EP0591052A1 - Procédé d'injection d'une masse de bouchage dans un trou de coulée d'un réacteur métallurgique, tel qu'un haut fourneau - Google Patents

Procédé d'injection d'une masse de bouchage dans un trou de coulée d'un réacteur métallurgique, tel qu'un haut fourneau Download PDF

Info

Publication number
EP0591052A1
EP0591052A1 EP93402380A EP93402380A EP0591052A1 EP 0591052 A1 EP0591052 A1 EP 0591052A1 EP 93402380 A EP93402380 A EP 93402380A EP 93402380 A EP93402380 A EP 93402380A EP 0591052 A1 EP0591052 A1 EP 0591052A1
Authority
EP
European Patent Office
Prior art keywords
mass
primary
mud
composition
plugging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93402380A
Other languages
German (de)
English (en)
Inventor
Jean-Luc Bouttement
Henri Farda
Harold Graber
Jacques Menuge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Terres Refractaires Du Boulonnais
Original Assignee
Sollac SA
Terres Refractaires Du Boulonnais
Lorraine de Laminage Continu SA SOLLAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sollac SA, Terres Refractaires Du Boulonnais, Lorraine de Laminage Continu SA SOLLAC filed Critical Sollac SA
Publication of EP0591052A1 publication Critical patent/EP0591052A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/12Opening or sealing the tap holes

Definitions

  • the present invention relates to a method of injecting a plugging mass into a taphole of a metallurgical reactor, such as a blast furnace, between two consecutive runs of use.
  • the tap holes of metallurgical reactors such as blast furnaces must be plugged between two consecutive castings.
  • the taphole of a blast furnace is delimited by carbon refractory blocks, the inlet of which gradually widens from the inside of the blast furnace during its life.
  • To plug the taphole it is known to inject a mass of determined physicochemical and plasticity characteristics.
  • the volatile materials contained in the plugging mass when they collect, cause cracks and gas pockets to form in the mass.
  • the cracking of the refractory blocks around the taphole causes the circulation of liquids in the cracks, and these liquids seep into the plugging mass, furthermore causing an erosion of its internal face in the blast furnace.
  • the infiltration of liquid iron into the cracks gradually fill the pockets of gas, which promotes the detachment of the "fungus" outside the blocking mass.
  • the capping methods implemented so far have many operating disadvantages, in particular the following: embrittlement of the mass by cracking, formation of gas pockets subsequently filled with liquid metal, solidification of the mass before capping full of the taphole, lack of homogeneity of the refractory assembly due to cracks in the carbonaceous blocks, shortening of the taphole, spitting during the pouring of liquid metal due to cracks in the refractory blocks (gas flames) , deterioration of the external face of the "cupboard" formed by the refractory assembly.
  • the object of the invention is therefore to propose a method of plugging the tap hole by which the above drawbacks are practically eliminated.
  • the secondary mass diffuses through the cracks of the monolithic assembly constituted by the solidified primary mass, and thus stops the cracking under development in this primary mass and in the "mushroom" outside the taphole. .
  • the wear of the plugging mass is practically limited to its outer face.
  • a hole of the same length as the previous one is again drilled therein, and a new quantity of secondary mass is injected therein in order to butcher.
  • This additional step provides greater safety in plugging the tap hole.
  • the single figure is a half-vertical, half-elevation view with cutaway, of the wall of a metallurgical reactor surrounding its taphole and of the plugging mass thereof.
  • the metallurgical reactor such as a blast furnace, a wall 1 delimiting its tap hole 2 is partially shown in the drawing, comprises a set of refractory blocks 3 juxtaposed around the tap hole 2.
  • the hole 2 is normally blocked by a mass 4 which ends, on the interior side of the reactor, by an enlarged part 5 called “mushroom” filling the end 2a flared from hole 2.
  • cracks such as 6 appear in the plugging mass 4 and especially in its fungus 5.
  • the cracks 6 result in pockets of gas such as 7, formed during the solidification of the plugging mass 4, and which are gradually filled with liquid metal (cast iron in the case of a blast furnace), as has been explained above.
  • the plugging mass 4 is injected into the taphole 2 as follows: a) a first primary sealing mass is injected, having a determined chemical composition and physico-chemical characteristics, adapted to the operating conditions of the blast furnace.
  • This primary mass is intimately mixed with an appropriate organic binder chosen from phenolic resins, tars, petroleum or vegetable oils, for example a phenolic resin, and is allowed to solidify thermally.
  • the chemical analysis of the so-called primary mass on calcined product has for example the following general weight composition: Al2O3 8 to 65% SiO2 + Si3N4 8 to 62% SiC 5 to 35% Fe2O3 0.1 to 5% MgO 0.1 to 4.5% and more precisely the following composition: the rest being made up of residual elements.
  • a second sealing mass called secondary mass, the composition of which is then injected into hole 8.
  • chemical and physicochemical characteristics are those mentioned in Table 2 below, within the approximate limits of the ranges mentioned in this table.
  • the chemical analysis of the so-called secondary mass on calcined product has the following general weight composition: Al2O3 35 to 65% SiO2 + Si3N4 20 to 40% SiC 0.1 to 30% Fe2O3 0.2 to 4.5% MgO 0.1 to 3.5% preferably Al2O3 40 to 58% SiO2 + Si3N4 20 to 35% SiC 0.1 to 30% Fe2O3 0.2 to 4.5% MgO 0.1 to 3.5% and for example Al2O3 52% SiO2 + Si3N4 29% SiC 16% Fe2O3 2.6% MgO 0.2% PHYSICAL PROPERTIES: measured on cylindrical specimens ⁇ 50x50 IN AVERAGE VALUES After cooking at .......... ° C 800 Bulk density Kg / m3 1750 Compressive strength MPa 2.8 Open porosity% 38.5
  • the secondary mass comprises more than 95% of grains whose size is less than 500 ⁇ m. These grains are mixed with one or more organic binders, the amount of which represents more than 10% of the weight of the total mixture, a binder whose residue after coking according to, for example, standard ASTM D 2416 is greater than 5%. This finer particle size gives the secondary mass a greater fluidity than that of the primary mass; this fluidity is characterized by a workability index greater than 20% at 20 ° C measured according to, for example, standard ASTM C181.
  • the secondary mass has a cooking speed lower than that of the primary mass, through which it diffuses by seeping into the cracks during formation and development in the primary mass 4 and in its fungus 5, until its complete solidification. All of the cracks are then filled and the gas expelled from them.
  • the injection of a secondary mass which is more fluid than the primary mass strengthens the zones of the latter which are weakened by microfissuring, the secondary mass having time to infiltrate the microcracks in the primary mass thanks to its low curing speed and greater fluidity.
  • the plugging mass is no longer degraded by cracks, and the fungus 5, which no longer undergoes degradation in its mass, therefore remains in place, only its outer face still undergoing erosion.
  • the plugging of the tap hole 2 is in principle finished. However for safety it is possible to proceed to a new drilling of a hole 8, on the same length as the previous one, and to inject again an appropriate quantity of secondary mass, which completes if necessary the action of the secondary mass former.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

Suivant ce procédé, on injecte une première masse de bouchage primaire (4), mélangée à un liant, ayant une composition et des caractéristiques physico-chimiques déterminées, et on laisse cette masse primaire se solidifier thermiquement; après cuisson de cette masse, on y perfore un trou (8) d'une longueur déterminée en réalisant ainsi un dégazage, et on y injecte une deuxième masse de bouchage, dite masse secondaire de composition et de caractèristiques physico-chimiques appropriées, mélangée à un liant, plus fluide que la masse primaire et à vitesse de durcissement inférieure à celle de cette dernière, afin que cette masse secondaire puisse diffuser dans des fissures de la masse primaire avant d'être solidifiée. La masse secondaire renforce les zones de la masse primaire fragilisées par la microfissuration, et permet ainsi de retrouver une longueur de trou de coulée convenable. <IMAGE>

Description

  • La présente invention a pour objet un procédé d'injection d'une masse de bouchage dans un trou de coulée d'un réacteur métallurgique, tel qu'un haut-fourneau, entre deux coulées consécutives d'utilisation.
  • Comme on le sait, les trous de coulée de réacteurs métallurgiques tels que les hauts fourneaux doivent être bouchés entre deux coulées consécutives. Le trou de coulée d'un haut fourneau est délimité par des blocs réfractaires de carbone, dont l'entrée s'élargit progressivement par l'intérieur du haut-fourneau durant la vie de ce dernier. Pour procéder au bouchage du trou de coulée, il est connu d'y injecter une masse de caractéristiques physico-chimiques et de plasticité déterminées.
  • On connaît différents types de masses de bouchage, de compositions variables en éléments minéraux, associés à des liants hydrocarbonés.
  • Durant les périodes d'inter-coulées, les matières volatiles contenues dans la masse de bouchage, en se rassemblant, provoquent la formation de fissures et de poches de gaz dans la masse. De plus, la fissuration des blocs réfractaires autour du trou de coulée provoque la circulation de liquides dans les fissures, et ces liquides s'infiltrent dans la masse de bouchage en provoquant en outre une érosion de sa face intérieure au haut-fourneau. Les infiltrations de fonte liquide dans les fissures viennent progressivement remplir les poches de gaz, ce qui favorise le décollement du "champignon" extérieur de la masse de bouchage.
  • Il en résulte, lors de la reprise du trou de coulée, qu'on ne peut plus, pratiquement, dépasser l'emplacement de la fonte qui a rempli les poches de gaz, ce qui entraîne une réduction importante de la longueur du trou de coulée, par exemple de 3m à 2,20m. De ce fait, la source froide est rapprochée de la source chaude, ce qui accélère la dégradation de l'ensemble réfractaire.
  • En définitive, les procédés de bouchage mis en oeuvre jusqu'à présent présentent de nombreux inconvénients d'exploitation, notamment les suivants : fragilisation de la masse par fissuration, formation de poches de gaz ultérieurement remplies de métal liquide, solidification de la masse avant bouchage complet du trou de coulée, manque d'homogénéité de l'ensemble réfractaire en raison des fissures dans les blocs carbonés, raccourcissement du trou de coulée, crachements pendant la coulée du métal liquide en raison des fissures dans les blocs réfractaires (flammes de gaz), détérioration de la face extérieure du "placard" formé par l'ensemble réfractaire.
  • L'invention a donc pour but de proposer un procédé de bouchage du trou de coulée grâce auquel les inconvénients ci-dessus sont pratiquement éliminés.
  • Suivant l'invention, le procédé d'injection d'une masse de bouchage dans un trou de coulée d'un réacteur métallurgique est caractérisé par la succession des étapes suivantes :
    • a) on injecte une première masse de bouchage primaire, mélangée à un liant, ayant une composition et des caractéristiques physico-chimiques déterminées, et on laisse cette masse primaire se solidifier thermiquement;
    • b) après cuisson de cette masse primaire, on y perfore un trou d'une longueur déterminée en réalisant ainsi un dégazage, et on y injecte une deuxième masse de bouchage, dite masse secondaire de composition et de caractères physico-chimiques appropriés, mélangée à un liant, plus fluide que la masse primaire et à vitesse de cuisson inférieure à celle de cette dernière, afin que cette masse secondaire puisse diffuser dans des fissures de la masse primaire avant d'être solidifiée.
  • Grâce à sa grande fluidité, la masse secondaire diffuse à travers les fissures de l'ensemble monolithique constitué par la masse primaire solidifiée, et stoppe ainsi la fissuration en cours de développement dans cette masse primaire et dans le "champignon" extérieur du trou de coulée. Il en résulte que l'usure de la masse de bouchage est pratiquement limitée à sa face extérieure.
  • Suivant une variante du procédé conforme à l'invention, après diffusion et solidification de la masse secondaire, on perce à nouveau un trou de même longueur que le précédent dans celle-ci, et on y injecte une nouvelle quantité de masse secondaire afin de le boucher.
  • Cette étape supplémentaire assure une plus grande sécurité du bouchage du trou de coulée.
  • D'autres particularités et avantages de l'invention apparaîtront au cours de la description qui va suivre faite en référence au dessin annexé, d'une forme de réalisation du procédé conforme à l'invention donnée à titre d'exemple non limitatif.
  • La figure unique est une vue mi-coupe verticale mi-élévation avec arrachements, de la paroi d'un réacteur métallurgique environnant son trou de coulée et de la masse de bouchage de celui-ci.
  • Le réacteur métallurgique, tel qu'un haut fourneau, dont une paroi 1 délimitant son trou de coulée 2 est partiellement représentée au dessin, comporte un ensemble de blocs réfractaires 3 juxtaposés autour du trou de coulée 2.
  • Entre deux coulées d'utilisation du réacteur, le trou 2 est normalement bouché par une masse 4 qui se termine, du côté intérieur au réacteur, par une partie élargie 5 appelée "champignon" remplissant l'extrémité 2a évasée du trou 2.
  • Suivant l'état de la technique antérieure à l'invention, des fissures telles que 6 apparaissent dans la masse de bouchage 4 et spécialement dans son champignon 5. Les fissures 6 aboutissent à des poches de gaz tels que 7, formées durant la solidification de la masse de bouchage 4, et qui sont remplies progressivement de métal liquide (fonte dans le cas d'un haut-fourneau), ainsi que cela a été expliqué précédemment.
  • Suivant l'invention, on procède à l'injection dans le trou de coulée 2 de la masse de bouchage 4 comme suit:
    a) on injecte une première masse de bouchage primaire, ayant une composition chimique et des caractéristiques physico-chimiques déterminées, adaptées aux conditions de marche du haut-fourneau. Cette masse primaire est mélangée intimement à un liant organique approprié choisi parmi les résines phénoliques, les goudrons, les huiles pétrolières ou végétables par exemple une résine phénolique, et on la laisse se solidifier thermiquement.
    L'analyse chimique de la masse dite primaire sur produit calciné a par exemple la composition pondérale générale suivante :
    Al₂O₃ 8 à 65%
    SiO₂ + Si₃N₄ 8 à 62%
    SiC 5 à 35%
    Fe₂O₃ 0,1 à 5%
    MgO 0,1 à 4,5%
    et plus précisément la composition suivante :
    Figure imgb0001
    Figure imgb0002
    le reste étant constitué par des éléments résiduels.
    MASSE DE BOUCHAGE PRIMAIRE
    Constituant de base BAUXITE
    Nature de liaison ORGANIQUE
    Dimension maximum des grains en mm 3
    Masse volumique apparente en kg/m³ 2210
    PROPRIETES PHYSIQUES : mesurées sur éprouvettes cylindriques ⌀ 50x50 EN VALEUR MOYENNES
    Après cuisson à ... °C 800
    Masse volumique apparente Kg/m³ 1930
    Résistance à la compression MPa 5,4
    Porosité ouverte % 32

    Cette masse primaire de bouchage possède un coefficient de plasticité adapté aux conditions d'utilisation et à la puissance des "boucheuses".
    Au cours de sa solidification, les matières volatiles de cette masse de bouchage primaire se rassemblent pour former des poches de gaz telles que 7, après avoir cheminé dans la masse par des microfissures telles que 6.
    b) Après cuisson de la masse primaire, on y perfore un trou 8 d'une longueur déterminée, depuis l'extérieur du réacteur, jusqu'à une poche de gaz 7, ce qui provoque le dégazage de celle-ci.
  • On injecte alors dans le trou 8 une deuxième masse de bouchage, dite masse secondaire, dont la composition chimique et les caractères physico-chimiques sont ceux mentionnés dans le Tableau 2 ci-dessous, dans les limites approximatives des fourchettes mentionnées dans ce tableau.
  • L'analyse chimique de la masse dite secondaire sur produit calciné a la composition pondérale générale suivante :
    Al₂O₃ 35 à 65%
    SiO₂ + Si₃N₄ 20 à 40%
    SiC 0,1 à 30%
    Fe₂O₃ 0,2 à 4,5%
    MgO 0,1 à 3,5%

    de préférence
    Al₂O₃ 40 à 58%
    SiO₂ + Si₃N₄ 20 à 35%
    SiC 0,1 à 30%
    Fe₂O₃ 0,2 à 4,5%
    MgO 0,1 à 3,5%

    et par exemple
    Al₂O₃ 52%
    SiO₂ + Si₃N₄ 29%
    SiC 16%
    Fe₂O₃ 2,6%
    MgO 0,2%
    Figure imgb0003
    Figure imgb0004
    PROPRIETES PHYSIQUES : mesurées sur éprouvettes cylindriques ⌀ 50x50 EN VALEURS MOYENNES
    Après cuisson à ..........°C 800
    Masse volumique apparente Kg/m³ 1750
    Résistance à la compression MPa 2,8
    Porosité ouverte % 38,5
  • La masse secondaire comporte plus de 95% de grains dont la taille est inférieure à 500 µm. Ces grains sont mélangés à un ou plusieurs liants organiques dont la quantité représente plus de 10% du poids du mélange total, liant dont le résidu après cokéfaction selon, par exemple, la norme ASTM D 2416 est supérieur à 5%. Cette plus fine granulométrie confère à la masse secondaire une fluidité plus grande que celle de la masse primaire; cette fluidité est caractérisée par un indice d'ouvrabilité supérieur à 20% à 20°C mesuré selon, par exemple, la norme ASTM C181. La masse secondaire a une vitesse de cuisson inférieure à celle de la masse primaire, à travers laquelle elle diffuse en s'infiltrant dans les fissures en cours de formation et de développement dans la masse primaire 4 et dans son champignon 5, jusqu'à sa solidification complète. L'ensemble des fissures est alors rempli et le gaz chassé de celles-ci.
  • En d'autres termes, l'injection d'une masse secondaire plus fluide que la masse primaire renforce les zones de celle-ci fragilisées par la microfissuration, la masse secondaire ayant le temps de s'infiltrer dans les microfissures de la masse primaire grâce à sa faible vitesse de durcissement et à sa plus grande fluidité.
  • De ce fait, la masse de bouchage n'est plus dégradée par des fissures, et le champignon 5, qui ne subit plus de dégradation dans sa masse, reste par conséquent en place, seule sa face extérieure subissant encore une érosion.
  • Après injection de la masse secondaire, le bouchage du trou de coulée 2 est en principe terminé. Toutefois par sécurité il est possible de procéder à un nouveau perçage d'un trou 8, sur la même longueur que le précédent, et d'injecter à nouveau une quantité appropriée de masse secondaire, qui complète si nécessaire l'action de la masse secondaire précédente.

Claims (9)

  1. Procédé d'injection d'une masse de bouchage dans un trou de coulée d'un réacteur métallurgique tel qu'un haut-fourneau, entre deux coulées consécutives pour l'utilisation de ce dernier, caractérisé par la succession des étapes suivantes :
    a) on injecte une première masse (4) de bouchage primaire, mélangée à un liant, ayant une composition et des caractéristiques physico-chimiques déterminées, et on laisse cette masse primaire se solidifier thermiquement;
    b) après cuisson de cette masse primaire, on y perfore un trou (8) d'une longueur déterminée en réalisant ainsi un dégazage, et on y injecte une deuxième masse de bouchage, dite masse secondaire de composition et de caractères physico-chimiques appropriés, mélangée à un liant, plus fluide que la masse primaire et à vitesse de durcissement inférieure à celle de cette dernière, afin que cette masse secondaire puisse diffuser dans des fissures de la masse primaire avant d'être solidifiée.
  2. Procédé selon la revendication 1, caractérisé en ce que, après diffusion et cuisson de la masse secondaire, on perce à nouveau dans celle-ci un trou de même longueur que le précédent (8), et on y injecte une nouvelle quantité de masse secondaire afin de le boucher.
  3. Masse de bouchage primaire mise en oeuvre dans le procédé selon les revendications 1 ou 2, caractérisé en ce qu'elle a la composition ci-dessous : Al₂O₃ 8 à 65% SiO₂ + Si₃N₄ 8 à 62% SiC 5 à 35% Fe₂O₃ 0,1 à 5% MgO 0,1 à 4,5%
    le reste étant constitué par des éléments résiduels.
  4. Masse de bouchage secondaire mise en oeuvre dans le procédé selon les revendications 1 ou 2, caractérisée en ce qu'elle comporte des grains dont la majorité à une taille inférieure à 500 µm, qui sont mélangés à un ou plusieurs liants organiques dont le résidu après cokefaction est supérieur à 5%.
  5. Masse de bouchage secondaire selon la revendication 4, caractérisée en ce que les liants sont des liants organiques tels que des résines phénoliques, des goudrons, des huiles pétrolières ou végétales.
  6. Masse de bouchage secondaire selon la revendication 5, caractérisée en ce qu'elle présente une fluidité supérieure à celle de la masse primaire se traduisant par un indice d'ouvrabilité supérieur à 20% à 20°C.
  7. Masse de bouchage secondaire selon la revendication 6, caractérisé en ce qu'elle a la composition générale suivante : Al₂O₃ 35 à 65% SiO₂ + Si₃N₄ 20 à 40% SiC 0,1 à 30% Fe₂O₃ 0,2 à 4,5% MgO 0,1 à 3,5%
    le reste étant constitué par des éléments résiduels.
  8. Masse de bouchage secondaire selon la revendication 7, caractérisée en ce que sa composition est la suivante : Al₂O₃ 40 à 58% SiO₂ + Si₃N₄ 20 à 35% SiC 0,1 à 30% Fe₂O₃ 0,2 à 4,5% MgO 0,1 à 3,5%
    le reste étant constitué par des éléments résiduels.
  9. Masse de bouchage du trou de coulée d'un réacteur métallurgique, obtenue par le procédé selon l'une quelconque des revendications 1 à 8.
EP93402380A 1992-09-30 1993-09-29 Procédé d'injection d'une masse de bouchage dans un trou de coulée d'un réacteur métallurgique, tel qu'un haut fourneau Withdrawn EP0591052A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9211782A FR2696194B1 (fr) 1992-09-30 1992-09-30 Procédé d'injection d'une masse de bouchage dans un trou de coulée d'un réacteur métallurgique, tel qu'un haut fourneau.
FR9211782 1992-09-30

Publications (1)

Publication Number Publication Date
EP0591052A1 true EP0591052A1 (fr) 1994-04-06

Family

ID=9434151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93402380A Withdrawn EP0591052A1 (fr) 1992-09-30 1993-09-29 Procédé d'injection d'une masse de bouchage dans un trou de coulée d'un réacteur métallurgique, tel qu'un haut fourneau

Country Status (6)

Country Link
US (1) US5447292A (fr)
EP (1) EP0591052A1 (fr)
BR (1) BR9303959A (fr)
CA (1) CA2107307A1 (fr)
FR (1) FR2696194B1 (fr)
ZA (1) ZA937221B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740475A1 (fr) * 1995-10-27 1997-04-30 Boulonnais Terres Refractaires Procede de rebouchage, de traitement et de conditionnement des trous de coulee ou d'injection, notamment de hauts fourneaux

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010016114B4 (de) 2010-03-24 2020-10-08 Imertech Sas Vorrichtung zum Muxen von Stichlöchern
CN102944117B (zh) * 2012-11-14 2015-05-06 云南建水锰矿有限责任公司 矿热炉开炉眼的方法
CN102898170B (zh) * 2012-11-19 2013-08-14 高金菊 一种高炉出铁口用无水炮泥
CN102924100B (zh) * 2012-11-19 2013-09-25 高金菊 一种用于维护高炉炉缸的无水泡泥的制备方法
CN107382344A (zh) * 2017-08-09 2017-11-24 佘云锋 一种高效粘附型高钛护炉炮泥

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1535664A (fr) * 1967-06-28 1968-08-09 Masses de bouchage pour hauts-fourneaux
US3770867A (en) * 1971-11-19 1973-11-06 Dresser Ind Method of extruding silica compositions
US4276091A (en) * 1980-03-27 1981-06-30 Kaiser Aluminum & Chemical Corporation Refractory gun mix
JPS6024306A (ja) * 1983-07-19 1985-02-07 Kawasaki Steel Corp 高炉出銑孔充填マツドの焼成方法
JPH0765087B2 (ja) * 1986-12-24 1995-07-12 川崎炉材株式会社 高炉出銑孔の閉塞方法
JPH0225509A (ja) * 1988-07-15 1990-01-29 Sumitomo Metal Ind Ltd 高炉出銑時におけるガス漏れ防止方法
JPH03115512A (ja) * 1989-09-27 1991-05-16 Kawasaki Steel Corp 出銑孔マッドの充填方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
IRON AND STEEL ENGINEER vol. 67, no. 6, Juin 1990, PITTSBURGH US pages 56 - 61 T.YAMAMOTO ET AL. *
PATENT ABSTRACTS OF JAPAN vol. 12, no. 433 (C-543)(3280) 15 Novembre 1988 & JP-A-63 161 105 ( KAWASAKI REFRACT CO ) 4 Juillet 1988 *
PATENT ABSTRACTS OF JAPAN vol. 14, no. 176 (C-707)(4119) 9 Avril 1990 & JP-A-02 025 509 ( SUMITOMO METAL IND ) 29 Janvier 1990 *
PATENT ABSTRACTS OF JAPAN vol. 15, no. 313 (C-857)9 Août 1991 & JP-A-03 115 512 ( KAWASAKI STEEL ) 16 Mai 1991 *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 138 (C-286)(1861) 13 Juin 1985 & JP-A-60 024 306 ( KAWASAKI SEITETSU ) 7 Février 1985 *
REVUE DE METALLURGIE vol. 89, no. 1, Janvier 1992, PARIS FR pages 37 - 44 A.DUFOUR ET AL. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740475A1 (fr) * 1995-10-27 1997-04-30 Boulonnais Terres Refractaires Procede de rebouchage, de traitement et de conditionnement des trous de coulee ou d'injection, notamment de hauts fourneaux

Also Published As

Publication number Publication date
BR9303959A (pt) 1994-04-05
CA2107307A1 (fr) 1994-03-31
ZA937221B (en) 1995-03-29
US5447292A (en) 1995-09-05
FR2696194A1 (fr) 1994-04-01
FR2696194B1 (fr) 1994-12-30

Similar Documents

Publication Publication Date Title
CN1850728A (zh) 高炉出铁口Al2O3-SiC-C体系无水炮泥
EP0721388A1 (fr) Piece de coulee comportant une couche externe apte a former une couche impermeable aux gaz et procede de mise en uvre
EP0591052A1 (fr) Procédé d&#39;injection d&#39;une masse de bouchage dans un trou de coulée d&#39;un réacteur métallurgique, tel qu&#39;un haut fourneau
JP4234789B2 (ja) 溶融金属を注ぎ込むためのノズルとその製作方法
EA001327B1 (ru) Погружной стакан с оболочкой в шлаковой зоне, способ его изготовления и состав оболочки
ZA200503078B (en) Permeable refractory material for a gas purged nozzle
EP0162871A1 (fr) Composition de beton refractaire et application en metallurgie
JP4473666B2 (ja) 高炉出銑孔の補修方法
US4682718A (en) Nozzle for continuous casting of molten steel
US5411997A (en) Mud material used for iron tap hole in blast furnace
EP0388255B1 (fr) Four électrique à arc et procédé de fusion de ferrailles
JP3216575B2 (ja) 取鍋摺動開閉装置の詰砂
US5849245A (en) Well brick of vessel for molten metal
RU2279948C2 (ru) Огнеупорное изделие
CA2047743A1 (fr) Procede de revetement d&#39;un repartiteur de coulee continue par un materiau refractaire
WO1995034395A1 (fr) Piece de coulee comportant une couche externe apte a former une couche impermeable aux gaz et procede de mise en ×uvre
US20060071041A1 (en) Gas purged nozzle
US4989838A (en) Metallurgical treatment lance
Constantin et al. Establishing the Optimum Composition of Superaluminous Refractory Products, Used for Steel Ladle Bubbling
RU2167206C1 (ru) Фурма для донной продувки металла, способ изготовления фурмы и устройство для реализации способа
MXPA05002053A (es) Vaciado continuo de acero fundido para hoja metalica.
JP2002060820A (ja) タールマッド材
RU2135325C1 (ru) Способ изготовления заглушки разливочного ковша и заглушка
SU1006416A1 (ru) Способ приготовлени огнеупорной массы дл заделки чугунных леток доменных печей
JPH01127156A (ja) 連続鋳造用ノズル

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT LU SE

17P Request for examination filed

Effective date: 19940616

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970319

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19971022