EP0869322A1 - Procédé et installation de séparation d'air par distillation cryogénique - Google Patents

Procédé et installation de séparation d'air par distillation cryogénique Download PDF

Info

Publication number
EP0869322A1
EP0869322A1 EP98400803A EP98400803A EP0869322A1 EP 0869322 A1 EP0869322 A1 EP 0869322A1 EP 98400803 A EP98400803 A EP 98400803A EP 98400803 A EP98400803 A EP 98400803A EP 0869322 A1 EP0869322 A1 EP 0869322A1
Authority
EP
European Patent Office
Prior art keywords
column
liquid
turbine
air
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98400803A
Other languages
German (de)
English (en)
Inventor
Martine Pelle
Norbert Rieth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0869322A1 publication Critical patent/EP0869322A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04096Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/12Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/91Expander

Definitions

  • the present invention relates to a method and an installation for air separation by cryogenic distillation.
  • Air separation by cryogenic means involves the use of a generation of cold or a source of cold.
  • FR-A-2 335 809 describes a device with a single turbine which provides all the frigories necessary for the process.
  • the expanded gas in the turbine can be medium pressure air or nitrogen. Supressed air is liquefied by exchange of heat with pressurized liquid oxygen which vaporizes.
  • US-A-5,564,290 describes a process in which pressurized air, condensed by the vaporization of the pumped liquid oxygen, then vaporizes in a turbine to produce a two-phase flow.
  • the present invention aims to improve performance energy of known devices.
  • a method of air separation by cryogenic distillation in which the air cools in an exchanger main and is sent to a distillation column of an apparatus comprising at least one distillation column where it separates into a liquid enriched in oxygen and nitrogen-enriched vapor, and pressurized liquid flow from the device vaporizes in the main exchanger, the frigories necessary for the process being generated by expansion of a circulating fluid in one or more turbines characterized in that the or all of the turbines the device produces a discharge which is at least 95% liquid, especially 100% liquid.
  • a single hydraulic turbine keeps cold without help of a turbine which expands gas to a pressure below the pressure supercritical. This reduction in investment is made possible by improving the performance of plate heat exchangers (minimum ⁇ T between 2 ° C and 1 ° C) where low spread losses and because of yields improved hydraulic turbines of the latest generations.
  • the invention proves to be particularly advantageous in the case where there is argon production because it improves the reflux rate inside the main column.
  • FIG. 1 The installation for producing gaseous oxygen under pressure shown in Figure 1 essentially includes an exchange line thermal 1 intended to cool the air to be treated by indirect heat exchange at counter current with cold products; an air distillation apparatus 2 of the type double column, consisting essentially of a medium pressure column 4 surmounted by a low pressure column 3, with a vaporizer-condenser 5 relating the indirect heat exchange to the overhead vapor (nitrogen) of column 4 and the tank liquid (oxygen) of column 3, a sub-cooler 6, an air expansion turbine 9 and a liquid oxygen pump 7.
  • an exchange line thermal 1 intended to cool the air to be treated by indirect heat exchange at counter current with cold products
  • an air distillation apparatus 2 of the type double column consisting essentially of a medium pressure column 4 surmounted by a low pressure column 3, with a vaporizer-condenser 5 relating the indirect heat exchange to the overhead vapor (nitrogen) of column 4 and the tank liquid (oxygen) of column 3, a sub-cooler 6, an air expansion turbine 9 and a liquid oxygen pump 7.
  • the rich liquid 31 and the liquid nitrogen 33 withdrawn at the head of column 4 are sub-cooled in sub-cooler 6 by low pressure impure nitrogen 25 produced at the head of column 3 then, after expansion in expansion valves respectively, feed this column low pressure 3.
  • the impure nitrogen low pressure After heating in 6 then in 1 the impure nitrogen low pressure, at room temperature can be used to regenerate a device of purification.
  • This air 13 is expanded at medium pressure in the turbine 9 in order to form a liquid flow.
  • Part of the liquid 19 is sent to the medium pressure column 4 and the rest 17 is relaxed in a valve before being sent to the column low pressure 3.
  • nitrogen gas withdrawn from the head of column 4 is, after heating in 1, recovered via a pipe 21.
  • a production line liquid nitrogen 27 and a liquid oxygen production line 29 are also indicated in Figure 1, a production line liquid nitrogen 27 and a liquid oxygen production line 29.
  • the turbine 9 is braked by an alternator 10 but can also be curbed by other means. Similarly, the turbine wheel 9 can be chocked on the same shaft as that of the pump 7.
  • FIG 4 does not differ from that of figure 1 that in that it comprises an argon column 41 and argon pumps liquid and liquid nitrogen 47, 45.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Dans un procédé de distillation d'air, un débit de liquide pressurisé se vaporise dans la ligne d'échange principale (1) par échange de chaleur avec de l'air ou de l'azote. Les frigories nécessaires sont produites par une ou plusieurs turbines hydrauliques (9, 39) produisant des débits comprenant au moins 95 % de liquide. <IMAGE>

Description

La présente invention est relative à un procédé et une installation de séparation d'air par distillation cryogénique.
La séparation d'air par voie cryogénique implique l'utilisation d'une génération de froid ou d'une source de froid.
Il est connu de détendre avec travail extérieur des gaz sous pression, introduits dans une machine de détente à des températures nettement supérieures à leur point de rosée.
FR-A-2 335 809 décrit un appareil à une seule turbine qui fournit toutes les frigories nécessaires au procédé. Le gaz détendu dans la turbine peut être l'air ou l'azote moyenne pression. De l'air supressé est liquéfié par échange de chaleur avec de l'oxygène liquide sous pression qui se vaporise.
US-A-5 564 290 décrit un procédé dans lequel de l'air pressurisé, condensé par la vaporisation de l'oxygène liquide pompé, se vaporise ensuite dans une turbine afin de produire un débit diphasique.
Il est également connu de tenir en froid un appareil au moins partiellement par biberonnage de liquides cryogéniques dans les colonnes de distillation.
Les turbines hydrauliques connues produisent un fluide qui est généralement sous forme liquide.
La présente invention a pour but d'améliorer les performances énergétiques des appareils connus.
Selon l'invention, il est prévu un procédé de séparation d'air par distillation cryogénique dans lequel l'air se refroidit dans un échangeur principal et est envoyé à une colonne de distillation d'un appareil comprenant au moins une colonne de distillation où il se sépare en un liquide enrichi en oxygène et une vapeur enrichie en azote, et un débit de liquide pressurisé provenant de l'appareil se vaporise dans l'échangeur principal, les frigories nécessaires au procédé étant générées par détente d'un fluide calorigène dans une ou plusieurs turbines caractérisé en ce que la ou toutes les turbines de l'appareil produisent au refoulement un débit qui est au moins 95 % liquide, notamment 100 % liquide.
Selon d'autres aspects de l'invention, il est prévu un procédé dans lequel :
  • le fluide calorigène entre dans la(les) turbine(s) sous forme liquide ou sous une pression au dessus de la pression supercritique.
  • le fluide calorigène entrant dans la(les) turbine(s) provient du bout froid de l'échangeur principal.
  • le fluide calorigène est de l'air ou un fluide provenant de l'appareil de séparation.
  • le liquide pressurisé est enrichi en oxygène, en azote ou en argon.
  • la turbine constitue la seule turbine de l'appareil.
  • deux turbines détendent successivement le même fluide calorigène.
  • l'appareil comprend une double colonne, constituée par une colonne moyenne pression et une colonne basse pression.
  • l'appareil comprend également une colonne argon alimentée par un débit enrichi en argon provenant de la colonne basse pression.
  • on envoie le débit détendu dans la(les) turbine(s) à la colonne moyenne pression et/ou à la colonne basse pression.
Une seule turbine hydraulique permet de tenir en froid sans l'aide d'une turbine qui détend du gaz à une pression en-dessous de la pression supercritique. Cette réduction en investissement est rendue possible par l'amélioration des performances des échangeurs à plaque (ΔT minimal entre 2 °C et 1 °C) d'où de faibles pertes par écart et à cause des rendements améliorés des turbines hydrauliques des dernières générations.
Selon l'invention, il est également prévu une installation de séparation d'air par distillation cryogénique comprenant :
  • au moins une colonne de distillation,
  • un échangeur de chaleur,
  • des moyens pour envoyer de l'air à l'échangeur de chaleur et de l'échangeur de chaleur à une colonne de distillation,
  • des moyens pour soutirer un liquide d'une colonne de distillation et pour le pressuriser,
  • des moyens pour envoyer le liquide pressurisé à l'échangeur de chaleur,
  • une ou plusieurs turbines de détente, alimentée(s) par un fluide calorigène
  •    caractérisée en ce que la seule (ou les seules) turbine(s) de l'installation sont capables de produire au refoulement un débit qui est au moins 95 % liquide.
    L'invention se révèle particulièrement avantageuse dans le cas où il y a une production d'argon, car elle améliore le taux de reflux à l'intérieur de la colonne principale.
    Dans le cas où le fluide calorigène destiné à la turbine hydraulique soit du bout froid de l'échangeur, ceci permet une réduction des coûts de fabrication de l'échangeur.
    Des exemples de mise en oeuvre vont maintenant être décrits en regard des dessins annexés, sur lesquels :
  • - les figures 1 à 4 représentent respectivement, de façon schématique, quatre modes de réalisation selon l'invention.
  • L'installation de production d'oxygène gazeux sous pression représentée sur la figure 1 comprend essentiellement une ligne d'échange thermique 1 destinée à refroidir l'air à traiter par échange de chaleur indirect à contre-courant avec des produits froid; un appareil de distillation d'air 2 du type à double colonne, constitué essentiellement d'une colonne moyenne pression 4 surmontée d'une colonne basse pression 3, avec un vaporiseur-condenseur 5 mettant en relation d'échange thermique indirect la vapeur de tête (azote) de la colonne 4 et le liquide de cuve (oxygène) de la colonne 3, un sous-refroidisseur 6, une turbine de détente d'air 9 et une pompe d'oxygène liquide 7.
    De l'air à traiter 11 à entre 5 et 7 bars entre dans la ligne d'échange 1 et est refroidi jusqu'à environ sa température de rosée. Cet air entre alors dans la colonne moyenne pression 5 où il est séparé en un « liquide riche » (air enrichi en oxygène) et en azote. Le liquide riche 31 et l'azote liquide 33 soutiré en tête de la colonne 4 sont sous-refroidis dans le sous-refroidisseur 6 par l'azote impur basse pression 25 produit en tête de la colonne 3 puis, après détente dans des vannes de détente respectivement, alimentent cette colonne basse pression 3. Après réchauffement en 6 puis en 1 l'azote impur basse pression, à la température ambiante peut servir à régénérer un appareil d'épuration.
    Le reste de l'air 13 (constituant 30 % environ de l'air) est surpressé à entre 7 et 100 bars et se refroidit en traversant toute la ligne d'échange 1, d'où ils sort soit sous forme liquide soit sous forme de gaz dense si sa pression dépasse 36 bars.
    Cet air 13 est détendu à la moyenne pression dans la turbine 9 afin de former un débit liquide.
    Une partie du liquide 19 est envoyée à la colonne moyenne pression 4 et le reste 17 est détendu dans une vanne avant d'être envoyé à la colonne basse pression 3.
    L'oxygène de production est soutiré sous forme liquide de la cuve de la colonne basse pression 3, amené en 7 à la pression de production (entre 1,8 et 100 bars), vaporisé par échange de chaleur avec l'air 13, réchauffé jusqu'à la température ambiante et récupéré sous forme d'oxygène gazeux via une conduite 23.
    Par ailleurs de l'azote gazeux soutiré de la tête de la colonne 4 est, après réchauffement en 1, récupéré via une conduite 21.
    On a également indiqué sur la figure 1, une conduite de production d'azote liquide 27 et une conduite de production d'oxygène liquide 29.
    La turbine 9 est freinée par un alternateur 10 mais peut également être freinée par d'autres moyens. De même, la roue de la turbine 9 peut être calée sur le même arbre que celui de la pompe 7.
    L'installation représentée sur la figure 2 ne diffère de celle de la figure 1 que par le fait que le fluide calorigène alimentant la turbine 9 est de l'azote 21 soutiré de la colonne 4, comprimé par le compresseur 35 à entre 7 et 100 bars après réchauffement à la température ambiante et refroidi en 1 pour se retrouver liquide ou sous pression supercritique à l'entrée de la turbine 9. Le liquide ainsi produit après détente dans la turbine 9 est envoyé en tête de la colonne moyenne pression 4.
    Ceci permet de produire un débit d'azote 37 à pression élevée.
    L'installation représentée sur la figure 3 ne diffère de celle de la figure 1 qu'en ce qu'elle comprend deux turbines hydrauliques 9, 39. La turbine 39 remplace la vanne sur la ligne 15 et est alimentée par du liquide provenant du refoulement de la turbine 9.
    L'installation représentée sur la figure 4 ne diffère de celle de la figure 1 qu'en ce qu'elle comprend une colonne argon 41 et des pompes à argon liquide et à azote liquide 47, 45.
    Pour simplifier le dessin, la ligne de liquide riche servant à refroidir le condenseur de tête de la colonne argon n'est pas montrée.
    Il est également envisageable de prévoir deux turbines hydrauliques pour fournir les frigories, dont une détend un débit d'air et l'autre le débit d'azote de cycle.

    Claims (12)

    1. Procédé de séparation d'air par distillation cryogénique dans lequel l'air se refroidit dans un échangeur principal (1) et est envoyé à une colonne de distillation d'un appareil comprenant au moins une colonne de distillation où il se sépare en un liquide enrichi en oxygène et une vapeur enrichie en azote, et un débit de liquide pressurisé provenant de l'appareil se vaporise dans l'échangeur principal, des frigories nécessaires au procédé étant générées par détente d'un fluide calorigène dans une ou plusieurs turbine (9, 39) caractérisé en ce que la ou toutes les turbines de l'appareil produisent au refoulement un débit qui est au moins 95 % liquide, notamment 100 % liquide.
    2. Procédé selon la revendication 1 dans lequel le fluide calorigène entre dans la(les) turbine(s) sous forme liquide ou sous une pression au dessus de la pression supercritique.
    3. Procédé selon la revendication 1 ou 2 dans lequel le fluide calorigène entrant dans la(les) turbine(s) provient du bout froid de l'échangeur principal (1).
    4. Procédé selon l'une des revendications précédentes dans lequel le fluide calorigène est de l'air ou un fluide provenant de l'appareil de séparation.
    5. Procédé selon l'une des revendications précédentes dans lequel le liquide pressurisé est enrichi en oxygène, en azote ou en argon.
    6. Procédé selon l'une des revendications précédentes dans lequel la turbine (9) constitue la seule turbine de l'appareil.
    7. Procédé selon l'une des revendications 1 à 5 dans lequel deux turbines détendent successivement le même fluide calorigène, ce fluide calorigène étant l'air.
    8. Procédé selon l'une des revendications précédentes dans lequel l'apareil comprend une double colonne, constituée par une colonne moyenne pression et une colonne basse pression.
    9. Procédé selon la revendication 8 dans lequel l'appareil comprend également une colonne argon alimentée par un débit enrichi en argon provenant de la colonne basse pression.
    10. Procédé selon la revendication 8 ou 9 dans lequel on envoie le débit détendu dans la(les) turbine(s) à la colonne moyenne pression et/ou à la colonne basse pression.
    11. Installation de séparation d'air par distillation cryogénique comprenant :
      au moins une colonne de distillation (2),
      un échangeur de chaleur (1),
      des moyens pour envoyer de l'air à l'échangeur de chaleur et de l'échangeur de chaleur à une colonne de distillation,
      des moyens pour soutirer un liquide d'une colonne de distillation et pour le pressuriser,
      des moyens pour envoyer le liquide pressurisé à l'échangeur de chaleur,
      une ou plusieurs turbines de détente, alimentée(s) par un fluide calorigène
         caractérisée en ce que la seule (ou les seules) turbine(s) de l'installation sont capables de produire au refoulement un débit qui est au moins 95 % liquide.
    12. Installation selon la revendication 11 comprenant une double colonne de distillation et éventuellement une colonne argon.
    EP98400803A 1997-04-03 1998-04-03 Procédé et installation de séparation d'air par distillation cryogénique Withdrawn EP0869322A1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9704083A FR2761762B1 (fr) 1997-04-03 1997-04-03 Procede et installation de separation d'air par distillation cryogenique
    FR9704083 1997-04-03

    Publications (1)

    Publication Number Publication Date
    EP0869322A1 true EP0869322A1 (fr) 1998-10-07

    Family

    ID=9505487

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98400803A Withdrawn EP0869322A1 (fr) 1997-04-03 1998-04-03 Procédé et installation de séparation d'air par distillation cryogénique

    Country Status (14)

    Country Link
    US (1) US5901577A (fr)
    EP (1) EP0869322A1 (fr)
    JP (1) JPH1172286A (fr)
    KR (1) KR19980081065A (fr)
    AR (1) AR012326A1 (fr)
    AU (1) AU723241B2 (fr)
    BR (1) BR9801005A (fr)
    CA (1) CA2234435A1 (fr)
    CZ (1) CZ98798A3 (fr)
    FR (1) FR2761762B1 (fr)
    PL (1) PL189870B1 (fr)
    SG (1) SG72799A1 (fr)
    TW (1) TW364943B (fr)
    ZA (1) ZA982713B (fr)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2770286A1 (fr) * 2013-02-21 2014-08-27 Linde Aktiengesellschaft Procédé et dispositif de collecte d'oxygène et d'azote sous haute pression
    EP3620739A1 (fr) * 2018-09-05 2020-03-11 Linde Aktiengesellschaft Procédé de décomposition à basse température de l'air et installation de décomposition de l'air

    Families Citing this family (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10045121A1 (de) 2000-09-13 2002-03-21 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Produkts durch Tieftemperaturzerlegung von Luft
    DE10155383A1 (de) * 2001-11-10 2003-05-28 Messer Ags Gmbh Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
    FR2848650A1 (fr) * 2002-12-13 2004-06-18 Air Liquide Procede et appareil de detente d'un fluide cryogenique
    EP1972875A1 (fr) * 2007-03-23 2008-09-24 L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude Procédé et dispositif pour la séparation cryogénique d'air

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5564290A (en) * 1995-09-29 1996-10-15 Praxair Technology, Inc. Cryogenic rectification system with dual phase turboexpansion
    US5600970A (en) * 1995-12-19 1997-02-11 Praxair Technology, Inc. Cryogenic rectification system with nitrogen turboexpander heat pump

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5564290A (en) * 1995-09-29 1996-10-15 Praxair Technology, Inc. Cryogenic rectification system with dual phase turboexpansion
    US5600970A (en) * 1995-12-19 1997-02-11 Praxair Technology, Inc. Cryogenic rectification system with nitrogen turboexpander heat pump

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2770286A1 (fr) * 2013-02-21 2014-08-27 Linde Aktiengesellschaft Procédé et dispositif de collecte d'oxygène et d'azote sous haute pression
    US9989306B2 (en) 2013-02-21 2018-06-05 Linde Aktiengesellschaft Method and device for recovering high-pressure oxygen and high-pressure nitrogen
    EP3620739A1 (fr) * 2018-09-05 2020-03-11 Linde Aktiengesellschaft Procédé de décomposition à basse température de l'air et installation de décomposition de l'air
    WO2020048634A1 (fr) 2018-09-05 2020-03-12 Linde Aktiengesellschaft Procédé de séparation cryogénique d'air et système de séparation d'air

    Also Published As

    Publication number Publication date
    ZA982713B (en) 1998-10-02
    BR9801005A (pt) 1999-10-26
    PL325664A1 (en) 1998-10-12
    AU723241B2 (en) 2000-08-24
    AU5950398A (en) 1998-10-08
    FR2761762B1 (fr) 1999-05-07
    TW364943B (en) 1999-07-21
    PL189870B1 (pl) 2005-10-31
    US5901577A (en) 1999-05-11
    JPH1172286A (ja) 1999-03-16
    AR012326A1 (es) 2000-10-18
    SG72799A1 (en) 2000-05-23
    CZ98798A3 (cs) 1998-12-16
    FR2761762A1 (fr) 1998-10-09
    CA2234435A1 (fr) 1998-10-03
    KR19980081065A (ko) 1998-11-25

    Similar Documents

    Publication Publication Date Title
    US20090078001A1 (en) Cryogenic Distillation Method and System for Air Separation
    JP4728219B2 (ja) 空気の低温蒸留により加圧空気ガスを製造するための方法及びシステム
    KR20080100362A (ko) 초저온 공기 분리 시스템
    JP2009509120A (ja) 低温蒸留による空気の分離方法及び装置。
    EP0606027B1 (fr) Procédé et installation de production d&#39;au moins un produit gazeux sous pression et d&#39;au moins un liquide par distillation d&#39;air
    EP0618415B1 (fr) Procédé et installation de production d&#39;oxygène gazeux et/ou d&#39;azote gazeux sous pression par distillation d&#39;air
    US20080223076A1 (en) Cryogenic Distillation Method and Installation for Air Separation
    JP3063030B2 (ja) プロセス流れの圧縮のための廃棄物膨張の使用を伴う加圧空気分離方法
    US20170284735A1 (en) Air separation refrigeration supply method
    EP1999422B1 (fr) Système de séparation cryogénique d&#39;air
    EP0641983B1 (fr) Procédé et installation de production d&#39;oxygène et/ou d&#39;azote gazeux sous pression
    EP0869322A1 (fr) Procédé et installation de séparation d&#39;air par distillation cryogénique
    EP0612967B1 (fr) Procédé de production d&#39;oxygène et/ou d&#39;azote sous pression
    EP0641982B1 (fr) Procédé et installation de production d&#39;au moins un gaz de l&#39;air sous pression
    US20040244416A1 (en) Method for separating air by cryogenic distillation and installation therefor
    FR2837564A1 (fr) Procede et installation de production d&#39;oxygene et/ou d&#39;azote sous pression et d&#39;argon pur
    FR2685460A1 (fr) Procede et installation de production d&#39;oxygene gazeux sous pression par distillation d&#39;air.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE ES FI GB IT NL SE

    17P Request for examination filed

    Effective date: 19990407

    AKX Designation fees paid

    Free format text: BE DE ES FI GB IT NL SE

    17Q First examination report despatched

    Effective date: 20001229

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20010509