing housing 20 which is affixed to shell 12 at a plurality of points by methods known well in the art, and a suction gas inlet fitting 22.
  • Lower bearing housing 20 locates and supports within shell 12 a main bearing housing 24, a motor stator 26, a bearing 28 and a non-orbiting scroll member 30.
  • a crankshaft 32 having an eccentric crank pin 34 at the upper end thereof is rotatably journaled in bearing 28 in lower bearing housing 20 and in a bearing 36 in main bearing housing 24.
  • Crankshaft 32 has at its lower end the usual relatively large diameter oil-pumping concentric bore 38 which communicates with a smaller diameter inclined bore 40 extending upwardly therefrom to the top of crankshaft 32.
  • the lower portion of cylindrical shell 12 is filled with lubricating oil in the usual manner and the pump at the bottom of the crankshaft is the primary pump acting in conjunction with bore 40 to pump lubricating fluid to all the various portions of the compressor which require lubrication.
  • Crankshaft 32 is rotatably driven by an electric motor including motor stator 26 having motor windings 42 passing therethrough, and a motor rotor 44 press fit on crankshaft 32 and having one or more counterweights 46.
  • a temperature sensor 48 or a plurality of sensors 48 are provided in close proximity to motor windings 42 so that if motor windings 42 exceed a specified operating temperature, temperature sensor or sensors 48 will signal a control device (not shown) and deactivate the motor.
  • a separate temperature sensor 48 may be provided in close proximity to the motor windings of each phase of electrical current.
  • temperature sensors 48 are thermistors and the thermistor circuit is constantly monitored by a solid state motor protection control (not shown). Upon reaching a temperature threshold value, the thermistor will signal the solid state motor protection control which will trip a relay (not shown) and deactivate the electric motor.
  • Main bearing housing 24 includes a lower portion 50 and an upper portion 52.
  • the lower portion 50 has a generally cylindrical shaped central portion 54 within which the upper end of crankshaft 32 is rotatably supported by means of bearing 36.
  • An upstanding annular projection 56 is provided on lower portion 50 adjacent the outer periphery of central portion 54 and includes accurately machined radially outwardly facing surface and axially upwardly facing locating surface 58, 60 respectively.
  • a plurality of radially circumferentially spaced supporting arms 62 extend generally radially outwardly from central portion 54 and include depending portions adapted to engage and be supported on lower bearing housing 20.
  • a step 64 is provided on the terminal end of the depending portion of each of the supporting arms 62 which is designed to mate with a corresponding recess provided on the abutting portion of lower bearing housing 20 for aiding in radially positioned lower portion 50 with respect to lower bearing housing 20.
  • Upper portion 52 of main bearing housing 24 is generally cup-shaped including an upper annular guide ring portion 66 integrally formed therewith, an annular axial thrust bearing surface 68 disposed below ring portion 66, and a second annular supporting bearing surface 70 positioned below and in radially outwardly surrounding relationship to axial thrust bearing surface 68.
  • Axial thrust bearing surface 68 serves to axially movably support an orbiting scroll member 72, and supporting bearing surface 70 provides support for an Oldham coupling 74.
  • the lower end of upper portion 52 includes an annular recess defining radially inwardly and axially downwardly facing surfaces 76, 78 respectively which are designed to mate with surfaces 58 and 60 respectively of lower portion 50 to aid in axially and radially positioning upper and lower portions 50, 52 relative to each other.
  • a cavity 80 is designed to accommodate rotational movement of counterweight 46 secured to crankshaft 32 at the upper end thereof. The provision of this cavity enables counterweight 46 to be positioned in closer proximity to orbiting scroll member 72 thus enabling the overall size thereof to be reduced.
  • Annular integrally formed guide ring 66 is positioned in surrounding relationship to a radially outwardly extending flange portion 84 of non-orbiting scroll member 30 and includes a radially inwardly facing surface 86 adapted to slidingly abut a radially outwardly facing surface 88 of flange portion 84 so as to radially position and guide axial movement of non-orbiting scroll member 30.
  • a plurality of stop members 90 are provided which are secured to the top surface of annular ring 66 by bolts 92.
  • Each of the stop members 90 includes a radially inwardly extending portion which is adapted to overlie an upper surface of flange portion 84 of non-orbiting scroll member 30 and cooperate therewith to limit axial upward movement of non-orbiting scroll member 30.
  • Bolts 92 also serve to both secure upper and lower portions 50, 52 of main bearing assembly together as well as to secure this assembly to lower bearing housing 20. It should also be noted that the axial positioning of stop member 90 will be accurately controlled relative to the corresponding opposed surface of flange 84 to allow slight limited axial movement of non-orbiting scroll member 30.
  • the scroll compressor as thus far described is further detailed in WO-A-93/20332.
  • Non-orbiting scroll member 30 has a centrally disposed discharge passageway 94 communicating with an upwardly open recess 96 which is in fluid communication via an opening 98 in partition 18 with a discharge muffler chamber 100 defined by cap 14 and partition 18.
  • Non-orbiting scroll member 30 has in the upper surface thereof an annular recess 102 having parallel coaxial side walls in which is sealingly disposed for relative axial movement an annular floating seal 104 which serves to isolate the bottom of recess 102 from the presence of gas under suction and discharge pressure so that it can be placed in fluid communication with a source of intermediate fluid pressure by means of a passageway (not shown).
  • Non-orbiting scroll member 30 is thus axially biased against orbiting scroll member 72 by the forces created by discharge pressure acting on the central portion of non-orbiting scroll member 30 and those created by intermediate fluid pressure acting on the bottom of recess 102.
  • This axial pressure biasing, as well as other various techniques for supporting scroll member 30 for limited axial movement, are disclosed in much greater detail in assignee's U.S. Letters Patent No. 4,877,382.
  • seal 104 is of a coaxial sandwiched construction and comprises an annular base plate 120 having a plurality of equally spaced upstanding integral projections 122 each having an enlarged base portion 124. Disposed on plate 120 is an annular gasket 126 having a plurality of equally spaced holes which receive base portions 124, on top of which is disposed an annular spacer plate 130 having a plurality of equally spaced holes which receive base portions 124, and on top of plate 130 is an annular gasket 132 maintained in coaxial position by means of an annular upper seal plate 134 having a plurality of equally spaced holes receiving projections 122. Seal plate 134 has disposed about the inner periphery thereof an upwardly projecting planar sealing lip 136. The assembly is secured together by swaging the ends of each of the projections 122, as indicated at 138.
  • the overall seal assembly therefor provides three distinct seals; namely, an inside diameter seat at 144 and 146, an outside diameter seal at 148 and a top seal at 150, at best seen in Figure 3.
  • Seal 144 is between the inner periphery of annular gasket 126 and the inside wall of recess 102
  • seal 146 is between the inner periphery of annular gasket 132 and the inside wall of recess 102.
  • Seals 144 and 146 isolate fluid under intermediate pressure in the bottom of recess 102 from fluid under discharge pressure in recess 98.
  • Seal 148 is between the outer periphery of annular gasket 126 and the outer wall of recess 102 and isolates fluid under intermediate pressure in the bottom of recess 102 from fluid at suction pressure within shell 12.
  • Seal 150 is between sealing lip 136 and an annular wear ring 152 surrounding opening 98 in partition 18, and isolates fluid at suction pressure from fluid at discharge pressure across the top of the seal assembly. Details of additional seal constructions are more fully described in applicant's assignee's U.S. Letters Patent 5,156,539.
  • the compressor is preferably of the "low side" type in which suction gas entering via gas inlet 22 is allowed, in part, to escape into shell 12 and assist in cooling the motor. So long as there is an adequate flow of returning suction gas the motor will remain within desired temperature limits. When this flow drops significantly, however, the loss of cooling will eventually cause temperature sensor or sensors 48 to signal the control device and shut the machine down.
  • the thermal protection system 200 of the present application shown in Figures 1 through 3 is located within non-orbiting scroll 30 and comprises a temperature sensor 202, a sensor tube 204 and a flared connector 206.
  • Non-orbiting scroll 30 has a longitudinally extending through passageway 208 which extends from the outer diameter of non-orbiting scroll 30 to discharge passageway 94.
  • the end of passageway 208 opposite to discharge passageway 94 is provided with a flared sealing seat 210 and an internal threaded diameter 212.
  • Sensor tube 204 is a hollow cylindrical tube which is closed at one end and has an open flared end 214 opposite to the closed end.
  • Sensor tube 204 is inserted into passageway 208 such that the closed end of tube 204 extends into discharge passageway 94 and the outside surface of flared end 214 rests against sealing seat 210.
  • Temperature sensor 202 is inserted into hollow cylindrical tube 204 such that the sensing end of sensor 202 is positioned at the closed end of tube 204 which is located within discharge passageway 94.
  • Sensor tube 204 may be rolled as shown at 216 to aid in the retention of sensor 202 if desired.
  • the lead wires extending from the sensing end of sensor 202 are fed through flared connector 206 and flared connector 206 is threadingly received in threaded diameter 212 of passageway 208.
  • a chamfered surface 218 on connector 206 engages the interior surface of flared end 214 of sensor tube 204.
  • flared connector 206 will compress flared end 214 of sensor tube 204 between chamfered surface 218 of flared connector 206 and sealing seat 210 of non-orbiting scroll 30 creating a fluid seal between the high discharge side and the low pressure suction side of compressor 10. Flared connector 206 also aids in the retention of sensor 202.
  • the lead wires extending from the sensing end of sensor 202 are routed around and through the various internal components of compressor 10 and are mated with the thermal protection circuit containing temperature sensor or sensors 48.
  • a clip 220 may be employed to insure that the lead wires are held in position and not damaged by the welding or operation of compressor 10.
  • Temperature sensor 202 is wired in series with temperature sensor or sensors 48 such that the motor will be deactivated by the control device when either an excessive discharge gas temperature is sensed by sensor 202 or by a motor winding overheating condition which is sensed by temperature sensor or sensors 48.
  • temperature sensor 202 is preferably a thermistor similar to those described above for temperature sensor 48.
  • Compressor 300 comprises a cylindrical hermetic shell 310 having welded at the lower end thereof a cover 312 and at the upper end thereof a cap 314.
  • Cap 314 is provided with a refrigerant discharge fitting 316 optionally having the usual discharge valve therein (not shown).
  • Other members affixed within the hermetic shell formed by shell 310, cover 312 and cap 314 include a suction gas inlet fitting 315, a lower bearing housing 318, an intermediate bearing housing 320, an upper bearing housing 322 and a motor stator 324.
  • Lower bearing housing 318 is affixed to shell 310 at its outer periphery by methods known well in the art.
  • crankshaft 326 is rotatably journaled in a bearing 328 located in lower bearing housing 318 and in a bearing 330 located in intermediate bearing housing 320. Similar to the compressor shown in Figure 1, crankshaft 326 has the usual oil pumping bores (not shown) and the lower portion of cylindrical shell 310 is filled with lubricating oil in the usual manner and the pump located within crankshaft 326 is the primary pump which pumps lubricating fluid to all the various portions of compressor 300 which require lubrication.
  • Crankshaft 326 is rotatably driven by an electric motor including motor stator 324 having motor windings 332 passing therethrough, and a motor rotor 334 press fit on crankshaft 326. Power to the motor is supplied by a connector 336. Temperature sensor 48, or a plurality of sensors 48, of the usual type, are provided in close proximity to motor windings 332 so that if motor windings 332 exceed a specified operating temperature, temperature sensor or sensors 48 will signal a control device (not shown) and deactivate the motor. When the electric motor is a three-phase electrical motor, a separate temperature sensor 48 may be provided in close proximity to the motor windings of each phase of electrical current.
  • temperature sensors 48 are thermistors and the thermistor circuit is constantly monitored by a solid state motor protection control (not shown). Upon reaching a temperature threshold value, the thermistor will signal the solid state motor protection control which will trip a relay (not shown) and deactivate the electric motor. Electrical access to temperature sensors 48 is provided by connector 338.
  • Intermediate bearing housing 320 has a generally cylindrical shaped central portion 340 within which the upper end of crankshaft 326 is rotatably supported by bearing 330.
  • An upstanding annular projection 342 is provided on intermediate bearing housing 320 adjacent the outer periphery of central portion 340 and includes upwardly facing bearing surface 344.
  • An annular section 346 extends generally radially outwardly from annular projection 342 and includes a step 348 which is designed to mate with a corresponding step 350 provided on upper bearing housing 322 for aiding in radially positioning upper bearing housing 322 with respect to intermediate bearing housing 320.
  • the exterior surface of annular section 346 is adapted for mating with shell 310 to fixedly secure intermediate bearing housing 320 within shell 310 by methods well known in the art.
  • Upper bearing housing 322 has a generally cylindrical shaped central portion 360 within which an upper scroll member 362 is rotatably supported by a bearing 364.
  • An annular flange 366 extends radially outward from the lower end of central portion 360 to provide a bearing surface 368 for upper scroll member 362.
  • a bearing 370 is positioned between bearing surface 368 and upper scroll member 362.
  • An annular wall 372 extends radially outward from the upper end of central portion 360 and is fixedly secured at its periphery to shell 310 by means known well in the art.
  • a seal 374 seals the upper discharge zone 376 from the lower suction zone 378.
  • a generally cylindrical section 380 extends downward from annular wall 372 and includes step 350 which matingly engages step 348.
  • a plurality of apertures 382 are provided through cylindrical section 380 to allow gas at suction pressure to enter the compressor section.
  • a lower scroll 384 is fixedly secured for rotation to crankshaft 326 and is supported on bearing surface 344 by a bearing 386.
  • Lower scroll 384 is intermeshed with upper scroll 362 and both upper and lower scrolls 382 and 384 rotate together, but on different axes, whereby the spiral wraps will create pockets of progressively decreasing volume from suction zone 378 to discharge zone 376.
  • Upper scroll 362 has a centrally disposed discharge passageway 394 communicating with discharge zone 376 through an opening 396 in upper bearing housing 322.
  • Thermal protection system 400 of the present invention is identical to thermal protection system 200 except access to discharge passageway 394 is provided by a longitudinally extending through passageway 408 which extends through upper bearing housing 322.
  • Thermal protection system 400 also includes temperature sensor 202, sensor tube 204 and flare connector 206 identical to that shown in Figure 3 including the insertion of tube 204 into passageway 408 and the sealing between discharge zone 376 and suction zone 378 by flared connector 206 in conjunction with tube 204 and passageway 408.
  • the lead wires extending from the sensor end of sensor 202 are routed around and through the various internal components of compressor 300 and are mated with the thermal protection circuit containing temperature sensor or sensors 48.
  • Temperature sensor 202 is wired in series with temperature sensor or sensors 48 such that the motor will be deactivated by the control device when either an excessive discharge gas temperature is sensed by sensor 202 or by a motor winding overheating condition which is sensed by temperature sensor or sensors 48.
  • temperature sensor 202 is preferably a thermistor similar to those described above for temperature sensor 48.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Claims (19)

  1. Motorisch betriebene Arbeitsvorrichtung (10; 300), umfassend:
    ein Gehäuse (12; 310),
    einen in dem Gehäuse angeordneten motorisch betriebenen Mechanismus (30, 72; 362, 384) zum Durchführen einer Arbeit,
    einen Motor (26, 44; 324, 334), der sich in dem Gehäuse befindet, um den motorisch betriebenen Mechanismus anzutreiben,
    erste Mittel (48) zum Deaktivieren des Motors, wenn der Motor eine vorbestimmte Temperatur erreicht, und
    zweite Mittel (200; 400) zum Deaktivieren des Motors, wobei das zweite Mittel dahingehend betätigt werden kann, den Motor zu deaktivieren, wenn bei dem motorisch betriebenen Mechanismus eine unerwünschte Betriebsbedingung festgestellt wird,
    dadurch gekennzeichnet, daß die ersten und zweiten Mittel (48, 200; 400) unabhängig voneinander sind und miteinander in Reihe geschaltet sind.
  2. Vorrichtung nach Anspruch 1, bei der die Vorrichtung (10, 300) ein hermetischer Motorkompressor und der motorisch betriebene Mechanismus (30, 72; 362, 384) ein Verdichter ist.
  3. Vorrichtung nach Anspruch 1 oder 2, bei der das erste Mittel (48) zum Deaktivieren des Motors (26, 44; 324, 334) eine auf Wärme reagierende Schutzvorrichtung ist, die sich nahe bei den Wicklungen des Motors befindet.
  4. Vorrichtung nach Anspruch 1, bei der die Vorrichtung (10, 300) ein Spiralverdichter ist und Mittel (22) zum Einführen von Sauggas in das Gehäuse (12, 310) umfaßt, und der motorisch betriebene Mechanismus ein erstes Spiralelement (72; 384), das sich in dem Gehäuse befindet und eine erste Spiralhülle auf einer Seitenfläche davon besitzt, und ein zweites Spiralelement (30; 362) umfaßt, das sich in dem Gehäuse befindet und eine zweite Spiralhülle auf einer Seitenfläche davon besitzt, wobei die Hüllen ineinandergreifen und das erste Spiralelement relativ zu dem zweiten Spiralelement drehbar ist, wobei der Motor (26, 44; 324, 334) angeordnet ist, um zu bewirken, daß sich das erste Spiralelement relativ zu dem zweiten Spiralelement dreht, wodurch die Hüllen Taschen mit einem stetig abnehmenden Volumen von einer Ansaugzone bei einem Saugdruck zu einer Auslaßzone bei einem Verdichtungsdruck schaffen.
  5. Spiralverdichtervorrichtung nach Anspruch 4, bei der das erste Spiralelement (72; 384) eine umlaufende Spirale ist, das zweite Spiralelement (30; 362) eine nicht umlaufende Spirale ist, und der Motor (26, 44; 324, 334) bewirkt, daß sich die umlaufende Spirale um eine Achse relativ zu der nicht umlaufenden Spirale dreht.
  6. Spiralverdichtervorrichtung nach Anspruch 5, desweiteren mit Mitteln, die einen Auslaßdurchgang (96; 394) durch das nicht umlaufende Spiralelement (30; 362) bilden, durch den Druckgas die Taschen an dem Ende jedes Verdichtungszyklus verlassen kann, wobei sich die zweiten Mittel (200; 400) zum Deaktivieren des Motors (26, 44; 324, 334) in dem Auslaßdurchgang befinden.
  7. Spiralverdichtervorrichtung nach Anspruch 5, bei der das nicht umlaufende Spiralelement (30; 362) einen Durchgang (208; 408) zwischen der Auslaßzone und der Ansaugzone bildet, wobei der Spiralverdichter außerdem folgendes umfaßt: eine Meßfühlerröhre (204), die sich in dem Durchgang befindet, wobei sich das zweite Mittel (202) zum Deaktivieren des Motors in dieser Meßfühlerröhre befindet, und
    ein Anschlußstück (206), das in dem Durchgang ortsfest aufgenommen wird, wobei das Anschlußstück dahingehend betätigt werden kann, die Meßfühlerröhre zwischen dem Anschlußstück und der nicht umlaufenden Spirale zusammenzudrücken, um die Auslaßszone gegenüber der Ansaugzone abzudichten.
  8. Spiralverdichtervorrichtung nach Anspruch 4, bei der das erste Spiralelement (384) um eine erste Achse drehbar ist und das zweite Spiralelement (362) um eine zweite Achse drehbar ist, wobei die erste Achse seitlich versetzt von der zweiten Achse verläuft.
  9. Spiralverdichtervorrichtung nach Anspruch 8, desweiteren mit Mitteln, die einen Auslaßdurchgang (394) durch das zweite Spiralelement (362) bilden, durch den Druckgas aus den Taschen an dem Ende jedes Verdichtungszyklus austreten kann, wobei sich das zweite Mittel (400) zum Deaktivieren des Motors (324, 334) in dem Auslaßdurchgang befindet.
  10. Spiralverdichtervorrichtung nach Anspruch 4, bei der das zweite Spiralelement (362) drehbar in einem Gehäuse gelagert ist, wobei das Gehäuse einen Durchgang (408) bildet, der in der Auslaßzone beginnt und sich im allgemeinen radial zu dem äußeren Umfang des Gehäuses bis zu der Ansaugzone erstreckt, wobei sich das zweite Mittel (400) zum Deaktivieren des Motors (324, 334) durch diesen Durchgang erstreckt.
  11. Spiralverdichtervorrichtung nach Anspruch 10, die außerdem folgendes umfaßt: eine Meßfühlerröhre (204), die sich in dem Durchgang (408) befindet, wobei sich das zweite Mittel (202) zum Deaktivieren des Motors (324, 334) in der Meßfühlerröhre befindet, und
    ein Anschlußstück (206), das in dem Durchgang ortsfest aufgenommen ist, wobei das Anschlußstück dahingehend betätigbar ist, die Meßfühlerröhre zwischen dem Anschlußstück und dem Gehäuse zusammenzudrücken, um die Auslaßzone gegenüber der Ansaugzone abzudichten.
  12. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der das zweite Mittel (202) zur Deaktivierung des Motors (324, 334) eine auf Wärme reagierende Schutzvorrichtung ist.
  13. Vorrichtung nach Anspruch 3 oder 12, bei der die auf Wärme reagierende Schutzvorrichtung (202) einen Thermistor umfaßt.
  14. Vorrichtung nach einem der Ansprüche 1 bis 11, bei der das zweite Mittel zum Deaktivieren des Motors (324, 334) eine auf Druck reagierende Schutzvorrichtung ist.
  15. Vorrichtung nach Anspruch 12 oder 13, soweit diese auf Anspruch 4 zurückbezogen sind, bei der die auf Wärme reagierende Schutzvorrichtung, die das zweite Mittel zum Deaktivieren des Motors umfaßt, in der Auslaßzone angeordnet ist.
  16. Spiralverdichtervorrichtung nach Anspruch 12 oder 13, soweit diese auf Anspruch 7 oder Anspruch 11 zurückbezogen sind, bei der die auf Wärme reagierende Schutzvorrichtung, die das zweite Mittel zum Deaktivieren des Motors umfaßt, in der Meßfühlerröhre angeordnet ist.
  17. Spiralverdichtervorrichtung nach Anspruch 6, bei der das nicht umlaufende Spiralelement (30, 362) einen Durchgang (208; 408) bildet, der in dem Auslaßdurchgang (96; 394) beginnt und sich radial zu dem Außenumfang der nicht umlaufenden Spirale erstreckt, wobei sich das zweite Mittel (200, 400) zum Deaktivieren des Motors durch diesen Durchgang erstreckt.
  18. Vorrichtung nach Anspruch 1, 2 oder 4, bei der der Motor (26, 44; 324, 334) ein Drehstrom-Elektromotor ist, der für jede elektrische Phase eine individuelle Motorwicklung besitzt, wobei das erste Mittel zum Deaktivieren des Motors eine Vielzahl von auf Wärme reagierenden Schutzvorrichtungen (48) umfaßt und sich jede auf Wärme reagierende Schutzvorrichtung nahe bei einer jeweiligen der einzelnen Motorwicklungen befindet.
  19. Spiralverdichtervorrichtung nach Anspruch 18, bei der mindestens eine der auf Wärme reagierenden Schutzvorrichtungen (48) ein Thermistor ist.
EP94300229A 1993-01-22 1994-01-13 Spiralverdichter mit Überhitzungsschutz Expired - Lifetime EP0608073B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/007,770 US5368446A (en) 1993-01-22 1993-01-22 Scroll compressor having high temperature control
US7770 1993-01-22

Publications (2)

Publication Number Publication Date
EP0608073A1 EP0608073A1 (de) 1994-07-27
EP0608073B1 true EP0608073B1 (de) 1997-07-16

Family

ID=21728054

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94300229A Expired - Lifetime EP0608073B1 (de) 1993-01-22 1994-01-13 Spiralverdichter mit Überhitzungsschutz

Country Status (5)

Country Link
US (1) US5368446A (de)
EP (1) EP0608073B1 (de)
JP (2) JP3719719B2 (de)
KR (1) KR100299754B1 (de)
DE (1) DE69404173T2 (de)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679894A (en) * 1993-05-12 1997-10-21 Baker Hughes Incorporated Apparatus and method for drilling boreholes
JP2587897B2 (ja) * 1993-05-19 1997-03-05 サンデン株式会社 スクロール型圧縮機
US5525039A (en) * 1993-07-21 1996-06-11 Roy E. Roth Company Hermetically sealed magnetic drive pump
TW381147B (en) * 1994-07-22 2000-02-01 Mitsubishi Electric Corp Scroll compressor
JPH08219058A (ja) * 1995-02-09 1996-08-27 Matsushita Electric Ind Co Ltd 密閉型電動圧縮機
US5580401A (en) * 1995-03-14 1996-12-03 Copeland Corporation Gray cast iron system for scroll machines
US5707210A (en) * 1995-10-13 1998-01-13 Copeland Corporation Scroll machine with overheating protection
US5755271A (en) * 1995-12-28 1998-05-26 Copeland Corporation Method for casting a scroll
US6017205A (en) * 1996-08-02 2000-01-25 Copeland Corporation Scroll compressor
IT1288737B1 (it) * 1996-10-08 1998-09-24 Varian Spa Dispositivo di pompaggio da vuoto.
FR2756877B1 (fr) * 1996-12-05 1999-01-22 Maneurop Compresseur hermetique destine a la circulation de gaz
US5950443A (en) * 1997-08-08 1999-09-14 American Standard Inc. Compressor minimum capacity control
JPH11166489A (ja) * 1997-12-04 1999-06-22 Mitsubishi Electric Corp スクロール圧縮機
US6171064B1 (en) * 1998-03-23 2001-01-09 Scroll Technologies Reverse rotation detection for scroll compressor utilizing suction temperature
US6220839B1 (en) 1999-07-07 2001-04-24 Copeland Corporation Scroll compressor discharge muffler
US6406266B1 (en) * 2000-03-16 2002-06-18 Scroll Technologies Motor protector on non-orbiting scroll
US6364619B1 (en) * 2000-05-22 2002-04-02 Scroll Technologies Sealed compressor with temperature feedback to motor protector unit
US6679683B2 (en) * 2000-10-16 2004-01-20 Copeland Corporation Dual volume-ratio scroll machine
US6491500B1 (en) * 2000-10-31 2002-12-10 Scroll Technologies Scroll compressor with motor protector in non-orbiting scroll and flow enhancement
US6443703B1 (en) * 2000-11-07 2002-09-03 Scroll Technologies Scroll compressor with motor protector in suction flow path
BE1013938A3 (fr) * 2001-02-01 2002-12-03 Scroll Tech Compresseur a volutes a bouclier thermique.
DE10113251A1 (de) * 2001-03-19 2002-10-02 Siemens Ag Druckerzeuger für strömende Medien
US6428293B1 (en) * 2001-04-09 2002-08-06 Scroll Technologies Heat shield with seal between end cap and non-orbiting scroll
US6457948B1 (en) * 2001-04-25 2002-10-01 Copeland Corporation Diagnostic system for a compressor
US9051781B2 (en) 2009-08-13 2015-06-09 Smart Drilling And Completion, Inc. Mud motor assembly
US9745799B2 (en) 2001-08-19 2017-08-29 Smart Drilling And Completion, Inc. Mud motor assembly
US7079364B2 (en) * 2001-09-26 2006-07-18 Scroll Technologies Overload status indicator for a refrigeration unit
US6540484B1 (en) * 2001-11-01 2003-04-01 Scroll Technologies Scroll compressor with thermostat mounted in non-orbiting scroll
CN100414108C (zh) * 2001-12-11 2008-08-27 乐金电子(天津)电器有限公司 热保护器安装结构为凹陷形的全封闭式压缩机
KR100438957B1 (ko) * 2001-12-22 2004-07-03 주식회사 엘지이아이 스크롤 압축기의 과부하 방지장치
US6893227B2 (en) * 2002-03-21 2005-05-17 Kendro Laboratory Products, Inc. Device for prevention of backward operation of scroll compressors
US6709246B2 (en) * 2002-05-07 2004-03-23 Boyd Flotation, Inc. Inflation/deflation device having spring biased value
KR100498308B1 (ko) * 2002-12-13 2005-07-01 엘지전자 주식회사 스크롤 압축기의 과열 방지 장치
CN101713397B (zh) * 2003-12-30 2014-07-09 艾默生环境优化技术有限公司 压缩机保护和诊断系统
KR100564462B1 (ko) * 2004-01-09 2006-03-29 엘지전자 주식회사 스크롤 압축기의 과열 방지 장치
DE102004011222A1 (de) * 2004-03-04 2005-10-06 Alpha-Innotec Gmbh Verfahren zur Überprüfung des elektrischen Anschlusses eines einen Scroll-Kompressor antreibenden Elektromotors
US7412842B2 (en) 2004-04-27 2008-08-19 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system
US7275377B2 (en) 2004-08-11 2007-10-02 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
US7322806B2 (en) * 2006-01-04 2008-01-29 Scroll Technologies Scroll compressor with externally installed thermostat
JP4975328B2 (ja) * 2006-01-25 2012-07-11 サンデン株式会社 電動圧縮機
DE102006027002A1 (de) * 2006-06-08 2007-12-13 Oase Gmbh Pumpemanordnung mit Drehzahlsteuerung
US8590325B2 (en) 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US20080216494A1 (en) 2006-09-07 2008-09-11 Pham Hung M Compressor data module
JP2008106738A (ja) * 2006-09-29 2008-05-08 Fujitsu General Ltd ロータリ圧縮機およびヒートポンプシステム
US7717687B2 (en) * 2007-03-23 2010-05-18 Emerson Climate Technologies, Inc. Scroll compressor with compliant retainer
US20090037142A1 (en) 2007-07-30 2009-02-05 Lawrence Kates Portable method and apparatus for monitoring refrigerant-cycle systems
US8393169B2 (en) 2007-09-19 2013-03-12 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US8160827B2 (en) 2007-11-02 2012-04-17 Emerson Climate Technologies, Inc. Compressor sensor module
US20100028184A1 (en) * 2008-07-31 2010-02-04 Hahn Gregory W Temperature protection switch biased against scroll compressor shell
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9011105B2 (en) * 2012-03-23 2015-04-21 Bitzer Kuehlmaschinenbau Gmbh Press-fit bearing housing with large gas passages
US9480177B2 (en) 2012-07-27 2016-10-25 Emerson Climate Technologies, Inc. Compressor protection module
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
CA2908362C (en) 2013-04-05 2018-01-16 Fadi M. Alsaleem Heat-pump system with refrigerant charge diagnostics
US10161400B2 (en) 2014-07-21 2018-12-25 Danfoss Scroll Technologies, Llc Snap-in temperature sensor for scroll compressor
WO2016157282A1 (ja) * 2015-03-27 2016-10-06 三菱電機株式会社 冷凍サイクル装置
CN106481538B (zh) * 2015-08-28 2018-07-13 艾默生环境优化技术(苏州)有限公司 压缩机保护方法,压缩机,和空调设备
EP3779199A4 (de) * 2018-03-30 2021-12-01 Daikin Industries, Ltd. Kompressor, kältekreislaufvorrichtung
CN112930442B (zh) * 2018-09-28 2024-02-09 谷轮有限合伙公司 压缩机油管理系统
US11125233B2 (en) 2019-03-26 2021-09-21 Emerson Climate Technologies, Inc. Compressor having oil allocation member
CN110118176A (zh) * 2019-06-06 2019-08-13 苏州英华特涡旋技术有限公司 一种带排气温度保护的涡旋压缩机
EP4226824A1 (de) * 2022-02-14 2023-08-16 Vorwerk & Co. Interholding GmbH Sauggerät sowie verfahren zum betrieb eines sauggerätes

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE393431A (de) *
US2518597A (en) * 1945-06-20 1950-08-15 Niagara Alkali Company Pumping apparatus
US2940395A (en) * 1956-01-20 1960-06-14 Perfect Circle Corp Control means for pumping apparatus
US3232519A (en) * 1963-05-07 1966-02-01 Vilter Manufacturing Corp Compressor protection system
US3278111A (en) * 1964-07-27 1966-10-11 Lennox Ind Inc Device for detecting compressor discharge gas temperature
US4236092A (en) * 1978-06-08 1980-11-25 Copeland Corporation Compressor motor protection
US4503347A (en) * 1979-08-27 1985-03-05 Copeland Corporation Thermally protected dynamoelectric machine and method of assembly
US4877382A (en) 1986-08-22 1989-10-31 Copeland Corporation Scroll-type machine with axially compliant mounting
US4820130A (en) * 1987-12-14 1989-04-11 American Standard Inc. Temperature sensitive solenoid valve in a scroll compressor
US4926081A (en) * 1988-02-11 1990-05-15 Copeland Corporation Thermally protected hermetic motor compressor
JPH02136324A (ja) * 1988-11-18 1990-05-24 Diesel Kiki Co Ltd 空気調和装置
US4955795A (en) * 1988-12-21 1990-09-11 Copeland Corporation Scroll apparatus control
US5200872A (en) * 1989-12-08 1993-04-06 Texas Instruments Incorporated Internal protection circuit for electrically driven device
US5076067A (en) * 1990-07-31 1991-12-31 Copeland Corporation Compressor with liquid injection
US5141407A (en) * 1990-10-01 1992-08-25 Copeland Corporation Scroll machine with overheating protection
US5118260A (en) * 1991-05-15 1992-06-02 Carrier Corporation Scroll compressor protector
US5186613A (en) * 1991-12-20 1993-02-16 American Standard Inc. Reverse phase and high discharge temperature protection in a scroll compressor
AU3970193A (en) 1992-04-06 1993-11-08 Copeland Corporation Scroll machine

Also Published As

Publication number Publication date
KR940018565A (ko) 1994-08-18
DE69404173D1 (de) 1997-08-21
KR100299754B1 (ko) 2002-06-20
JP3719719B2 (ja) 2005-11-24
JPH0742686A (ja) 1995-02-10
EP0608073A1 (de) 1994-07-27
DE69404173T2 (de) 1998-01-15
JP4210672B2 (ja) 2009-01-21
JP2005344726A (ja) 2005-12-15
US5368446A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
EP0608073B1 (de) Spiralverdichter mit Überhitzungsschutz
US6406266B1 (en) Motor protector on non-orbiting scroll
EP0480560B1 (de) Spiralmaschine mit Überhitzungsschutz
US5076067A (en) Compressor with liquid injection
AU783666B2 (en) Compressor diagnostic system
EP1245913B1 (de) Diagnostisches System für Verdichter
EP0479421B1 (de) Spiralverdichter mit schwimmender Abdichtung
EP1130265A2 (de) Mit Heissöl betätigter Schutzschalter eines abgedichteten Verdichters
EP0373876B1 (de) Hermetisch abgedichteter Spiralkühlverdichter
US7722334B2 (en) Compressor and overload protecting apparatus
AU2005202146B2 (en) Compressor Diagnostic System
AU2005202149B2 (en) A Method for Diagnosing a Compressor Assembly
AU2008203276B2 (en) Compressor Diagnostic System
AU2008201988B2 (en) Compressor Diagnostic Method
AU2005202147B2 (en) Compressor Diagnostic System
MXPA06005167A (en) Sensor for hermetic machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

17P Request for examination filed

Effective date: 19940816

17Q First examination report despatched

Effective date: 19960212

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 69404173

Country of ref document: DE

Date of ref document: 19970821

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130129

Year of fee payment: 20

Ref country code: FR

Payment date: 20130211

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69404173

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140114