EP0677713B1 - Procédé et installation pour la production de l'oxygène par distillation de l'air - Google Patents

Procédé et installation pour la production de l'oxygène par distillation de l'air Download PDF

Info

Publication number
EP0677713B1
EP0677713B1 EP95400752A EP95400752A EP0677713B1 EP 0677713 B1 EP0677713 B1 EP 0677713B1 EP 95400752 A EP95400752 A EP 95400752A EP 95400752 A EP95400752 A EP 95400752A EP 0677713 B1 EP0677713 B1 EP 0677713B1
Authority
EP
European Patent Office
Prior art keywords
column
pressure column
low
argon
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95400752A
Other languages
German (de)
English (en)
Other versions
EP0677713A1 (fr
Inventor
Yves Koeberle
Philippe Fraysse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0677713A1 publication Critical patent/EP0677713A1/fr
Application granted granted Critical
Publication of EP0677713B1 publication Critical patent/EP0677713B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/92Details relating to the feed point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Definitions

  • the present invention relates to a method and an installation for oxygen and argon production by air distillation and more particularly to a process and an installation for the production of oxygen under pressure and argon.
  • EP-A-0422974 describes a process for producing oxygen under pressure by cryogenic air distillation in a double column.
  • Oxygen liquid is withdrawn from the tank of the low pressure column 7, as illustrated in Figure 1, and vaporizes in the auxiliary exchanger 9 by heat exchange with a fraction of the supply air.
  • the remaining part of the air feed is divided into two flow rates, one of which goes directly to the column medium pressure 6, via line 14, and the other of which is relaxed in a turbine 4 before being sent to the low pressure column 7.
  • EP-A-0580348 describes a process in which rich liquid is sent from a medium pressure column to a low pressure column in two fractions, one of which vaporizes at the head of an argon column before being injected into the low pressure column.
  • An object of this invention is to improve the argon yields if the installation also includes an argon column supplied by the low pressure column.
  • the subject of the invention is a process for the production of oxygen. gas and argon according to claim 1.
  • the rich medium pressure medium liquid first, second and a third fractions and we send the first and second fractions to different levels in the low pressure column after sub-cooling prior.
  • the third fraction is sent to the head condenser of the argon column. This notably makes it possible to significantly improve the extraction argon.
  • the first and second fractions can be sent to the low pressure column at different temperatures, in order to improve again the reflux in the low pressure column and the argon extraction in the case where the installation also includes an argon column.
  • part of the supply air is expanded before to be sent to the double column, the remaining part of the supply air being partially condensed in the auxiliary exchanger.
  • the temperature difference in the auxiliary exchanger can be reduced to an average value of 0.6 ° C.
  • the invention also relates to a production installation according to claim 6.
  • EP-A-422,974 send some of the condensed air to the medium pressure column, a few trays above the tank so that she can participate in the less weakly, on distillation in this column.
  • the installation represented in FIG. 1 essentially comprises a main air compressor 1 with variable flow, for example of the type centrifugal with movable blades, an air blower with movable blades 2, a heat exchange line 3, a turbine 4 for maintaining cold, a air distillation apparatus 5 consisting of a double column comprising itself a medium pressure column 6 surmounted by a low column pressure 7 and a minaret 7A, a vaporizer-condenser 8, a heat exchanger auxiliary heat 9 and a pump 10.
  • This installation is intended for produce a variable flow of gaseous oxygen via a line 12, under a pressure higher than atmospheric pressure.
  • the first overpressed fraction is cooled to the neighborhood from its dew point in passages of the exchange line then condensed in the auxiliary exchanger 9 and is divided into a first flow constant relaxed under 6 bar sent to the medium pressure column via a pipe 16, and a second constant relaxed flow towards 1 bar in a expansion valve 13 then injected into the low pressure column 7.
  • the vaporizer-condenser 8 vaporizes a constant flow of oxygen liquid in the low pressure column tank by condensation of a flow at about equal to nitrogen at the head of the medium pressure column.
  • Some cash rich "(oxygen-enriched air) taken from the bottom of the middle column pressure and expanded to around 1 bar in an expansion valve 18a is injected at an intermediate level of the low pressure column, and of the "lean liquid” (almost pure nitrogen) taken from the top of the medium pressure column and expanded to around 1 bar in an expansion valve 19 is injected at the top of the low pressure column.
  • Liquid nitrogen is injected at the top of the 7A minaret through the expansion valve 21. Pure nitrogen is withdrawn from the top of the minaret 7A and sent to exchange line 3 to be reheated there before exiting by the line 20. The impure nitrogen leaves via line 25 from the top of the column low pressure 7 and is sent outside via line 18.
  • Liquid oxygen withdrawn from the lower column tank pressure 7 is pumped to production pressure before being sprayed into the auxiliary exchanger 9 (constituted by a “film” type vaporizer) by heat exchange with partially condensed air. Oxygen vaporized comes out, after heating in the exchange line 3, by the driving 12.
  • argon a fraction rich in argon is drawn off from the lower part of the low pressure column 7 and is sent to the column of argon 16 for distillation.
  • This fraction includes mainly argon and oxygen.
  • the tank liquid resulting from the distillation in column 16 is returned to the bottom of the low pressure column 7.
  • the overhead condenser 29 of the argon column 16 is cooled by rich liquid from the medium column tank pressure 6, relieved by valve 23, vaporized and sent to the lower column pressure.
  • valve 18a The remaining part of the rich liquid from the column tank medium pressure 6 is relieved by the valve 18a at a pressure slightly above atmospheric pressure and sent to the bottom column pressure 7 by valve 18, substantially at the same level as the level injection of the air expanded by the turbine 4 (the blowing air).
  • the remaining part of rich liquid not vaporized in 29 is divided into two fractions: one first fraction is injected, as shown in Figure 1, after expansion by valve 18 in the low pressure column 7 at the air blast and the second fraction of rich liquid is sent to the low pressure column 7, after expansion to the pressure thereof by the valve 17, at an intermediate level between the injection level of the first fraction of rich liquid through valve 18a and the level of withdrawal of nitrogen through line 25.
  • the variant of Figure 3 has only one compressor air 1, all the compressed air being sent either to turbine 4 or to exchanger 9.
  • the partially condensed air in exchanger 9 passes entirely in the tank of the medium pressure column 6.
  • the difference in level between the level of liquid oxygen in the BP column tank and its inlet in the fixed vaporizer 9, in this case, the vaporization pressure of oxygen; the pump 10 in Figure 2 is therefore deleted.
  • the fractions of rich liquid can be sub-cooled so that the temperature of the fraction injected at the level of insufflation of air is lower than that of the fraction injected at the level intermediate.
  • This arrangement of the exchanger 9 allows a gain of approximately 6% on the compression of the air and therefore on the specific energy of oxygen product.

Description

La présente invention est relative à un procédé et une installation pour la production de l'oxygène et d'argon par distillation d'air et plus particulièrement à un procédé et une installation pour la production de l'oxygène sous pression et d'argon.
EP-A-0422974 décrit un procédé de production d'oxygène sous pression par distillation cryogénique d'air dans une double colonne. L'oxygène liquide est soutiré de la cuve de la colonne basse pression 7, comme illustré à la figure 1, et se vaporise dans l'échangeur auxiliaire 9 par échange de chaleur avec une fraction de l'air d'alimentation. La partie restante de l'air d'alimentation est divisée en deux débits, dont l'un va directement à la colonne moyenne pression 6, via la conduite 14, et dont l'autre est détendu dans une turbine 4 avant d'être envoyé à la colonne basse pression 7.
EP-A-0580348 décrit un procédé dans lequel du liquide riche est envoyé d'une colonne moyenne pression à une colonne basse pression en deux fractions dont une se vaporise en tête d'une colonne argon avant d'être injectée dans la colonne basse pression.
Un objet de cette invention est d'améliorer les rendements d'argon dans le cas où l'installation comprend également une colonne argon alimentée par la colonne basse pression.
A cet effet, l'invention a pour objet un procédé de production d'oxygène gazeux et d'argon selon la revendication 1.
Afin d'améliorer le reflux de la colonne basse pression, on divise le liquide riche de la colonne moyenne pression en une première, une deuxième et une troisième fractions et on envoie les première et deuxième fractions à des niveaux différents dans la colonne basse pression après sous-refroidissement préalable. La troisième fraction est envoyée au condenseur de tête de la colonne argon. Ceci permet notamment d'améliorer sensiblement l'extraction d'argon.
Les première et deuxième fractions peuvent être envoyées dans la colonne basse pression à des températures différentes, ce afin d'améliorer encore les reflux dans la colonne basse pression et l'extraction d'argon dans le cas où l'installation comprend également une colonne argon.
De préférence, une partie de l'air d'alimentation est détendue avant d'être envoyée à la double colonne, la partie restante de l'air d'alimentation étant partiellement condensée dans l'échangeur auxiliaire.
Quand l'air ne se condense que partiellement dans l'échangeur auxiliaire, l'échange de chaleur avec l'oxygène sous pression s'effectue à une température moyenne plus chaude que s'il se condensait totalement.
Pour un même écart de température dans l'échangeur auxiliaire, on peut donc réduire la pression de l'air. En utilisant un vaporiseur à film comme échangeur auxiliaire, tel que décrit en EP-A-0130122, I'écart de température peut être réduit à une valeur moyenne de 0,6 °C.
L'invention a également pour objet une installation de production selon la revendication 6.
L'inconvénient principal des Oxytonnes ® à pompe résulte de la surpression de l'air à sa pression de condensation. Si l'oxygène doit être pompé à des pressions conséquentes telles qu'il soit nécessaire de surpresser l'air à une pression supérieure à celle de la colonne moyenne pression, cette invention ne présente pas d'intérêt puisque l'on dépense globalement plus d'énergie de compression avec cette situation, étant donné que le débit d'air surpressé est approximativement trois fois supérieur à celui du système selon EP-A-0422974, si tout l'air non turbiné passe à l'échangeur auxiliaire.
Si le reflux de tête de la colonne basse pression est faible, lorsqu'on veut séparer l'argon selon une méthode classique de distillation dans une colonne en parallèle avec la colonne basse pression, ceci conduit à un mauvais rendement en argon.
Cette réduction du reflux de tête peut être due à plusieurs facteurs :
Si de l'air est condensé dans un vaporiseur d'oxygène, il ne participe pas à la distillation dans la colonne moyenne pression et donc ne participe pas au chauffage dans le vaporiseur principal en cuve de la colonne basse pression. Ainsi, la quantité d'azote liquide pour le reflux de tête de la colonne basse pression est réduite.
Il en est de même si l'air turbiné est envoyé uniquement dans la colonne basse pression, réduisant encore plus le reflux de tête de la colonne basse pression.
Pour pallier ces défauts, on proposait dans EP-A-422.974 d'envoyer une partie de l'air condensé dans la colonne moyenne pression, quelques plateaux au-dessus de la cuve pour qu'elle puisse participer, au moins faiblement, à la distillation dans cette colonne.
Or, dans la présente invention, pour compenser les pertes de reflux, due par exemple, au fait que la phase liquide de l'air condensé dans le vaporiseur extérieur se retrouve dans le liquide riche en cuve de la colonne moyenne pression, ce liquide riche est divisé en deux fractions :
  • une première fraction est envoyée dans la colonne basse pression à un premier niveau, habituellement au niveau de l'insufflation d'air dans le cas où il y a une turbine d'insufflation ;
  • une deuxième fraction est envoyée dans la colonne basse pression à un niveau intermédiaire entre le premier niveau et le niveau de soutirage d'azote impur.
Il est clair que cette disposition des niveaux d'injection peut présenter un intérêt pour des procédés de distillation cryogénique autres que celui décrit dans la présente demande.
Des exemples de mise en oeuvre de l'invention et de l'art antérieur vont maintenant être décrits en regard des dessins annexés, sur lesquels :
  • la figure 1 représente schématiquement un mode de réalisation de l'installation selon l'art antérieur ; et
  • les figures 2 et 3 représentent schématiquement deux modes de réalisation de l'installation conforme à l'invention.
L'installation représentée à la figure 1 comprend essentiellement un compresseur d'air principal 1 à débit variable, par exemple du type centrifuge à aubages mobiles, un surpresseur d'air à aubages mobiles 2, une ligne d'échange thermique 3, une turbine 4 de maintien en froid, un appareil 5 de distillation d'air constitué par une double colonne comprenant elle-même une colonne moyenne pression 6 surmontée d'une colonne basse pression 7 et un minaret 7A, un vaporiseur-condenseur 8, un échangeur de chaleur auxiliaire 9 et une pompe 10. Cette installation est destinée à produire un débit variable d'oxygène gazeux via une conduite 12, sous une pression supérieure à la pression atmosphérique.
Le débit nominal d'air à traiter, comprimé à 6 bar par le compresseur 1, refroidi à la température ambiante et épuré, est divisé en deux fractions. La première fraction est surpressée par le surpresseur 2 et la deuxième fraction passe directement à la ligne d'échange 3 où elle est divisée en deux flux ayant chacun un débit constant :
  • un premier flux est refroidi dans des passages de la ligne d'échange; une partie est sortie de cette ligne d'échange après un refroidissement partiel, détendue vers 1 bar dans la turbine 4 et insufflée dans la colonne basse pression 7 au voisinage de son point de rosée ; un second flux poursuit son refroidissement jusqu'au voisinage de son point de rosée sous 6 bar, puis est injecté au bas de la colonne moyenne pression 6 via une conduite 14.
La première fraction surpressée est refroidie jusqu'au voisinage de son point de rosée dans des passages de la ligne d'échange puis condensée dans l'échangeur auxiliaire 9 et est divisée en un premier débit constant détendu sous 6 bar envoyé dans la colonne moyenne pression via une conduite 16, et un second débit constant détendu vers 1 bar dans une vanne de détente 13 puis injecté dans la colonne basse pression 7.
Le vaporiseur-condenseur 8 vaporise un débit constant d'oxygène liquide en cuve de la colonne basse pression par condensation d'un débit à peu près égal d'azote de tête de la colonne moyenne pression. Du "liquide riche" (air enrichi en oxygène) prélevé en cuve de la colonne moyenne pression et détendu vers 1 bar dans une vanne de détente 18a est injecté à un niveau intermédiaire de la colonne basse pression, et du "liquide pauvre" (azote à peu près pur) prélevé en tête de la colonne moyenne pression et détendu vers 1 bar dans une vanne de détente 19 est injecté au sommet de la colonne basse pression.
De l'azote liquide est injecté au sommet du minaret 7A à travers la vanne de détente 21. De l'azote pur est soutiré du sommet du minaret 7A et envoyé à la ligne d'échange 3 pour y être réchauffé avant de ressortir par la conduite 20. L'azote impur sort par la conduite 25 du sommet de la colonne basse pression 7 et est envoyé à l'extérieur par la conduite 18.
L'oxygène liquide soutiré de la cuve de la colonne basse pression 7 est pompé à la pression de production avant d'être vaporisé dans l'échangeur auxiliaire 9 (constitué par un vaporiseur du type "à film") par échange de chaleur avec l'air qui s'y condense partiellement. L'oxygène vaporisé sort, après réchauffement dans la ligne d'échange 3, par la conduite 12.
Pour produire de l'argon, une fraction riche en argon est soutirée de la partie inférieure de la colonne basse pression 7 et est envoyée à la colonne d'argon 16 pour y être distillée. Cette fraction comprend essentiellement de l'argon et de l'oxygène. Le liquide de cuve résultant de la distillation dans la colonne 16 est renvoyée en partie inférieure de la colonne basse pression 7. Le condenseur de tête 29 de la colonne argon 16 est refroidi par du liquide riche provenant de la cuve de la colonne moyenne pression 6, détendu par la vanne 23, vaporisé et envoyé à la colonne basse pression.
La partie restante du liquide riche de la cuve de la colonne moyenne pression 6 est détendu par la vanne 18a à une pression légèrement au-dessus de la pression atmosphérique et envoyée dans la colonne basse pression 7 par la vanne 18, sensiblement au même niveau que le niveau d'injection de l'air détendu par la turbine 4 (l'air d'insufflation).
L'installation représentée à la figure 2 diffère de l'art antérieur selon la figure 1 par le fait que tout l'air qui n'est pas surpressé par le surpresseur 2 est envoyé à la turbine 4 pour être détendu et envoyé à la colonne basse pression 7. L'air surpressé et partiellement condensé dans l'échangeur 9 auxiliaire est entièrement injecté en cuve de la colonne moyenne pression 6.
Pour améliorer le rendement en argon, la partie restante de liquide riche non vaporisée en 29 est divisée en deux fractions : une première fraction est injectée, comme représenté sur la figure 1, après détente par la vanne 18 dans la colonne basse pression 7 au niveau de l'insufflation d'air et la deuxième fraction de liquide riche est envoyée à la colonne basse pression 7, après détente à la pression de celle-ci par la vanne 17, à un niveau intermédiaire entre le niveau d'injection de la première fraction de liquide riche à travers la vanne 18a et le niveau de soutirage d'azote à travers la conduite 25.
Dans le cas où l'oxygène liquide est pressurisé à une pression dite concomitante à la pression de la colonne moyenne pression (c'est-à-dire à environ 2 bar), le système de la figure 2 peut être simplifié.
La variante de la figure 3 ne comporte qu'un seul compresseur d'air 1, tout l'air comprimé étant envoyé soit à la turbine 4, soit à l'échangeur 9. L'air partiellement condensé dans l'échangeur 9 passe entièrement à la cuve de la colonne moyenne pression 6. La dénivellation entre le niveau d'oxygène liquide de la cuve de la colonne BP et son entrée dans le vaporiseur 9 fixe, dans ce cas, la pression de vaporisation de l'oxygène ; la pompe 10 de la figure 2 est donc supprimée.
Si besoin est, on peut sous-refroidir les fractions de liquide riche pour que la température de la fraction injectée au niveau de l'insufflation d'air soit moins élevée que celle de la fraction injectée au niveau intermédiaire.
Cette disposition de l'échangeur 9 permet un gain d'environ 6 % sur la compression de l'air et donc sur l'énergie spécifique de l'oxygène produit.
Cette disposition des niveaux d'injection du liquide riche permet d'obtenir un gain de production d'argon d'environ 5 %, en comparaison avec celle de EP-A-422.974. Le rendement obtenu avec le procédé de la présente invention est d'environ 80 %.

Claims (7)

  1. Procédé de production d'oxygène gazeux sous pression et d'argon par distillation cryogénique d'air dans une double colonne (5) comprenant une colonne moyenne pression (6) et une colonne basse pression (7), dans lequel on divise du liquide riche provenant de la cuve de la colonne moyenne pression en une première et une deuxième fractions liquides que l'on envoie à des niveaux différents dans la colonne basse pression (7), on soutire un fluide enrichi en argon de la colonne basse pression (7), on le distille dans une colonne argon (16) et on soutire de l'argon en tête de la colonne argon, on soutire un liquide enrichi en oxygène d'une partie inférieure de la colonne basse pression, on le pressurise et on le vaporise par échange de chaleur avec de l'air destiné à la double colonne (5) pour former l'oxygène gazeux sous pression, et on envoie une troisième fraction de liquide riche au condenseur de tête de la colonne argon où il se vaporise avant d'être envoyé à un troisième niveau de la colonne basse pression (7), les niveaux différents étant au dessous d'un niveau de soutirage d'azote impur de la colonne basse pression (7).
  2. Procédé selon la revendication 1 dans lequel les première et deuxième fractions sont refroidies à des températures différentes avant d'être envoyées dans la colonne basse pression (7).
  3. Procédé selon l'une des revendications 1 ou 2, dans lequel une partie de l'air d'alimentation est insufflée à un niveau intermédiaire de la colonne basse pression (7) et les niveaux d'injection des première et deuxième fractions de liquide riche ne sont pas au-dessous de ce niveau intermédiaire.
  4. Procédé selon la revendication 3 dans lequel une fraction de liquide riche est envoyée à la colonne basse pression (7) sensiblement au même niveau que l'air insufflé.
  5. Installation de production d'oxygène gazeux sous pression et d'argon par distillation cryogénique d'air comprenant une double colonne (5), constituée par au moins une colonne moyenne pression (6) surmontée d'une colonne basse pression (7) et une colonne de distillation d'argon, des moyens (25) pour soutirer de l'azote impur de la colonne basse pression, des moyens (12) pour soutirer un liquide enrichi en oxygène de la partie inférieure de la colonne basse pression (7), pour le pressuriser (10), et le vaporiser (9) contre de l'air destiné à la double colonne afin de former l'oxygène gazeux sous pression et des moyens pour soutirer de l'argon en tête de la colonne de distillation d'argon des moyens pour soutirer du liquide riche de la cuve de la colonne moyenne pression (6) et l'envoyer à trois niveaux différents de la colonne basse pression (7), situés en dessous du niveau de soutirage de l'azote impur, et des conduites pour envoyer du liquide riche à deux niveaux différents sans passer par le condenseur de tête de la colonne de distillation d'argon et pour envoyer une troisième fraction du liquide riche au condenseur de tête de la colonne de distillation d'argon, pour le vaporiser et l'envoyer au troisième niveau de la colonne basse pression.
  6. Installation selon la revendication 5, comprenant des moyens pour envoyer le liquide riche dans la colonne basse pression (7) à deux températures différentes.
  7. Installation selon l'une des revendications 5 ou 6, comprenant des moyens (4) pour envoyer de l'air à un niveau intermédiaire de la colonne basse pression (7) et des moyens pour envoyer les deux fractions de liquide riche à des niveaux dans le voisinage de ou au-dessus du niveau intermédiaire.
EP95400752A 1994-04-12 1995-04-04 Procédé et installation pour la production de l'oxygène par distillation de l'air Expired - Lifetime EP0677713B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9404298 1994-04-12
FR9404298A FR2718518B1 (fr) 1994-04-12 1994-04-12 Procédé et installation pour la production de l'oxygène par distillation de l'air.

Publications (2)

Publication Number Publication Date
EP0677713A1 EP0677713A1 (fr) 1995-10-18
EP0677713B1 true EP0677713B1 (fr) 1999-10-20

Family

ID=9461989

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95400752A Expired - Lifetime EP0677713B1 (fr) 1994-04-12 1995-04-04 Procédé et installation pour la production de l'oxygène par distillation de l'air

Country Status (7)

Country Link
US (1) US5586451A (fr)
EP (1) EP0677713B1 (fr)
JP (1) JPH0854181A (fr)
CN (1) CN1121172A (fr)
CA (1) CA2146831A1 (fr)
DE (1) DE69512821T2 (fr)
FR (1) FR2718518B1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9807833D0 (en) * 1998-04-09 1998-06-10 Boc Group Plc Separation of air
US6178775B1 (en) * 1998-10-30 2001-01-30 The Boc Group, Inc. Method and apparatus for separating air to produce an oxygen product
GB9910701D0 (en) 1999-05-07 1999-07-07 Boc Group Plc Separation of air
GB9925097D0 (en) * 1999-10-22 1999-12-22 Boc Group Plc Air separation
US6253576B1 (en) * 1999-11-09 2001-07-03 Air Products And Chemicals, Inc. Process for the production of intermediate pressure oxygen
EP1338856A3 (fr) * 2002-01-31 2003-09-10 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédé et installation pour la séparation d'air par distillation cryogénique
FR2854232A1 (fr) * 2003-04-23 2004-10-29 Air Liquide Procede de distillation d'air pour produire de l'argon
FR2864214B1 (fr) * 2003-12-22 2017-04-21 Air Liquide Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air
US20070095100A1 (en) * 2005-11-03 2007-05-03 Rankin Peter J Cryogenic air separation process with excess turbine refrigeration
US9279613B2 (en) 2010-03-19 2016-03-08 Praxair Technology, Inc. Air separation method and apparatus
CN105115244B (zh) * 2015-08-10 2017-06-27 开封空分集团有限公司 一种低纯度氧空气分离的装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1253717A (fr) * 1960-04-08 1961-02-10 Union Carbide Corp Séparation à basse température de l'air en oxygène, azote et argon
DE1112997B (de) * 1960-08-13 1961-08-24 Linde Eismasch Ag Verfahren und Einrichtung zur Gaszerlegung durch Rektifikation bei tiefer Temperatur
US4737177A (en) * 1986-08-01 1988-04-12 Erickson Donald C Air distillation improvements for high purity oxygen
GB8820582D0 (en) * 1988-08-31 1988-09-28 Boc Group Plc Air separation
FR2655137B1 (fr) * 1989-11-28 1992-10-16 Air Liquide Procede et installation de distillation d'air avec production d'argon.
US4994098A (en) * 1990-02-02 1991-02-19 Air Products And Chemicals, Inc. Production of oxygen-lean argon from air
US5076823A (en) * 1990-03-20 1991-12-31 Air Products And Chemicals, Inc. Process for cryogenic air separation
GB9008752D0 (en) * 1990-04-18 1990-06-13 Boc Group Plc Air separation
US5228296A (en) * 1992-02-27 1993-07-20 Praxair Technology, Inc. Cryogenic rectification system with argon heat pump
US5275003A (en) * 1992-07-20 1994-01-04 Air Products And Chemicals, Inc. Hybrid air and nitrogen recycle liquefier

Also Published As

Publication number Publication date
CN1121172A (zh) 1996-04-24
US5586451A (en) 1996-12-24
EP0677713A1 (fr) 1995-10-18
JPH0854181A (ja) 1996-02-27
FR2718518A1 (fr) 1995-10-13
CA2146831A1 (fr) 1995-10-13
DE69512821D1 (de) 1999-11-25
DE69512821T2 (de) 2000-05-25
FR2718518B1 (fr) 1996-05-03

Similar Documents

Publication Publication Date Title
EP0689019B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0576314B2 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0547946B2 (fr) Procédé de production d'oxygène impur
EP0618415B1 (fr) Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation d'air
EP0677713B1 (fr) Procédé et installation pour la production de l'oxygène par distillation de l'air
EP0694746B1 (fr) Procédé de production d'un gaz sous pression à débit variable
CA2056915C (fr) Procede et installation de distillation d'air en regime variable de production d'oxygene gazeux
EP0606027A1 (fr) Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air
EP0641983B1 (fr) Procédé et installation de production d'oxygène et/ou d'azote gazeux sous pression
EP0611218B2 (fr) Procédé et installation de production d'oxygene sous pression
FR2688052A1 (fr) Procede et installation de production d'oxygene et/ou d'azote gazeux sous pression par distillation d'air.
FR2724011A1 (fr) Procede et installation de production d'oxygene par distillation cryogenique
EP0612967B1 (fr) Procédé de production d'oxygène et/ou d'azote sous pression
WO2015055939A2 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
EP1132700B1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
EP0641982A1 (fr) Procédé et installation de production d'au moins un gaz de l'air sous pression
CA2109148A1 (fr) Procede et installation de production d'azote et d'oxygene
FR2929697A1 (fr) Procede de production d'azote gazeux variable et d'oxygene gazeux variable par distillation d'air
EP1063485B1 (fr) Appareil et procédé de séparation d'air par distillation cryogénique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19960418

17Q First examination report despatched

Effective date: 19970818

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69512821

Country of ref document: DE

Date of ref document: 19991125

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010312

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010319

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010321

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050404