EP0607149B1 - Procede pour la fabrication d'une lampe a decharge a halogenure de metal avec recipient de decharge en ceramique - Google Patents

Procede pour la fabrication d'une lampe a decharge a halogenure de metal avec recipient de decharge en ceramique Download PDF

Info

Publication number
EP0607149B1
EP0607149B1 EP92909171A EP92909171A EP0607149B1 EP 0607149 B1 EP0607149 B1 EP 0607149B1 EP 92909171 A EP92909171 A EP 92909171A EP 92909171 A EP92909171 A EP 92909171A EP 0607149 B1 EP0607149 B1 EP 0607149B1
Authority
EP
European Patent Office
Prior art keywords
tube
filling
bore
lead
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92909171A
Other languages
German (de)
English (en)
Other versions
EP0607149A1 (fr
Inventor
Stefan Dr. Jüngst
Stefan Kotter
Hartmuth Bastian
Roland Hüttinger
Jürgen Dr. Heider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0607149A1 publication Critical patent/EP0607149A1/fr
Application granted granted Critical
Publication of EP0607149B1 publication Critical patent/EP0607149B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/361Seals between parts of vessel
    • H01J61/363End-disc seals or plug seals

Definitions

  • the invention relates to a method for producing metal halide discharge lamps with a ceramic discharge vessel.
  • Such lamps usually have a quartz glass discharge vessel.
  • efforts have recently been made to improve the color rendering of these lamps.
  • the higher operating temperature required for this can be achieved with a ceramic discharge vessel.
  • Typical power levels are 100 - 250 W.
  • the ends of the tubular discharge vessel are usually closed with cylindrical ceramic end plugs into which a metal current lead-through is inserted in the middle.
  • a particularly simple way of filling and evacuating the discharge vessel is that one of the two niobium tubes has a small opening in the vicinity of the electrode shaft attached to the tube inside the discharge vessel, so that the amalgam and the inert gas can be evacuated and filled through this opening (GP-PS 2 072 939).
  • the end of the niobium tube which protrudes from the outside is sealed gas-tight by a pinch with subsequent welding.
  • the opening in the vicinity of the electrode shaft always remains uninterrupted in order to ensure a connection between the interior of the discharge vessel and the interior of the feed-through tube, which acts as a cold spot, during operation.
  • a method for evacuating and filling the discharge vessel is to be provided.
  • the concrete form of the gas-tight seal of the bushing in the end of the discharge vessel e.g. by means of an essentially ceramic stopper or also by means of a metallic cover cap (DE-OS 30 12 322) is of secondary importance for the present invention. It can e.g. using glass solder or melting ceramics or also by direct sintering.
  • the method according to the invention is suitable for both niobium and molybdenum-like feedthroughs, it exhibits its particular value for molybdenum-like materials in several embodiments, since it avoids stressing the material with regard to ductility.
  • the present application therefore deals in particular with the problem of how brittle bushings can be processed and how the evacuation and filling of a discharge vessel can be designed in such a way that brittle molybdenum-like materials can also be used.
  • the method according to the invention is characterized in that both ends of the ceramic discharge vessel are equipped with electrode systems which are then sealed by heating, be it by melting a ceramic melt or by direct sintering.
  • an electrode system is understood to be a pre-assembled unit consisting of the electrode (shaft and tip) which is attached to the bushing, e.g. by butt welding, the bushing itself being inserted into the sealing means (usually a ceramic end plug).
  • the implementation may possibly be recessed on one or both sides of the stopper, and an external electrical lead can additionally be attached to the bushing.
  • the implementation can also take on the task of the sealing agent itself.
  • one end which is designed as a blind end, is now completely sealed.
  • the type of implementation used there is immaterial to the present invention.
  • the other end is also largely sealed, but only to the extent that it can still serve as the pump end by first leaving an additional filling hole that connects the discharge volume to the outside space arranged in a glovebox; the bore can possibly also be connected directly to a supply line for evacuation and / or filling via a coupling.
  • the advantage of this method is that the cooling of the blind end when sealing the filling bore is largely eliminated, and the overall length of the lamp can thus be shortened considerably.
  • the energy required to close the filling hole is namely only a fraction of the heat required to seal the electrode system.
  • the bore can be made in the side wall of the discharge vessel itself or in a second and third embodiment in the electrode system (sealing means or bushing).
  • the advantage of the first embodiment is that when the lamp is in operation, the thermal load in the area of the side wall is significantly lower than in the area of the electrode system, so that a simple ceramic ceramic (or glass solder) can be used for sealing.
  • the implementation at this end can be pin-shaped or tubular.
  • the bore in the sealing means is made outside the lamp axis.
  • This constellation is particularly favorable in the case of a pin-shaped feedthrough and in the case of a stopper made of cermet, with the highest possible melting ceramic used for sealing. But it can also be used in a tubular bushing.
  • the feedthrough is tubular and the filling hole is located in the vicinity of the electrode shaft in a part of the feedthrough which faces the discharge volume.
  • the bore connects the discharge volume to the interior of the tubular bushing. It is located either in the side wall of the pipe or at the end of the pipe.
  • the latter arrangement is particularly advantageous because solid filling components can pass through the vertically aligned pipe including the filling hole particularly easily due to the action of gravity and subsequent sealing is facilitated.
  • the filling bore serves to evacuate and fill the discharge volume, both the inert gas and the metal halide (s) and possibly metal in excess, which are each in solid form (metal halides as pressed bodies, metal as wire pieces or foils). , are introduced through the bore into the discharge volume. The hole is then closed indirectly or directly by heating. It should be noted that the filling hole, if it is made of ceramic material, especially in the side wall or in the mostly ceramic sealant, must be heated slowly and over a large area, e.g. using a gas burner or an expanded laser beam, otherwise cracks would form in the ceramic.
  • the third embodiment is particularly advantageous in this regard, namely a tubular bushing with a bore near the electrode shaft. If the hole is in metallic instead of ceramic material, it can be heated up considerably more quickly and also point-wise, so that cooling of the blind end is completely dispensed with and the overall length of the lamp can be chosen to be particularly short.
  • the focused beam from a laser, which is threaded into the tube, is particularly suitable for heating and sealing; an Nd-YAG laser with a wavelength of 1.06 ⁇ m is particularly suitable.
  • the heating by means of a laser can also take place through the wall of the discharge vessel, since its translucent ceramic material does not absorb the 1.06 ⁇ m radiation.
  • Sealing is carried out either by a previously filled in high-melting (preferably only at more than 1700 ° C.) or by melting the pipe material itself.
  • a particularly preferred embodiment is the closure by indirect heating by a filler rod adapted to the inside diameter of the pipe, the length of which corresponds approximately to the length of the tube, is introduced into the tube and is welded to the end of the tube which is remote from the discharge.
  • the advantage of this arrangement is the particularly reliable sealing and the easy access to the welding point, which eliminates the need to thread a laser beam and the quality of the sealing achieved can be better monitored. This is offset by the high cost of materials due to the solid filling rod. This is required in order to eliminate the dead volume of the tube which is undesirable in contrast to high-pressure sodium lamps in metal halide lamps. In the other embodiments of the method, in which the filling bore is closed itself, this dead volume is automatically eliminated.
  • the brittleness of a molybdenum-like lead-through material can be particularly unpleasantly noticeable in the manufacture of the electrode system.
  • the critical step in this regard must be the attachment of the electrode to the bushing.
  • the technique known from niobium-like bushing material for butt-welding the electrode shaft at the end of the bushing is also advantageous with molybdenum-like material if a solid pin is used as bushing.
  • tubular bushings however, the problem arises that in the case of molybdenum-like material, only tubes which are open on both sides are available as semi-finished goods. Because of the brittleness of the material, it has so far not been possible to produce one-piece tubes which are closed on one side, as is customary when using niobium.
  • a first possibility is to insert the electrode shaft, whose diameter is considerably smaller than that of the molybdenum tube, centered into one end of the tube by means of a gauge, then to heat the tube or at least its end surrounding the shaft to about 400 ° C., and then to squeeze the heated and thus become ductile molybdenum tube around the electrode shaft and possibly fix it mechanically by spot welding.
  • Sealing is carried out using a welding technique, in particular by directing a heat source, in particular a laser beam, onto the pinch.
  • the laser beam is particularly advantageously focused on a point of pinching, while the tube rotates about its own axis.
  • the filling hole is created laterally in the tube wall near the electrode shaft, for example by means of a single laser pulse with oblique incidence. It is typically a 0.6 to 0.8 mm hole. This technique is very simple and reliable. However, closing the filling hole is then relatively complex, since it sits clearly above the end of the shaft and therefore a larger amount of metal must be used to fill up the inner volume of the tube up to the filling hole.
  • a modification of this technique provides that, at the same time as the electrode shaft, a spacer for the bore, which is arranged in parallel, is inserted into the end of the molybdenum tube by means of a gauge. After the pipe has been made ductile by heating to 400 ° C, the pipe end is squeezed around the electrode shaft and at the same time around the placeholder for the hole (eg a pin or a short piece of pipe) and the shaft is fixed. Then the placeholder is removed so that the hole is created.
  • the assembly is not rotated and only a part of the pinch that is located away from the bore is melted. With this technique, one manufacturing step (separate production of the bore) can be saved.
  • the hole is also located at the end of the tube near the axis, so that subsequent closing after the filling process is made considerably easier.
  • the hole can be better targeted with the laser beam, on the other hand, the seal is more reliable because the metal solder that melts as a result of the laser heating automatically runs into the filling hole under the influence of gravity and is reliably held there by the capillary action of the hole, which is only 0.6 to 0.8 mm in size.
  • only a small amount of Metallot is necessary compared to a side hole.
  • the pipe end itself can serve as a filling hole; there is no crushing.
  • the diameter of the electrode shaft is adapted to that of the molybdenum tube by melting the end of the electrode shaft and thereby sphering it.
  • the diameter of the spherical shaft end which is determined by the length of the melted-back section of the shaft, is chosen so that it is approximately matched to the inner diameter of the tube. Only then is the spherical shaft end inserted into the tube, mechanically fixed (by spot welding) and the tube end welded to the shaft and thereby sealed.
  • the electrode shaft is first attached to the inner tube wall, a slight displacement of the electrode shaft from the lamp axis being consciously accepted.
  • the opening remaining at the end of the pipe is used as a filling hole.
  • the molybdenum tube, including the filling hole, is then closed by a filling rod, which expediently has a cutout for the electrode shaft.
  • the filler rod is connected to the tube at the end remote from the discharge, as already described.
  • This embodiment combines the advantages of the techniques described hitherto in a particularly advantageous manner because both the production of a separate filling bore and the squeezing of the tube end to hold the electrode shaft are avoided in an elegant manner. It is also not necessary to bend the electrode shaft.
  • a metal halide discharge lamp with an output of 150 W is shown schematically in FIG. It consists of a cylindrical outer bulb 1 made of quartz glass which defines a lamp axis and which is squeezed 2 and base 3 on two sides.
  • the axially arranged discharge vessel 4 made of Al2O3 ceramic is bulged in the middle 5 and has cylindrical ends 6a, 6b. It is held in the outer bulb 1 by means of two power leads 7, which are connected to the base parts 3 via foils 8.
  • the power supply lines 7 made of molybdenum are welded to pin-shaped bushings 9, which are each sintered directly into a ceramic end plug 10 of the discharge vessel, that is to say without soldering glass.
  • the two bushings 9 made of niobium (or also molybdenum) each hold an electrode 11 on the discharge side, consisting of an electrode shaft 12 made of tungsten and a spherical tip 13 formed on the discharge side end.
  • the discharge vessel is filled with an inert ignition gas, e.g. Argon, from mercury and additives to metal halides.
  • the electrode shaft 12 extends into the axial bore in the end plug 10, because the pin-shaped bushing 9 is inserted in the bore on the discharge side.
  • the pin 9 protrudes at the outer end of the end plug and is directly connected to the power supply 7.
  • a filling bore 15 is provided near the pump end 6a, which is closed after filling by a glass solder or a melting ceramic 20.
  • One possibility for heating the additional filling bore 15, which is provided with a ceramic melt mass, is heating by means of a laser beam expanded in a special optic or also by means of a gas burner. The mass melts and is held in the filling hole, which acts as a capillary, and cools there, which completes the seal.
  • FIG. 2 shows the area of the pump end 6a of the discharge vessel in detail for a second exemplary embodiment.
  • the discharge vessel has a wall thickness of 1.2 mm at both ends.
  • the cylindrical stopper 10 made of Al2O3 ceramic, which is inserted into the end 6a of the discharge vessel an outer diameter of 3.3 mm and a height of 6 mm.
  • a niobium pin 9 with a length of 12 mm and a diameter of 0.6 mm is sintered directly into the axial bore 14 of the plug.
  • the electrode shaft 12 (diameter 0.55 mm) is butt welded to the niobium pin 9.
  • the outer section 16 of the niobium stick is closely surrounded by a ceramic sleeve 18.
  • the bore 14 is widened at the end 17 of the end plug remote from the discharge.
  • the sleeve 18 is inserted into this enlarged bore section 19 and is fixed in that a glass solder 20 is added at this point.
  • the sleeve prevents graying and stabilizes the niobium stick, which becomes brittle when sintered.
  • the filling bore 24 is in this case parallel to the lamp axis, but laterally offset, through the plug 10. As already explained, it is sealed with a high-melting ceramic 20 when the evacuation and filling process is complete.
  • the melting when fastening the sleeve 18 and the sealing of the filling bore 24 can advantageously take place in one step.
  • an Al2O3 filler rod can be introduced into the filling bore 24.
  • FIG. 3 A particularly preferred embodiment is shown in FIG. 3.
  • the difference from FIG. 2 is that the niobium stick 21, which has a length of 5 mm and a diameter of 0.8 mm, is recessed on both sides in the opening 14, so that one Sleeve can be dispensed with.
  • the electrode shaft 12 made of tungsten wire has a diameter of 0.75 mm and a length of 7 mm. It extends 0.5 mm deep into the opening 14.
  • a tungsten wire is also butt welded to the pin 21 as a connecting part 22 for external power supply.
  • the connecting part 22 also has a wire diameter of 0.75 mm; it has the length of 11 mm.
  • the interface 23 between the connecting part and the bushing is also arranged approximately 0.5 mm deep in the axial opening 14 of the end plug. Since contact between the tungsten pin 22 and the glass solder 20 in the filling bore 24 should be avoided due to the different expansion coefficients, which could otherwise lead to cracks in the ceramic, here too is a sleeve 18 made of niobium (or ceramic) which Tungsten pin 22 advantageously surrounds, since these two materials, in contrast to tungsten or molybdenum, have an expansion coefficient adapted to the melting ceramic 20.
  • a collar 25 (shown in dashed lines) formed on the stopper 10 and surrounding the tungsten pin 22 can also be used as the separating means.
  • FIG. 4a and 4b Another embodiment is shown in Figures 4a and 4b.
  • a thin-walled molybdenum tube 26 is sintered directly into the stopper 10.
  • a tungsten pin is squeezed as an electrode shaft 27 with a spiral part 28 and welded in a gas-tight manner.
  • the filling bore 29 is made in the side wall of the tube. It is closed after the filling process in that a metallic Solder compact 42 (eg titanium solder or a mixture of Ti and Mo or Zr / Mo) or a wire section made of solder material (eg titanium, Zr), which has a melting point of more than 1700 ° C., is filled into the tube 26.
  • a metallic Solder compact 42 eg titanium solder or a mixture of Ti and Mo or Zr / Mo
  • solder material eg titanium, Zr
  • a finely focused laser beam (Nd-YAG) 30 is directed into the tube in the tube axis and heats the metallot 42 (FIG. 4a). This melts and seals the filling bore 29 'acting as a capillary (FIG. 4b).
  • Nd-YAG finely focused laser beam
  • Such a method is particularly advantageous since the melting of the solder is achieved by targeted brief heating, so that in this embodiment, during the closing of the pump end 6a, the cooling of the blind end, in the vicinity of which the filling components are located, can be completely dispensed with and therefore the length of such discharge vessels can be chosen to be particularly short.
  • FIG. 5 An additional exemplary embodiment is shown in FIG. 5. It essentially corresponds to the arrangement according to FIG. 4, in that a thin-walled molybdenum tube 33 is also sintered directly into the stopper 10 at the pump end 6a and a tungsten pin is attached to the tube end as an electrode shaft 32.
  • the filling bore 29 in the side wall of the tube is mechanically closed by inserting a filling rod 37, which is adapted to the inside diameter of the tube 26, after the evacuation and filling of the discharge vessel into the tube 32 and thus filling the dead volume inside the tube and thereby also covering the filling bore .
  • the end facing the shaft can have a concave curvature 38 for better adaptation.
  • the filling rod 37 made of molybdenum or tungsten protrudes from the outer end of the tube 33 and is welded there gas-tight to the tube end, e.g. by means of laser welding 46 or by means of a gas burner. You can also use a filler rod that is flush with the pipe end or somewhat recessed into it.
  • the molybdenum tube 26 has, for example, an inner diameter of 1.3 mm and a wall thickness of 0.1 mm, while the electrode has a tungsten shaft 27 with a diameter of 0.5 mm.
  • the electrode shaft 27 is inserted centered into one end of the molybdenum tube 26 approximately 1 mm deep (FIG. 6a).
  • the tube 26 is then heated to 400 ° C. by supplying heat (FIG. 6b), so that the material, which is brittle per se, becomes ductile.
  • a pin with a 0.6 mm diameter arranged parallel to it is inserted into the tube end as a placeholder 30 for the filling bore (shown in broken lines in FIG. 6b).
  • the placeholder 30 is removed again, so that in addition to the electrode shaft 27, which is expediently fitted outside the tube axis, an opening remains at the end 45 of the tube 26, which serves as a filling bore 31 Figure 6e).
  • the electrode shaft 27 is attached in the pinch without the filling bore 31 being closed. The attachment can also be done before removing the placeholder.
  • the method step according to FIG. 6g is omitted in this variant. There is no immediate welding. Instead, the final sealing after filling is carried out either by a metallot or by a filler rod ( Figure 4 or 5).
  • FIGS. 7a to 7c A further possibility of fastening an electrode in a molybdenum tube is explained with reference to FIGS. 7a to 7c.
  • the electrode shaft 32 the diameter of which is again considerably smaller than the inside diameter of the molybdenum tube 33, is melted back at one end by the addition of heat until a spherical end 34 is formed, the outside diameter of which is adapted to the inside diameter of the molybdenum tube 33.
  • the length of the melted back Shank section 35 determines the diameter of the spherical end 34.
  • the spherical end 34 is inserted into the pipe end (arrow) and attached there (for example by laser or spot welding).
  • the tube end 45 can now, if desired, be sealed again, for example by laser welding 46, the tube 33 advantageously rotating about its axis in the direction of the arrow (FIG. 7b).
  • the filling hole 36 ' is made by a laser 46' perpendicular to the pipe axis, but offset to the side, is directed towards the pipe end 45 just behind the welding point and with a single laser pulse an approximately 0.7 mm wide transverse slot 36 'in the pipe wall is generated (Figure 7c).
  • FIGS. 8a and 8b A particularly simple possibility of fastening an electrode in a molybdenum tube is shown in FIGS. 8a and 8b.
  • an electrode 11 with a shaft diameter of 0.5 mm, is inserted into the tube 26 about 0.8 mm deep and laterally at the end 45 of the tube 26, e.g. by means of laser beam 46, attached (indicated by dashed lines in FIG. 8a).
  • the tube 26 has an inner diameter of approximately 1.2 mm and a wall thickness of typically 0.2 mm.
  • a filling rod 37 'made of molybdenum is inserted into the tube 26 (FIG. 8 b) and has a recess 47 for the electrode shaft 27, similar to FIG. 5.
  • the fill tube 37 ' is somewhat shorter than the tube 26, so that it can be welded very easily at the tube end remote from the discharge, for example by axial laser incidence 46 ⁇ .
  • the electrode is attached to the leadthrough in a manner that is mirror-symmetrical to the pump end.
  • a filler rod can be used in all exemplary embodiments, that is to say also in the tubes which are closed with a pinch.
  • the welding step at the crimped pipe end and also the step of final sealing at the crimped pipe end by means of a metallot is eliminated.
  • the filler rod technology has the main advantage that the welding takes place at the end of the pipe. On the one hand, this point is easily accessible, on the other hand it is considerably less exposed to temperature than the front end of the tube which faces the discharge.
  • a welded joint is more reliable than a soldered joint.
  • the pump end can be equipped with a tubular feedthrough, while the blind end has a pin-shaped feedthrough.
  • a cermet stopper which is a ceramic stopper that has a low admixture contains a metal at the blind end.
  • the manufacturing method according to the invention is also suitable for a cermet plug 39 at the pump end 6a.
  • a separate implementation can be dispensed with, since the cermet itself is conductive (FIG. 9).
  • the electrode shaft 40 aligned in the lamp axis is seated directly in the cermet stopper 39 performing the task, while a power supply 41 is attached to the outer end.
  • the manufacturing process corresponds to the steps discussed in connection with FIG. 2.

Abstract

Un procédé pour la fabrication d'une lampe à décharge à halogénure de métal avec récipient de décharge céramique est caractérisé en ce que tout d'abord les deux extrémités (6a, 6b) sont équipées de systèmes d'électrodes et sont hermétiquement closes, mais qu'à proximité de l'extrémité de pompage (6a) reste ouvert un trou de remplissage (15) qui n'est obturé qu'une fois l'opération de remplissage terminée.

Claims (22)

  1. Procédé de fabrication d'une lampe à décharge à halogénure métallique, qui possède une enceinte de décharge (4) en céramique ayant deux extrémités (6a,6b), qui entoure un volume de décharge, les extrémités étant fermées par des moyens d'étanchéité, et ces moyens comportant, au moins à une première extrémité (6a), une traversée électriquement conductrice, qui relie une électrode (11) située dans le volume de décharge à un conducteur d'alimentation électrique extérieur, caractérisé par les étapes opératoires suivantes :
    a) fabrication de systèmes à électrode, constitués d'une électrode et d'un moyen d'étanchéité, y compris une traversée, ainsi que éventuellement d'un conducteur extérieur d'alimentation,
    b) équipement des deux extrémités (6a,6b) avec des systèmes d'électrodes,
    c) étanchéification des deux extrémités par chauffage, la seconde extrémité (6b) étant fermée d'une manière entièrement étanche en tant qu'extrémité borgne, tandis qu'à proximité de la première extrémité (6a), qui sert d'extrémité de pompage, subsiste à l'état ouvert un perçage de remplissage (15;24;29;31;31′;36), qui met le volume de décharge en communication avec l'extérieur,
    d) vidage et remplissage du volume de décharge par le perçage de remplissage (15;24;29;31;31′;36), un corps solide contenant un halogénure métallique étant entre autres introduit dans le volume de décharge lors de l'opération de remplissage,
    e) fermeture du perçage de remplissage (15;24;29;31;31′;36) et fermeture étanche au gaz du volume de décharge.
  2. Procédé suivant la revendication 1, caractérisé par le fait que le perçage de remplissage (15) est disposé dans la paroi latérale de l'enceinte de décharge (4), à proximité de l'extrémité de pompage (6a).
  3. Procédé suivant la revendication 1, caractérisé par le fait que le perçage de remplissage (24;29;31;31′;36) se trouve dans les moyens d'étanchéité.
  4. Procédé suivant la revendication 3, caractérisé par le fait que les moyens d'étanchéité sont formés par un bouchon électriquement conducteur (39), qui assume simultanément le rôle d'une traversée.
  5. Procédé suivant la revendication 3, caractérisé par le fait que la traversée est une pièce distincte, qui est en un métal semblable au niobium ou au molybdène et qui est réalisé sous la forme d'un tube (26;33) ou d'une tige (9;21), tandis que les moyens d'étanchéité sont constitués par un bouchon (10) en céramique, qui entoure la traversée.
  6. Procédé suivant la revendication 5, caractérisé par le fait que le perçage de remplissage se trouve dans le bouchon (10) en céramique.
  7. Procédé suivant la revendication 2 ou 4, caractérisé par le fait que, lors de l'étape opératoire e), la zone du perçage est chauffée sur une grande surface et lentement.
  8. Procédé suivant la revendication 7, caractérisé par le fait que le chauffage est effectué au moyen d'un faisceau laser élargi.
  9. Procédé suivant la revendication 2, 4 ou 6, caractérisé par le fait que le perçage de remplissage (15;24) est recouvert d'une masse céramique ou de verre pour soudure (20) à point de fusion élevé tout d'abord à l'état solide et qui fond lors du chauffage et ferme de façon étanche le perçage de remplissage agissant en tant que capillaire.
  10. Procédé suivant la revendication 5, caractérisé par le fait que la traversée possède une forme tubulaire (26; 33), le perçage de remplissage (31;31′;36) étant disposé dans une partie, tournée vers le volume de décharge, de la traversée.
  11. Procédé suivant la revendication 10, caractérisé par le fait que l'étape opératoire e) se déroule de la manière suivante :
    - introduction d'une soudure métallique à point de fusion élevé (42) dans la traversée de forme tubulaire (26;33),
    - échauffement local de brève durée de la soudure (42) de sorte que cette dernière fond et ferme de façon étanche le perçage de remplissage (31;36).
  12. Procédé suivant la revendication 10, caractérisé par le fait que l'étape opératoire e) se déroule de la manière suivante :
       - échauffement local de brève durée de la traversée de forme tubulaire (26;33) dans la zone du perçage de remplissage, de sorte que le matériau du tube lui-même fond et ferme de façon étanche le perçage de remplissage.
  13. Procédé suivant la revendication 11 ou 12, caractérisé par le fait que l'échauffement local de brève durée est réalisé à l'aide d'un faisceau laser focalisé (46), qui pénètre depuis l'extrémité extérieure encore ouverte, dans le tube (26;33) suivant l'axe de ce dernier.
  14. Procédé suivant la revendication 10, caractérisé par le fait que le perçage de remplissage (24;29;31;31′) se trouve à proximité de l'extrémité (45) du tube dans la paroi latérale de ce dernier ou est formé par une partie encore ouverte (31;31′) de l'extrémité (45) du tube.
  15. Procédé suivant la revendication 10, caractérisé par le fait que l'étape opératoire e) se déroule de la manière suivante :
    - introduction d'une tige de remplissage (37;37′), adaptée au diamètre intérieur de la traversée de forme tubulaire (26), dans le tube (26), la tige de remplissage (37; 37′) fermant le perçage de remplissage (29;31′),
    - fermeture d'une manière étanche au gaz, par liaison de l'extrémité extérieure du tube à la tige de remplissage (37,37′).
  16. Procédé suivant la revendication 10, caractérisé par le fait que lors de l'étape opératoire a), on fixe l'électrode (11) à la traversée de forme tubulaire (26; 33), au moyen des étapes suivants :
    i)   préparation et positionnement d'un tube (26;33) et d'une tige d'électrode en forme de barre (27;32) en un métal à point de fusion élevé, le diamètre de la tige (27;32) étant nettement inférieur au diamètre intérieur du tube (26;33),
    ii)   introduction de la tige d'électrode (27;32) dans une extrémité ouverte (45) du tube (26;33),
    iii)   fixation de la tige d'électrode (33) à l'extrémité (45) du tube, notamment au moyen d'un soudage par points ou d'un soudage laser,
    iv)   fabrication du perçage de remplissage (24;29;31;31′;36) dans le cas où cela est encore nécessaire.
  17. Procédé suivant la revendication 16, caractérisé par la modification suivante :
    concernant i)   le positionnement s'effectue de telle sorte que la tige d'électrode (27) est disposée d'une manière décalée latéralement par rapport à l'axe du tube,
    concernant iii)   on fixe la tige d'électrode (27) directement à la paroi intérieure du tube (26),
    concernant iv)   on forme le perçage de remplissage (31;31′) au moyen d'une partie, qui subsiste après l'introduction de la tige, de l'extrémité ouverte (45) du tube (26).
  18. Procédé suivant la revendication 17, caractérisé par la modification suivante :
    concernant ii)   - on introduit une entretoise (30), qui est disposée au préalable parallèlement à la tige d'électrode, pour le perçage de remplissage (31) en même temps que la tige (27) dans l'extrémité (45) du tube,
    - on pince l'extrémité (45) du tube autour de la tige (27) et de l'entretoise (30),
    concernant iv)   - on retire l'entretoise (30) de l'extrémité (45) du tube avant ou après l'étape iii) et on laisse subsister une ouverture de remplissage (31).
  19. Procédé suivant la revendication 16, caractérisé par la modification suivante :
    concernant i)   le positionnement s'effectue de telle sorte que la tige d'électrode (27;32) est montée d'une manière centrée par rapport à l'axe du tube,
    concernant iii)   - avant la fixation on exécute une étape opératoire x) :
    déformation d'un des deux partenaires dans la fixation extrémité du tube - tige d'électrode pour l'établissement d'un contact lâche entre ces deux partenaires de fixation,
    - après la fixation, on ferme d'une manière étanche au gaz éventuellement le tube (45) au moyen d'un apport de chaleur, notamment à l'aide d'un joint soudé,
    concernant iv)   on forme le perçage de remplissage (24;29; 36′) dans la paroi latérale du tube, à proximité de l'extrémité (45) du tube.
  20. Procédé suivant la revendication 19, caractérisé par la modification suivante :
    concernant x)   la déformation s'effectue par formation d'un arrondi sphérique à l'extrémité (35) de la tige d'électrode (32) par fusion rétrograde de sorte que le diamètre de l'extrémité rendue sphérique (34) est adapté au diamètre intérieur du tube (33), l'étape opératoire x) s'effectuant encore avant l'étape opératoire ii).
  21. Procédé suivant la revendication 19, caractérisé par la modification suivante :
    concernant x)   la déformation s'effectue par pincement de l'extrémité (45) du tube autour de la tige d'électrode (27) à l'aide de moyens de pincement (44).
  22. Procédé suivant les revendications 18, 19 ou 21, caractérisé par le fait que la traversée de forme tubulaire (26;33) est en un métal semblable au molybdène, le tube (26;33) étant chauffé tout d'abord à 400°C avant toutes les étapes de déformation (pincement) de ce tube.
EP92909171A 1991-10-11 1992-05-06 Procede pour la fabrication d'une lampe a decharge a halogenure de metal avec recipient de decharge en ceramique Expired - Lifetime EP0607149B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE9112690U DE9112690U1 (fr) 1991-10-11 1991-10-11
DE9112690U 1991-10-11
PCT/DE1992/000372 WO1993007638A1 (fr) 1991-10-11 1992-05-06 Procede pour la fabrication d'une lampe a decharge a halogenure de metal avec recipient de decharge en ceramique

Publications (2)

Publication Number Publication Date
EP0607149A1 EP0607149A1 (fr) 1994-07-27
EP0607149B1 true EP0607149B1 (fr) 1995-10-11

Family

ID=6872172

Family Applications (2)

Application Number Title Priority Date Filing Date
EP92909171A Expired - Lifetime EP0607149B1 (fr) 1991-10-11 1992-05-06 Procede pour la fabrication d'une lampe a decharge a halogenure de metal avec recipient de decharge en ceramique
EP92116463A Withdrawn EP0536609A1 (fr) 1991-10-11 1992-09-25 Lampe à décharge à haute pression

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP92116463A Withdrawn EP0536609A1 (fr) 1991-10-11 1992-09-25 Lampe à décharge à haute pression

Country Status (9)

Country Link
US (2) US5484315A (fr)
EP (2) EP0607149B1 (fr)
JP (2) JP3150341B2 (fr)
KR (1) KR100255426B1 (fr)
CN (1) CN1073801A (fr)
CA (1) CA2117260A1 (fr)
DE (2) DE9112690U1 (fr)
HU (2) HU214232B (fr)
WO (1) WO1993007638A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018262A1 (de) * 2007-04-13 2008-10-16 Technische Universität Dresden Verfahren zum Verschließen von keramischen Kapillaren an Behältern

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9112690U1 (fr) * 1991-10-11 1991-12-05 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh, 8000 Muenchen, De
DE9206727U1 (fr) * 1992-05-18 1992-07-16 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh, 8000 Muenchen, De
DE4242122A1 (de) * 1992-12-14 1994-06-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung einer vakuumdichten Abdichtung zwischen einem keramischen und einem metallischen Partner, insbesondere zur Anwendung bei der Herstellung eines Entladungsgefäßes für eine Lampe, sowie damit hergestellte Entladungsgefäße und Lampen
EP0609477B1 (fr) * 1993-02-05 1999-05-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Enceinte céramique à décharge pour lampe à décharge à haute pression et sa méthode de fabrication et matériau d'étanchéité associé
DE4334074A1 (de) * 1993-10-06 1995-04-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidentladungslampe
JP3507179B2 (ja) * 1995-01-13 2004-03-15 日本碍子株式会社 高圧放電灯
US5592048A (en) * 1995-08-18 1997-01-07 Osram Sylvania Inc. Arc tube electrodeless high pressure sodium lamp
US5866982A (en) * 1996-01-29 1999-02-02 General Electric Company Arctube for high pressure discharge lamp
DE19727428A1 (de) 1997-06-27 1999-01-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidlampe mit keramischem Entladungsgefäß
US6020685A (en) * 1997-06-27 2000-02-01 Osram Sylvania Inc. Lamp with radially graded cermet feedthrough assembly
US5861714A (en) * 1997-06-27 1999-01-19 Osram Sylvania Inc. Ceramic envelope device, lamp with such a device, and method of manufacture of such devices
DE19727429A1 (de) 1997-06-27 1999-01-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidlampe mit keramischem Entladungsgefäß
ES2175326T3 (es) * 1997-12-19 2002-11-16 Esab Ab Aparato de soldadura.
CN1155987C (zh) 1998-05-27 2004-06-30 日本碍子株式会社 高压放电灯用的发光容器及其制造方法
AU745886B2 (en) * 1999-12-20 2002-04-11 Toshiba Lighting & Technology Corporation A high-pressure metal halide A.C. discharge lamp and a lighting apparatus using the lamp
US6705914B2 (en) * 2000-04-18 2004-03-16 Matsushita Electric Industrial Co., Ltd. Method of forming spherical electrode surface for high intensity discharge lamp
WO2002037531A1 (fr) * 2000-11-06 2002-05-10 Koninklijke Philips Electronics N.V. Lampe a decharge haute pression
US6528945B2 (en) 2001-02-02 2003-03-04 Matsushita Research And Development Laboratories Inc Seal for ceramic metal halide discharge lamp
US6566814B2 (en) * 2001-04-24 2003-05-20 Osram Sylvania Inc. Induction sealed high pressure lamp bulb
US6805603B2 (en) * 2001-08-09 2004-10-19 Matsushita Electric Industrial Co., Ltd. Electrode, manufacturing method thereof, and metal vapor discharge lamp
US6873108B2 (en) 2001-09-14 2005-03-29 Osram Sylvania Inc. Monolithic seal for a sapphire metal halide lamp
US6861808B2 (en) * 2002-03-27 2005-03-01 Matsushita Electric Industrial Co., Ltd. Metal vapor discharge lamp
KR20030079388A (ko) * 2002-04-04 2003-10-10 유니램 주식회사 교류회로 방전등에서의 방전전극 구조
US6856091B2 (en) * 2002-06-24 2005-02-15 Matsushita Electric Industrial Co., Ltd. Seal for ceramic metal halide discharge lamp chamber
US6984938B2 (en) * 2002-08-30 2006-01-10 Matsushita Electric Industrial Co., Ltd Metal vapor discharge lamp and lighting apparatus capable of stable maintenance of characteristics
CN100576421C (zh) * 2002-08-30 2009-12-30 松下电器产业株式会社 能够保持稳定特性的金属蒸汽放电灯和照明设备
JP2004103461A (ja) * 2002-09-11 2004-04-02 Koito Mfg Co Ltd 放電バルブ用アークチューブ
DE10256389A1 (de) * 2002-12-02 2004-06-09 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Metallhalogenidlampe mit keramischem Entladungsgefäß
US7215081B2 (en) * 2002-12-18 2007-05-08 General Electric Company HID lamp having material free dosing tube seal
US7839089B2 (en) * 2002-12-18 2010-11-23 General Electric Company Hermetical lamp sealing techniques and lamp having uniquely sealed components
AU2003285660A1 (en) * 2003-01-27 2004-08-23 Koninklijke Philips Electronics N.V. A method for filling a lamp with gas and a lamp filled with gas
DE102004027997A1 (de) * 2004-06-09 2005-12-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Verfahren und Vorrichtung zum Herstellen einer Lampe
US20060001346A1 (en) * 2004-06-30 2006-01-05 Vartuli James S System and method for design of projector lamp
EP1766660A1 (fr) * 2004-07-06 2007-03-28 Koninklijke Philips Electronics N.V. . lampe a decharge electrique
DE102005038551B3 (de) * 2005-08-12 2007-04-05 W.C. Heraeus Gmbh Draht und Gestell für einseitig gesockelte Lampen auf Basis von Niob oder Tantal sowie Herstellungsverfahren und Verwendung
DE102005046483A1 (de) * 2005-09-28 2007-03-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Entladungslampe
JP4846392B2 (ja) * 2006-02-28 2011-12-28 株式会社東芝 水中補修溶接方法
DE602007014111D1 (de) 2006-12-20 2011-06-01 Koninkl Philips Electronics Nv Keramischer brenner für eine keramische metallhalogenidlampe
DE102007046899B3 (de) * 2007-09-28 2009-02-12 W.C. Heraeus Gmbh Stromdurchführung durch Keramikbrenner in Halogen-Metalldampflampen

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE272930C (fr) *
NL45530C (fr) * 1936-04-27
US3300037A (en) * 1961-07-07 1967-01-24 Gen Electric Rupturable containers
US3363133A (en) * 1966-02-28 1968-01-09 Sylvania Electric Prod Electric discharge device having polycrystalline alumina end caps
BE795680A (fr) * 1972-02-21 1973-08-20 Philips Nv Lampe a decharge a haute pression, munie d'un conducteur de traversee metallique
GB1419099A (en) * 1972-08-11 1975-12-24 Thorn Electrical Ind Ltd Manufacturing electric devices having sealed envelopes
NL174682C (nl) * 1974-11-14 1985-01-16 Philips Nv Elektrische ontladingslamp.
GB1465212A (en) * 1975-05-12 1977-02-23 Gen Electric Electric discharge lamps
US4065691A (en) * 1976-12-06 1977-12-27 General Electric Company Ceramic lamp having electrodes supported by crimped tubular inlead
US4208605A (en) * 1977-11-14 1980-06-17 General Electric Company Alumina, calcia, baria sealing composition optionally modified with B2 3
GB2047227B (en) * 1979-04-02 1983-05-25 Gen Electric Alumina calcia and baria sealing composition
HU178836B (en) * 1980-02-11 1982-07-28 Egyesuelt Izzzolampa Es Villam Electric discharge lamp of ceramic bulb
US4342938A (en) * 1980-03-31 1982-08-03 General Electric Company Universal burning ceramic lamp
US4545799A (en) * 1983-09-06 1985-10-08 Gte Laboratories Incorporated Method of making direct seal between niobium and ceramics
JPS6079639A (ja) * 1983-09-19 1985-05-07 Mitsubishi Electric Corp 高圧金属蒸気放電灯の製造方法
JPS6072137A (ja) * 1983-09-28 1985-04-24 Toshiba Corp 発光管の製造方法
JPS60115145A (ja) * 1983-11-25 1985-06-21 Mitsubishi Electric Corp 高圧放電灯
US4560357A (en) * 1984-06-18 1985-12-24 Gte Products Corporation Method for sealing arc discharge lamps
JPS62100929A (ja) * 1985-10-28 1987-05-11 Toshiba Corp セラミツク放電灯の製造方法
JPS62234841A (ja) * 1986-04-04 1987-10-15 Iwasaki Electric Co Ltd 高演色形高圧ナトリウムランプの製造方法
JPH0682545B2 (ja) * 1986-12-24 1994-10-19 日本碍子株式会社 高圧金属蒸気放電灯用発光管
HU200031B (en) * 1988-03-28 1990-03-28 Tungsram Reszvenytarsasag High-pressure discharge lamp
US5207607A (en) * 1990-04-11 1993-05-04 Mitsubishi Denki Kabushiki Kaisha Plasma display panel and a process for producing the same
DE9012200U1 (fr) * 1990-08-24 1991-12-19 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh, 8000 Muenchen, De
DE4037721C2 (de) * 1990-11-27 2003-02-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung einer Natriumhochdrucklampe sowie dafür geeignete Vorrichtung
US5098326A (en) * 1990-12-13 1992-03-24 General Electric Company Method for applying a protective coating to a high-intensity metal halide discharge lamp
US5404078A (en) * 1991-08-20 1995-04-04 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh High-pressure discharge lamp and method of manufacture
DE9112690U1 (fr) * 1991-10-11 1991-12-05 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh, 8000 Muenchen, De

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018262A1 (de) * 2007-04-13 2008-10-16 Technische Universität Dresden Verfahren zum Verschließen von keramischen Kapillaren an Behältern
DE102007018262B4 (de) * 2007-04-13 2010-04-08 Technische Universität Dresden Verfahren zum Verschließen von keramischen Kapillaren an Behältern mittels Laser

Also Published As

Publication number Publication date
DE9112690U1 (fr) 1991-12-05
CA2117260A1 (fr) 1993-04-15
WO1993007638A1 (fr) 1993-04-15
US5352952A (en) 1994-10-04
DE59204013D1 (de) 1995-11-16
KR100255426B1 (ko) 2000-05-01
JPH0744253U (ja) 1995-11-07
HU9200239V0 (en) 1992-11-28
HUT66139A (en) 1994-09-28
HU64U (en) 1993-01-28
CN1073801A (zh) 1993-06-30
JP3150341B2 (ja) 2001-03-26
EP0607149A1 (fr) 1994-07-27
HU214232B (hu) 1998-03-02
US5484315A (en) 1996-01-16
EP0536609A1 (fr) 1993-04-14
HU9401009D0 (en) 1994-07-28
JPH06511592A (ja) 1994-12-22

Similar Documents

Publication Publication Date Title
EP0607149B1 (fr) Procede pour la fabrication d'une lampe a decharge a halogenure de metal avec recipient de decharge en ceramique
EP0602530B1 (fr) Procédé pour fabriquer un joint étanche au vide pour un récipient céramique et une lampe à décharge
EP0887839B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
EP0528427B1 (fr) Lampe à décharge à haute pression
EP0570772B1 (fr) Lampe à décharge à haute pression
EP0887841B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
EP0887840B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
DE69839292T2 (de) Kurzbogen Entladungslampe und Herstellungsverfahren derselben
DE4327535A1 (de) Hochdruckentladungslampe mit keramischem Entladungsgefäß
EP0472100A2 (fr) Lampe à décharge à haute pression
WO2005015600A2 (fr) Systeme d'electrode pourvu d'un nouveau type de liaison, lampe associee comprenant un tel systeme et procede de production de ladite liaison
DE2209805C2 (de) Metalldampfhochdruckentladungslampe
DE202015002269U1 (de) Lampensicherung in einem Pressdichtungshohlraum
EP1351278B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
DE10159580B4 (de) Bogenentladungsröhre und Verfahren zu deren Herstellung
EP1434252A2 (fr) Lampe à halogéne métallique avec enveloppe céramique, système d'électrodes pour une telle lampe et procédé pour fabriquer un tel système
EP1372184A2 (fr) Système d'électrodes pour une lampe aux halogénures métalliques et lampe équipée d'un tel système
DE102005022376B4 (de) Lampe und Verfahren zur Herstellung derselben
DE102006011732A1 (de) Metallhalogenidlampe mit keramischen Entladungsgefäß
DE1194975B (de) Hochdruckentladungslampe mit einem Quarzglaskolben
DE102022116475A1 (de) Anodenelektrode für eine gasentladungslampe, verfahren zu deren herstellung sowie gasentladungslampe
DE3111278C2 (fr)
EP1665318A2 (fr) Lampe electrique scellee des deux cotes et procede de fabrication
DE19529465A1 (de) Hochdruckentladungslampe
EP1958239A2 (fr) Lampe a decharge haute pression comprenant une enceinte de decharge ceramique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19950118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59204013

Country of ref document: DE

Date of ref document: 19951116

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951216

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020509

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020528

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080721

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201