EP0596152B1 - Ballast à courant alternatif pour lampes à décharge - Google Patents

Ballast à courant alternatif pour lampes à décharge Download PDF

Info

Publication number
EP0596152B1
EP0596152B1 EP92119005A EP92119005A EP0596152B1 EP 0596152 B1 EP0596152 B1 EP 0596152B1 EP 92119005 A EP92119005 A EP 92119005A EP 92119005 A EP92119005 A EP 92119005A EP 0596152 B1 EP0596152 B1 EP 0596152B1
Authority
EP
European Patent Office
Prior art keywords
inductance
phase
alternative
cycle
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92119005A
Other languages
German (de)
English (en)
Other versions
EP0596152A1 (fr
Inventor
Ferdinand Dipl.-Ing. Mertens
Norbert Dipl.-Ing. Wittig
Fred Dr.-Ing. Hasemann
Karl Dipl.-Ing. Lehnhoff
Franz-Josef Dipl.-Ing. Pitter
Erhard Dipl.-Ing. Müsch
Peter Dipl.-Ing. Maurer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trilux GmbH and Co KG
Original Assignee
Trilux Lenze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trilux Lenze GmbH and Co KG filed Critical Trilux Lenze GmbH and Co KG
Priority to EP92119005A priority Critical patent/EP0596152B1/fr
Priority to AT92119005T priority patent/ATE167352T1/de
Priority to DE59209374T priority patent/DE59209374D1/de
Publication of EP0596152A1 publication Critical patent/EP0596152A1/fr
Application granted granted Critical
Publication of EP0596152B1 publication Critical patent/EP0596152B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2824Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using control circuits for the switching element

Definitions

  • the invention relates to an AC ballast for electric discharge lamps, and in particular for fluorescent lamps which have heated electrodes.
  • An AC ballast in the preamble of claim 1 type is known from DE 41 01 980 Al.
  • this known ballast becomes an inductor over a first electronic Switch charged and then this switch locked and the inductance is over a second electronic switch and the fluorescent lamp unload.
  • the fluorescent lamp is a third electronic Switch connected in parallel. If the amplitude the input AC voltage is greater than a predetermined one Threshold, the lamp is constantly locked third switch, that is operated without a short circuit. If the input voltage is below the limit the third electronic switch will alternate on and off. Through the input and Turn off the third switch with high frequency achieved that the lamp voltage even at small values of the input voltage assumes a value that is appropriate for the Maintenance of lamp operation is sufficient.
  • the height the resulting lamp voltage can be determined by a Change in duty cycle and / or frequency the actuation of the third switch in the desired one Dimensions are changed.
  • the ballast delivers a over a period of the input voltage largely constant lamp power.
  • suitable dimensioning of the circuit can be achieved be that the time course of the lamp power over a period of 360 ° of the input voltage has two adjacent maxima and in between goes to zero. On the one hand, this becomes a good efficiency and low harmonic generation causes.
  • the invention has for its object an AC ballast to create that simple Determination or change of the ripple caused enables.
  • the control unit specifies the cycle frequency, ie the cycle duration of the charging and discharging processes, or the maximum charging current of the inductance, as a function of the phase of the input voltage.
  • the control unit contains either a formula or curve or a table in which a cycle frequency or cycle duration, or the upper limit value of the charging current, of the relevant charging and discharging process is contained for each phase position of the input voltage.
  • the respective cycle is ended after the phase-dependent cycle duration.
  • the invention is based on the idea that the power P transmitted to the lamp during a cycle of charging and discharging is proportional to the frequency of the cycle in question and proportional to the square of the maximum charging current of the inductor.
  • the power P has the same time profile. Since the time course of the power is decisive for the ripple of the input current generated by the ballast, it is possible to influence the ripple in that the cycle frequency has a predetermined course with respect to the phase of the input voltage.
  • the cycle frequency is significantly higher than the frequency of the input voltage. If the frequency of the input voltage (mains voltage) is 50 Hz, the cycle frequency is preferably of the order of 30 kHz.
  • the cycle frequency can be varied over a period of the input voltage so that a curve arises from a fundamental oscillation (with the frequency of the input voltage) and numerous harmonics, the fundamental oscillation components of which correspond to the maximum permissible degree of deformation of the fundamental oscillation.
  • the upper limit of the charging current is changed as a function of the phase position of the input voltage, in such a way that the square of the maximum value of the charging current is varied in accordance with a predetermined curve shape which has the frequency of the input voltage.
  • the duration of the charge and discharge cycles, i.e. the cycle frequency f z , is constant.
  • the maximum allowable degree of deformation of the performance curve can be determined according to the VDE regulations, for example be a specific one for each harmonic order provide for the maximum fundamental component. To this It is possible that a performance curve is compiled with which the harmonic components of the Mains input current the permissible limit values exceed. This can take into account the wish be a compromise between an even temporal power distribution and the maximum allowable Harmonic content.
  • the ballast according to the invention sets the AC voltage coming into the network without being converted into a DC voltage in an AC supply for the Discharge lamp around.
  • This AC supply is high-frequency (e.g. 30 kHz)
  • the envelope curve corresponds to that Frequency of the input voltage (e.g. 50Hz).
  • the envelope of the alternating supply current has a temporal Between, a sine function and a Rectangular function.
  • the ballast according to the invention also offers the Possibility in the ignition phase to the usual To waive burst pulses from the control unit generated separately to ignite the fluorescent lamp. Rather, the ignition can be done with the same high frequency Impulses are carried out with those too later stationary lamp operation takes place. A separate Ignition phase that precedes the operating phase therefore not necessary.
  • the ballast according to the invention offers the possibility of one of the fluorescent lamps parallel connected further switch, by the control unit should be controlled to do without.
  • a resistance element in the ballast according to the invention be used, for example a PTC resistor, which becomes high-resistance after the preheating phase.
  • the input voltage U N which is the line voltage of 50 Hz, is present at the input.
  • This mains voltage is fed to the ballast via a filter and radio interference suppression circuit (not shown).
  • One pole of the input voltage U N is connected to the one main connection of the bidirectional electronic switch T1, the other main connection of which is connected to the inductance L.
  • the inductance L lies in a transverse branch of the circuit and connects the second main connection of the switch T1 via a measuring resistor R to the other pole of the input voltage U N.
  • the discharge lamp EL has at opposite ends an electrode E1 and E2 on.
  • the electrodes E1 and E2 are by a third bidirectional electronic switch T3 with each other connected.
  • the electronic switches T1, T2 and T3 are controlled by the control unit SE, which is a microprocessor.
  • This microprocessor is connected to the poles of the input voltage U N , so that it receives information about the time course of the input voltage and in particular about the respective phase position of the input voltage. It is also connected to the two ends of the measuring resistor R, so that it receives information about the current i flowing through the inductance L.
  • FIG. 2 shows the time course of the current i flowing through the inductance L in the operating phase.
  • the switches T1 and T2 are operated inversely to each other. If the switch T1 is conductive and the switch T2 is blocked, the inductance L charges, which is denoted by 10 in FIG. 2.
  • the current i increases linearly because there is practically no ohmic resistance in the series circuit which contains the electronic switch T1 and the inductance L.
  • the value of the measuring resistor R is very small.
  • the control unit SE determines the limit value i o in the control unit SE and the control unit then carries out the discharge phase of the inductance L, in which the switch T1 is blocked and the switch T2 is conductive.
  • the inductance L discharges, striving to maintain the current that has flowed in the charging phase.
  • the current now flows from the inductance L via the measuring resistor R, the discharge lamp EL and the conductive switch T2 back to the inductance L. Since the current flows through a consumer, namely the discharge lamp EL, it decreases in the manner of an e-function.
  • the discharge phase 11 is ended when the cycle time t z has reached a predetermined value, the size of which will be explained. After the first cycle time t z 1 has elapsed, the next cycle time t z 2 follows.
  • the charging time in which the inductance L is charged is t a 1 and the discharging time in which the inductance L is discharged via the discharge lamp EL is t e 1.
  • the charging time t a 2 is the charging time t a 2 and the final charging time t e 2.
  • the duration of the charging times t a 1 and t a 2 depends on the current level of the input voltage U N , that is, inter alia, also on the phase position of the input voltage. If the input voltage is large, the charging time, namely the time until the current i reaches the limit value i o , is small, and if the input voltage is small, the charging time is large. In any case, the charging phase continues until the current has reached the limit value i o , so that, regardless of the instantaneous level of the input voltage, the energy transferred into the inductance L is always the same. This energy is discharged in the subsequent discharge phase 11.
  • the charge / discharge cycles take place in the cycle time t z .
  • the cycle frequency f z is 1 / t z .
  • the lamp power P is proportional to the cycle frequency f z .
  • Fig. 3 the current i and the power P are above that Phase angle of the input voltage plotted.
  • the curve 20 gives the time profile of the power P in the case of an ohmic consumer.
  • the performance curve 20 corresponds to the square of the sine of the input voltage. With such a curve course none Harmonics generated. This course of the performance curve However, 20 has the disadvantage that the performance is temporal fluctuates greatly.
  • the fluorescent lamp is desirable to operate with constant power over time.
  • the power curve 22 which can be implemented with the circuit according to FIG. 1.
  • the mains input current contains harmonic components, the maximum value permissible according to DIN VDE 0838 being adopted for each harmonic order.
  • This standard provides the following maximum values for the fundamental oscillation components of the harmonics of the mains input current: Harmonic order n Maximum value stated in% of the basic oscillation current of the lamp 2nd 5 3rd 30 ⁇ 5 7 7 4th 9 3rd 11 ⁇ n ⁇ 39 2nd
  • the power curve 22 thus results with that shown temporal course.
  • the integral (i.e. the Area) of this power curve 22 is equal to that the power curve 20 and also equal to that the power curve 21. It can be seen that the essentially trapezoidal power curve 22 a compromise between the power curves 20 and 21 because it is flatter and wider than the power curve 20, on the other hand, however, contains fewer harmonic components than the performance curve 21.
  • the power curve 22 is in the present embodiment based on those shown in the table permissible input current harmonics determined has been, so to speak, like a Fourier synthesis.
  • the cycle frequency f z is selected so that its time profile corresponds to the time profile of the power curve 22.
  • Such a time course of the cycle frequency f z over the phase of the input voltage is stored in a memory of the control unit SE, for example in the form of a table. If a certain phase position of the input voltage is determined, the associated value of the cycle frequency is read from the memory. The duration of the respective cycle time t z results from the value of the cycle frequency. After the cycle time t z has elapsed, the respective cycle is ended and the next cycle begins with the associated new cycle duration.
  • the control unit SE contains in a table the different cycle frequencies or the cycle times (the reciprocal values of the cycle frequencies) as a function of the phase angles of the input voltage.
  • the discharge lamp EL is a fluorescent lamp with heatable electrodes E1 and E2. With such a fluorescent lamp, preheating must be carried out before ignition.
  • FIG. 4 shows a) the course of the current i in the preheating phase.
  • the limit value i o at which the charging phase of the inductance is ended, is reduced to the value i ov , which is lower than i o .
  • the representations b) and c) show the switching states of the electronic switches T1 and T2, which are controlled by the control unit SE as a function of the preheating limit value i ov being reached.
  • the frequency of the preheating periods is also varied in accordance with the power curve 22 in FIG. 3 as a function of the phase position of the input voltage.
  • Representation d) in Fig. 4 shows the switching state of the third electronic switch T3, which is conductive in the preheating phase.
  • the ignition phase is carried out.
  • the electronic switch T3 is permanently blocked in the ignition phase and the subsequent operating phase.
  • the normal limit value i o of the charging current is effective, which is also effective in the operating phase.
  • the cycle duration t z varies in accordance with the power curve 22 in FIG. 3.
  • an actuator SG is connected to the control unit SE, with which the dimming operation of the discharge lamp EL can be controlled.
  • the limit value i o of the current is reduced, so that the power supplied to the lamp is reduced.
  • FIG. 5 differs from that of FIG. 1 in that the inductance L consists of a transformer, the primary winding L1 is connected in series with the first electronic switch Tl and the measuring resistor R to the input voltage U N and the secondary winding L2 forms a closed circuit with the switch T2 and the discharge lamp EL.
  • the two circuits are thus galvanically decoupled from one another by the transformer.
  • the third switch T3 of FIG. 1 is replaced by a resistance element R v , which becomes high-resistance after the preheating phase has ended.
  • This resistance element R v is, for example, a PTC resistor which has a low resistance in the cold state during the preheating phase and which then becomes high resistance.
  • the resistance element R v can also be used in the circuit according to FIG. 1 in order to replace the third switch T3 there.
  • the two switches T1 and T2 are controlled in FIG. 5 in the same way as was explained with reference to FIG. 1.
  • the inductor L consists of two partial inductors L3 and L4.
  • the parallel inductor L3 is arranged in the same way as the inductor L in FIG. 1 and the series inductor L4 is arranged between the first electronic switch T1 and the second electronic switch T2.
  • Both partial inductors L3 and L4 are magnetically coupled to one another by a common core 25.
  • voltages U 1 and U 2 arise at the partial inductors L3 and L4, which add up to give the ignition voltage for the lamp.
  • the voltage occurring at switch T1 only has the maximum value of U N + U 1 .
  • the switch T1 therefore does not need to have such a high dielectric strength as in the exemplary embodiment in FIG. 1.
  • two first electronic switches T11 and T12 are provided, each of which is connected in series with a rectifier D1 or D2, the rectifiers D1 and D2 being polarized in opposite directions to one another.
  • the two series connections from the switch T11 and the rectifier D1 on the one hand and the switch T12 and the rectifier D2 on the other hand form a parallel connection.
  • the connection of the switch T11 to the rectifier D1 is connected via an inductor L5 and a measuring resistor R to the second pole of the input voltage U N.
  • the connection point between the switch T12 and the rectifier D2 is connected to the measuring resistor R via an inductor L6.
  • switch T11 controls the positive half-wave and switch T12 controls the negative half-wave of the input voltage, which is shown in FIG. 8.
  • the switches T11 and T12 are controlled by the control unit SE in the same manner as was explained with reference to FIG. 1, with the difference that the switch T11 is blocked during the negative half-wave of the input voltage and the switch T12 is blocked during the positive half-wave .
  • the one Rectifier circuit D1, D2, D3, D4 connected in series is.
  • the inductance L5 is connected to the cathodes Rectifiers D1 and D3 connected and the inductance L6 is connected to the anodes of rectifiers D2 and D4.
  • the charging current flows in the positive half-wave via switch T1 and rectifier D3 to inductance L5 and the discharge current flows from the inductor L5 by the lamp EL and the rectifier D1.
  • the negative half wave of the input voltage flows the charging current via the switch T1, the rectifier D4 and the inductance L6 and the discharge current overflow the lamp EL and the diode D2. In this case it is only there is a single electronic switch to be controlled.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Electroluminescent Light Sources (AREA)

Claims (12)

  1. Ballast à tension alternative pour lampes à décharge électrique, comprenant une inductance (L), un premier commutateur électronique (T1) pour la charge de l'inductance par raccordement de l'inductance (L) à la tension d'entrée (UN), un deuxième commutateur électronique (T2), commandé de manière inverse au premier commutateur électronique (T1), ou un redresseur (D1, D2) pour la décharge de l'inductance (L) par l'intermédiaire de la lampe à décharge (EL), et une unité de commande (SE), qui commande le cycle de charge et de décharge de l'inductance (L),
       caractérisé en ce que l'unité de commande (SE) prédéfinit la fréquence cyclique (fz) des cycles de charge et de décharge ou bien une valeur limite supérieure (io) pour la grandeur du courant de charge (i) de l'inductance (L) en fonction de la phase de la tension d'entrée (UN) et en ce qu'elle met fin au cycle correspondant après l'écoulement de la durée du cycle (tz) dépendant de la phase, ou bien commence la décharge, lorsqu'est atteinte la valeur limite supérieure (io), dépendant de la phase, du courant de charge et met fin au cycle correspondant après l'écoulement d'une durée constante de cycle (tz).
  2. Ballast à tension alternative selon la revendication 1, caractérisé en ce que l'unité de commande (SE) reçoit un signal correspondant au courant de charge de l'inductance (L) et met fin à la charge de l'inductance (L) et en commence la décharge, lorsque le courant de charge (i) a atteint une valeur limite supérieure prédéfinie (io).
  3. Ballast à tension alternative selon l'une des revendications 1 et 2, caractérisé en ce que la fréquence cyclique (fz), ou bien la valeur limite supérieure (io) du courant de charge (i), a une allure globalement trapézoïdale sur une plage d'angle de phase de 180° de la tension d'entrée.
  4. Ballast à tension alternative selon l'une des revendications 1 à 3, caractérisé en ce que la fréquence cyclique (fz), ou bien la valeur limite supérieure (io) du courant de charge (i), correspond, sur une plage d'angle de phase de 180° de la tension d'entrée (UN), à une courbe qui se compose d'une oscillation fondamentale et de nombreux harmoniques pairs et impairs, dont les parties de l'oscillation fondamentale correspondent au niveau maximal admissible de distorsion de l'oscillation fondamentale.
  5. Ballast à tension alternative selon l'une des revendications 2 à 4, caractérisé en ce que la valeur limite supérieure (io) du courant de charge (i) peut être modifiée pour obtenir une variation de lumière.
  6. Ballast à tension alternative selon l'une des revendications 1 à 3, caractérisé en ce que, dans une phase d'amorçage, le premier commutateur électronique (T1) est commandé de la même manière que dans la phase de fonctionnement, les impulsions produites au niveau de la lampe (EL) à la fréquence cyclique (fz) étant utilisées en tant qu'impulsions d'amorçage.
  7. Ballast à tension alternative selon l'une des revendications 2 à 6, caractérisé en ce que, dans une phase de préchauffage, les électrodes (El, E2) de la lampe étant reliées l'une à l'autre, la valeur limite supérieure (io) du courant de charge est réduite par rapport à la phase de fonctionnement.
  8. Ballast à tension alternative selon l'une des revendications 1 à 7, caractérisé en ce que l'inductance (L) consiste en un transformateur, qui sépare galvaniquement le circuit électrique contenant le premier commutateur électronique (T1) du circuit électrique contenant la lampe (EL).
  9. Ballast à tension alternative selon l'une des revendications 1 à 7, caractérisé en ce que l'inductance (L) consiste en une inductance parallèle (L3), montée en parallèle à la lampe (EL) et en une inductance série (L4) montée entre le premier commutateur électronique (T1) et la lampe (EL), et qui ont toutes deux un noyau commun (25).
  10. Ballast à tension alternative selon l'une des revendications 1 à 9, caractérisé en ce qu'il est prévu deux premiers commutateurs électroniques (T11, T12) qui sont montés en série avec des redresseurs (D1, D2) de polarités différentes, et en ce que chaque premier commutateur électronique (T11, T12) est raccordé, en même temps que son redresseur (D1, D2), à une inductance (L5, L6) propre.
  11. Ballast à tension alternative selon l'une des revendications 1 à 9, caractérisé en ce qu'il est prévu un seul premier commutateur électronique (T1), qui est monté en série avec deux branches de redresseurs, consistant en des redresseurs (D3, D1 ; D4, D2) montés en série à polarités opposées, et en ce que chaque branche de redresseur est reliée à une inductance (L5, L6) propre.
  12. Ballast à tension alternative selon l'une des revendications 1 à 11, caractérisé en ce qu'un élément résistant (Rv) est monté en parallèle à la lampe (EL) et en ce que, une fois la phase de préchauffage terminée, il prend une valeur ohmique élevée du fait du chauffage.
EP92119005A 1992-11-06 1992-11-06 Ballast à courant alternatif pour lampes à décharge Expired - Lifetime EP0596152B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP92119005A EP0596152B1 (fr) 1992-11-06 1992-11-06 Ballast à courant alternatif pour lampes à décharge
AT92119005T ATE167352T1 (de) 1992-11-06 1992-11-06 Wechselspannungs-vorschaltgerät für elektrische entladungslampen
DE59209374T DE59209374D1 (de) 1992-11-06 1992-11-06 Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP92119005A EP0596152B1 (fr) 1992-11-06 1992-11-06 Ballast à courant alternatif pour lampes à décharge

Publications (2)

Publication Number Publication Date
EP0596152A1 EP0596152A1 (fr) 1994-05-11
EP0596152B1 true EP0596152B1 (fr) 1998-06-10

Family

ID=8210209

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92119005A Expired - Lifetime EP0596152B1 (fr) 1992-11-06 1992-11-06 Ballast à courant alternatif pour lampes à décharge

Country Status (3)

Country Link
EP (1) EP0596152B1 (fr)
AT (1) ATE167352T1 (fr)
DE (1) DE59209374D1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619745A1 (de) * 1996-05-15 1997-11-20 Tridonic Bauelemente Schaltungsanordnung zum Betreiben einer Last und elektronisches Vorschaltgerät mit einer derartigen Schaltungsanordnung zum Betreiben einer Lampe
CN1287770A (zh) * 1998-10-22 2001-03-14 皇家菲利浦电子有限公司 电路装置
JP2002528885A (ja) * 1998-10-22 2002-09-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 回路配置
AU2002237761A1 (en) * 2001-01-10 2002-07-24 Iwatt Corporation Phase-controlled ac-dc power converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873471A (en) * 1986-03-28 1989-10-10 Thomas Industries Inc. High frequency ballast for gaseous discharge lamps
DE4101980A1 (de) * 1991-01-24 1992-08-06 Trilux Lenze Gmbh & Co Kg Wechselspannungs-vorschaltgeraet fuer elektrische entladungslampen

Also Published As

Publication number Publication date
DE59209374D1 (de) 1998-07-16
EP0596152A1 (fr) 1994-05-11
ATE167352T1 (de) 1998-06-15

Similar Documents

Publication Publication Date Title
DE3319739C2 (de) Vorschaltgerät für Gasentladungslampen
DE69201882T2 (de) Dimmer mit minimalen Filterungsverlusten für eine Leistungslast.
EP0113451B1 (fr) Inverseur avec un circuit de charge comprenant un circuit à résonance série et une lampe à décharge
DE3623306A1 (de) Entladungslampen-treiber
EP0301436B1 (fr) Convertisseur DC-DC
DE69111547T2 (de) Dimbares Vorschaltgerät für Entladungslampen.
DE2657450C2 (de) Speiseschaltung für einen Mikrowellengenerator und Verfahren zum Betrieb eines Mikrowellengenerators eines Mikrowellen-Erhitzungsgerätes
DE19955673A1 (de) Leistungsversorgungseinheit mit einem Wechselrichter
DE69816950T2 (de) Schaltungsanordnung
EP0740494A2 (fr) Circuit de fonctionnement impulsionnel de lampes à décharge
DE2632247A1 (de) Anordnung zum speisen einer elektrischen entladungslampe
EP0596152B1 (fr) Ballast à courant alternatif pour lampes à décharge
DE69109333T2 (de) Schaltanordnung.
DE4219958C1 (en) Ballast circuit for discharge lamp - uses phase gate control to short out electrodes for interval in each half cycle, depending on brightness
DE3338464A1 (de) Hochfrequenz-helligkeitssteuerung fuer leuchtstofflampen
DE3312572A1 (de) Elektronisches vorschaltgeraet fuer eine leuchtstofflampe
EP0496040B1 (fr) Ballast alternatif pour lampes à décharge
DE3608362A1 (de) Vorschaltgeraet fuer entladungslampen
DE3343930A1 (de) Schaltungsanordnung zum betrieb von leuchtstoff- oder ultraviolett-niederspannungs-entladungslampen
DE2315497A1 (de) Helligkeitssteuerschaltung fuer gasentladungslampen
DE3517297C1 (de) Vorschaltgerät für Entladungslampen
EP0471228A1 (fr) Starter pour lampes fluorescentes
DE60117764T2 (de) Zündvorrichtung mit störkapazitätsunterdrücker
DE3614708A1 (de) Steuerschaltung fuer eine lichtbogenlampe
EP2140735B1 (fr) Ensemble circuit servant à amorcer et à faire fonctionner au moins une lampe à décharge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19940929

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970721

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19980610

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980610

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980610

REF Corresponds to:

Ref document number: 167352

Country of ref document: AT

Date of ref document: 19980615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59209374

Country of ref document: DE

Date of ref document: 19980716

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980910

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: TRILUX-LENZE G.M.B.H. & CO. K.G.

Effective date: 19981130

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20001122

Year of fee payment: 9

Ref country code: CH

Payment date: 20001122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011018

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011219

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee