EP0606027B1 - Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air - Google Patents

Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air Download PDF

Info

Publication number
EP0606027B1
EP0606027B1 EP93402907A EP93402907A EP0606027B1 EP 0606027 B1 EP0606027 B1 EP 0606027B1 EP 93402907 A EP93402907 A EP 93402907A EP 93402907 A EP93402907 A EP 93402907A EP 0606027 B1 EP0606027 B1 EP 0606027B1
Authority
EP
European Patent Office
Prior art keywords
column
air
pressure
nitrogen
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP93402907A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0606027A1 (fr
Inventor
Norbert Rieth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9442829&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0606027(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0606027A1 publication Critical patent/EP0606027A1/fr
Application granted granted Critical
Publication of EP0606027B1 publication Critical patent/EP0606027B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/0466Producing crude argon in a crude argon column as a parallel working rectification column or auxiliary column system in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle

Definitions

  • the present invention relates to a process for producing oxygen and / or nitrogen gas under pressure and at least one liquid product by means of an installation comprising a simple air distillation column provided with a cycle nitrogen refrigerator in which the air to be treated is compressed to a first pressure at least equal to the pressure of the single column, and at least part of the air is boosted up to a high pressure significantly higher than the single column pressure.
  • a process of this kind is known from GB 2,252,616A, in which only part of the air is boosted at a higher pressure than that of the single column.
  • the boosted flow does not condense and is expanded by a turbine before being sent to the column, hence an inefficient operation of the exchangers.
  • the main compressor and the nitrogen cycle compressor of this installation can in particular be constituted by a single machine.
  • FIGS. 1 and 2 schematically represent, firstly and secondly, an embodiment of the installation according to the invention.
  • the installation shown in Figure 1 is intended to produce pressurized gaseous oxygen, pressurized nitrogen gas, liquid oxygen and argon. It essentially comprises: a main air compressor 1 provided with a refrigerant 2 with atmospheric air or water; an adsorption purification device 3; a 4-turbine blower assembly 5 having the two wheels wedged on the same shaft, the blower also being provided with a coolant 6 air or water; a heat exchange line 7; a simple air distillation column 9; an impure argon production column 10 coupled to the previous one; a sub-cooler 11; storage 12 of liquid nitrogen and 13 of liquid oxygen under atmospheric pressure; pumps 14 for liquid oxygen and 15 for liquid nitrogen; and a compressor 16 of the refrigeration cycle nitrogen provided with an air or water cooler 17.
  • the simple column 9 comprises a tank vaporizer 18, while the column 10 comprises a head condenser 19.
  • the installation also includes expansion valves 20 to 24.
  • the air compressors 1 and cycle nitrogen 16 are combined in a single rotating machine.
  • the incoming air is compressed between 5 and 10 bars at 1, cooled to around room temperature at 2, purified with water and carbon dioxide at 3, and fully boosted at 4 to a high pressure of the order of 6.5 to 13 bars.
  • the pressurized air After pre-cooling in the vicinity of the ambient temperature at 6, the pressurized air enters the hot end of the heat exchange line 7 and is cooled to an intermediate temperature, where 60 to 80% of its flow has come out of the exchange line, turbinated at 5, which relaxes them substantially to the pressure of column 9, called low pressure, between 1.3 and 2 bars, then reintroduced into the exchange line, cooled to the end cold thereof, cooled again at 11, and introduced at an intermediate level into column 9 via a pipe 25.
  • the non-turbinated fraction of the pressurized air continues to cool and is liquefied in the cold part of the exchange line. It is then sub-cooled in 11. Part of this air is relaxed at the pressure of column 9 at 20 and introduced at an intermediate level thereof, while the rest of this air is expanded at 21 and feeds the head condenser 19 of column 10, to be vaporized there, then is returned to column 9 in gaseous state.
  • the installation's nitrogen refrigeration cycle is supplied with practically pure nitrogen produced at the top of column 9, partially reheated at 11 and reheated to room temperature at 7.
  • a fraction of this low pressure nitrogen can be recovered by as a product via a line 26, and the rest is compressed at a medium pressure, which is the high pressure of the cycle, by the compressor 16, then brought back to the vicinity of the ambient temperature at 17.
  • a portion of the medium pressure nitrogen can be recovered as a product via a pipe 27, and the rest is cooled to the cold end of the exchange line up to the vicinity of its dew point, then is condensed in the vaporizer 18 of column 9.
  • Part of the condensed nitrogen is pumped at 15 at a high production pressure of the order of 7 to 40 bars, and the liquid nitrogen under this high pressure is vaporized in the heat exchange line by condensation of the pressurized air, warmed to room temperature, then recovered as a product via a line 28.
  • the rest of the condensed nitrogen is sub-cooled at 11, then, partially, expanded at 22 and introduced under reflux at the top of the column 9, and, for the rest, expanded to atmospheric pressure at 23 and introduced into the liquid nitrogen storage 12.
  • the latter can be supplied with liquid nitrogen taken from the top of the column.
  • An impure nitrogen gas flow constituting the waste gas of the installation, is withdrawn from the column at a level between the injections of liquid nitrogen and liquid air, heated in 11 then in 7 to room temperature, and evacuated via a pipe 29.
  • Liquid oxygen is also withdrawn from the tank of column 9, pumped at 14 at the desired high production pressure, of the order of 2 to 40 bars, vaporized in the cold part of the heat exchange line. by condensing compressed air, warmed to room temperature, and recovered as a product via a pipe 30.
  • Liquid oxygen is also withdrawn from the tank of the column 9 and, after sub-cooling in 11 and expansion to atmospheric pressure in 24, sent to the liquid oxygen storage 13.
  • the tank of column 10 is coupled to an intermediate level of column 9 by two supply and return pipes 31, and this column 10 produces impure argon via a pipe 33.
  • the installation does not include an auxiliary column 10, so that all of the liquefied air in the heat exchange line is, after sub-cooling in 11 then expansion in 20, injected into the simple column 9.
  • the incoming air circuit comprises two blowers 4 and 4A in series, with their respective air or water coolers 6 and 6A, and two air expansion turbines 5 and 5A, respectively coupled to the two blowers .
  • the remaining 60 to 70% of the incoming air is boosted in 4 and then in 4A, to a pressure of the order of 6.5 to 13 bars, then introduced at the hot end of the exchange line. They are cooled to a second intermediate temperature T2 lower than T1, a temperature at which 60 to 70% of this flow is taken out of the exchange line and turbinated in 5A, from where they come out substantially at the pressure of the column 9 via line 32.
  • the pipes 31, 32 meet in a pipe 33.
  • the air conveyed by the latter is again cooled at 11 and then injected into the column, as before, via the pipe 25.
  • the 5A non-turbined pressurized air continues to cool in the cold part of the exchange line, where it is liquefied by vaporization of liquid oxygen and high pressure liquid nitrogen as before.
  • the presence of the two air turbines 5 and 5A improves the performance of the installation, while the nitrogen turbine 34 increases its production of liquid (liquid oxygen and / or liquid nitrogen).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
EP93402907A 1993-01-05 1993-12-01 Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air Revoked EP0606027B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9300035A FR2700205B1 (fr) 1993-01-05 1993-01-05 Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air.
FR9300035 1993-01-05

Publications (2)

Publication Number Publication Date
EP0606027A1 EP0606027A1 (fr) 1994-07-13
EP0606027B1 true EP0606027B1 (fr) 1996-10-09

Family

ID=9442829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93402907A Revoked EP0606027B1 (fr) 1993-01-05 1993-12-01 Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air

Country Status (8)

Country Link
US (1) US5428962A (ja)
EP (1) EP0606027B1 (ja)
JP (1) JPH06241649A (ja)
CN (1) CN1093797A (ja)
CA (1) CA2112831A1 (ja)
DE (1) DE69305317T2 (ja)
ES (1) ES2093946T3 (ja)
FR (1) FR2700205B1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655388A (en) * 1995-07-27 1997-08-12 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure gaseous oxygen and liquid product
GB9515907D0 (en) * 1995-08-03 1995-10-04 Boc Group Plc Air separation
US5689975A (en) * 1995-10-11 1997-11-25 The Boc Group Plc Air separation
GB9618576D0 (en) * 1996-09-05 1996-10-16 Boc Group Plc Air separation
GB9618577D0 (en) * 1996-09-05 1996-10-16 Boc Group Plc Air separation
GB9619717D0 (en) * 1996-09-20 1996-11-06 Boc Group Plc Air separation
GB9619718D0 (en) * 1996-09-20 1996-11-06 Boc Group Plc Air separation
FR2767317B1 (fr) * 1997-08-14 1999-09-10 Air Liquide Procede de conversion d'un debit contenant des hydrocarbures par oxydation partielle
GB9717349D0 (en) * 1997-08-15 1997-10-22 Boc Group Plc Air separation plant
US5987918A (en) * 1998-03-17 1999-11-23 The Boc Group, Inc. Method of separating nitrogen from air
JP4577977B2 (ja) * 2000-11-14 2010-11-10 大陽日酸株式会社 空気液化分離方法及び装置
JP4520668B2 (ja) * 2001-07-17 2010-08-11 大陽日酸株式会社 空気分離方法および装置
JP2004099293A (ja) * 2002-09-12 2004-04-02 Matsushita Electric Ind Co Ltd 画像形成装置
CA2695817A1 (en) * 2007-08-10 2009-02-19 Alain Guillard Process and apparatus for the separation of air by cryogenic distillation
JP2010536004A (ja) * 2007-08-10 2010-11-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 極低温蒸留によって空気を分離する方法及び装置
DE102009048456A1 (de) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102011109781A1 (de) 2010-08-13 2012-03-08 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff und Druckstickstoff durch Tieftemperaturzerlegung von Luft
US20130000352A1 (en) * 2011-06-30 2013-01-03 General Electric Company Air separation unit and systems incorporating the same
CN102322727A (zh) * 2011-09-08 2012-01-18 罗良宜 空气能空气液化分离装置
US20220099364A1 (en) * 2020-09-29 2022-03-31 L'Air Liquide, Société Anonyme pour l'Etude et I'Exploitation des Procédés Georges Claude Offshore liquefaction process without compression

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3610973A1 (de) * 1986-04-02 1987-10-08 Linde Ag Verfahren und vorrichtung zur erzeugung von stickstoff
EP0286314B1 (en) * 1987-04-07 1992-05-20 The BOC Group plc Air separation
FR2651035A1 (fr) * 1989-08-18 1991-02-22 Air Liquide Procede de production d'azote par distillation
CA2058883A1 (en) * 1991-01-15 1992-07-16 Divyanshu Rasiklal Acharya Air separation

Also Published As

Publication number Publication date
ES2093946T3 (es) 1997-01-01
FR2700205A1 (fr) 1994-07-08
CN1093797A (zh) 1994-10-19
CA2112831A1 (fr) 1994-07-06
US5428962A (en) 1995-07-04
EP0606027A1 (fr) 1994-07-13
FR2700205B1 (fr) 1995-02-10
DE69305317D1 (de) 1996-11-14
DE69305317T2 (de) 1997-04-03
JPH06241649A (ja) 1994-09-02

Similar Documents

Publication Publication Date Title
EP0606027B1 (fr) Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air
EP0689019B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0504029B1 (fr) Procédé de production d'oxygène gazeux sous pression
EP0420725B1 (fr) Procédé de production frigorifique, cycle frigorifique correspondant et leur application à la distillation d'air
EP0576314B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0628778B2 (fr) Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air
JP4728219B2 (ja) 空気の低温蒸留により加圧空気ガスを製造するための方法及びシステム
US20140260422A1 (en) Low Temperature Air Separation Process for Producing Pressurized Gaseous Product
EP1014020B1 (fr) Procédé de séparation cryogénique des gaz de l'air
JP2009509120A (ja) 低温蒸留による空気の分離方法及び装置。
EP0618415B1 (fr) Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation d'air
EP0694746B1 (fr) Procédé de production d'un gaz sous pression à débit variable
FR2690982A1 (fr) Procédé et installation de production d'oxygène gazeux impur par distillation d'air.
JP3256250B2 (ja) 可変量のガス状酸素を製造する空気精留方法及び設備
FR3066809A1 (fr) Procede et appareil pour la separation de l'air par distillation cryogenique
FR2711778A1 (fr) Procédé et installation de production d'oxygène et/ou d'azote sous pression.
EP0641983B1 (fr) Procédé et installation de production d'oxygène et/ou d'azote gazeux sous pression
EP0677713B1 (fr) Procédé et installation pour la production de l'oxygène par distillation de l'air
EP0641982B1 (fr) Procédé et installation de production d'au moins un gaz de l'air sous pression
EP0612967B1 (fr) Procédé de production d'oxygène et/ou d'azote sous pression
EP0611218B2 (fr) Procédé et installation de production d'oxygene sous pression
EP0869322A1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
FR2685460A1 (fr) Procede et installation de production d'oxygene gazeux sous pression par distillation d'air.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19950922

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960927

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69305317

Country of ref document: DE

Date of ref document: 19961114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2093946

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19970707

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20001212

Year of fee payment: 8

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20001219

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20001219

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO