EP0591042B1 - Multi/Demultiplexer mit Gitter aus gruppierten Wellenleitern und zurückgefürten optischen Wegen - Google Patents

Multi/Demultiplexer mit Gitter aus gruppierten Wellenleitern und zurückgefürten optischen Wegen Download PDF

Info

Publication number
EP0591042B1
EP0591042B1 EP93402364A EP93402364A EP0591042B1 EP 0591042 B1 EP0591042 B1 EP 0591042B1 EP 93402364 A EP93402364 A EP 93402364A EP 93402364 A EP93402364 A EP 93402364A EP 0591042 B1 EP0591042 B1 EP 0591042B1
Authority
EP
European Patent Office
Prior art keywords
optical
wavelength
loop
signal
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93402364A
Other languages
English (en)
French (fr)
Other versions
EP0591042A1 (de
Inventor
Yoshiaki Tachikawa
Masao Kawachi
Hiroshi Takahashi
Kyo Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of EP0591042A1 publication Critical patent/EP0591042A1/de
Application granted granted Critical
Publication of EP0591042B1 publication Critical patent/EP0591042B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • G02B6/12021Comprising cascaded AWG devices; AWG multipass configuration; Plural AWG devices integrated on a single chip
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/278Controlling polarisation mode dispersion [PMD], e.g. PMD compensation or emulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2861Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using fibre optic delay lines and optical elements associated with them, e.g. for use in signal processing, e.g. filtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0268Integrated waveguide grating router, e.g. emission of a multi-wavelength laser array is combined by a "dragon router"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1071Ring-lasers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/258Distortion or dispersion compensation treating each wavelength or wavelength band separately

Definitions

  • the present invention relates to an optical multi/ demultiplexer device with loop-back optical paths having an arrayed waveguide grating, applicable to optical communication systems and optical switching systems.
  • the device is simple in construction, and can be fabricated with high yield.
  • an optical add-drop multiplexer such as the one shown in Figure 19 is known as a key device for use in splitting and inserting wavelength-multiplexed optical signals.
  • the ADM 1 comprises a demultiplexer 2, a multiplexer 3, and N lines of optical fibers 4a, 4b, ...4n.
  • multiplexed input optical signals consisting of wavelengths ⁇ 1, ⁇ 2 ..., ⁇ n are separated into optical signals of N wavelengths from which desired optical signals, for example, ⁇ i and ⁇ j, are outputted.
  • the remaining optical signals are transmitted through the optical fibers 4a, 4b, ...4n, which are multiplexed with the external signals ⁇ i, ⁇ j, and are outputted as multiplexed optical signals ⁇ 1, ⁇ 2, ..., ⁇ n.
  • FIG. 20 Another conventional ADM is shown in Figure 20.
  • This ADM 5 is disposed between two optical transmission lines 6, 7, and comprises a demultiplexer 11, a multiplexer 12, 7 lines of optical fibers 13a, 13b, ...13g and a signal processing device 14 provided for each of the optical fibers 13a to 13g.
  • seven wavelengths are shown for brevity, although in general, any number of wavelengths can be multiplexed.
  • the multiplexed input optical signal of wavelengths ⁇ 1, ⁇ 2,..., ⁇ 7 is first separated into optical signals of seven wavelengths by the demultiplexer 11, and then these optical signals are transmitted by the corresponding optical fibers 13a to 13g.
  • the separated optical signals are processed by each of the signal processing device 14, are converted into electrical signals and are outputted from the ADM 5 to transmit the information forward.
  • the response to the forwarded information or to a new piece of information is converted into an optical signal by the same signal processing device 14, and is inputted into a corresponding optical fiber 13.
  • the optical signals transmitted through the optical fibers 13a to 13g are multiplexed by the multiplexer 12, and are outputted as multiplexed optical signals of wavelengths ⁇ 1, ⁇ 2,..., ⁇ 7, and are forwarded to the optical line 7.
  • optical delay line memory which delays pulsed optical signals and stores delayed optical pulses.
  • the optical delay line memory is classified into two large categories depending on the operational mode, into a tap type, represented typically by a parallel distribution type; and a loop type represented typically by a looping delay type.
  • Figure 21 schematically illustrate the parallel distribution type optical delay line memory.
  • An example of such a device is disclosed e.g. in US-A-4,890,893.
  • This optical delay line memory 21 has an advantage that the variations in the optical losses in a plurality of transmission lines are low.
  • Figure 22 is a schematic illustration of the looping type delay line memory.
  • the optical delay line memory 31 comprises: a fixed wavelength light source 22; a 2x2 optical coupler 32; a delay line optical fiber 33 which constitutes a loop for propagating the signal; an optical amplifier 34; an optical switch 35; and an optical detector 26.
  • the optical pulses forwarded from the fixed wavelength light source 22 are inputted into the loop containing the delay line optical fiber 33 through a 2x2 optical coupler 32.
  • the optical pulses having been delayed by the desired time duration pass through the optical switch 35 by the gating action of the optical switch 35, and are converted into electrical signals by the optical detector 26.
  • the intensity of the input optical pulses to the 2x2 optical coupler 32 decreases in principle by 1/4 every time the pulse loops through the coupler 32; therefore, when the pluses loop around N times, the intensity decreases to 1/2 (N+1) .
  • An optical amplifier 34 is used to compensate for the loss in intensity.
  • optical delay line memory 31 The advantage of the optical delay line memory 31 is that the scale of the hardwares for propagating the signal around the loop is small.
  • This optical multi/demultiplexer (referred to as a multi/demultiplexer hereinbelow) 41 is provided with N input waveguides 43, slab waveguides 44, 45 of depressed surface type, arrayed waveguide grating 46 and N lines of output waveguides 47, all of which are mounted on a substrate 42.
  • both a demultiplexer 2 and a multiplexer 3 are used as a pair, therefore, it is necessary to precisely match the device characteristics of the demultiplexer 2 and the multiplexer 3.
  • ADM 5 In the other type of ADM 5 also, as in the above-mentioned ADM 1, it is necessary that the operating characteristics of the demultiplexer 11 and the multiplexer 12 be matched precisely. Therefore, such a system has a disadvantage that a paired device must be selected carefully from a production lot, thus leading to low production yield.
  • the configuration of the ADM 5 also has a problem that it tended to be too large.
  • optical delay line memory 21 uses a 1xN optical coupler 23 and an Nx1 optical switch 25, it is mandatory to have optical couplers and optical switches of uniform optical intensity loss and optical division ratio, thus leading to one major disadvantage that the number of the operating component parts required increases, and the number of steps in the joining operation increases. It follows, therefore, that the number of optical parts for making the system also increases, and the economics of the system suffers.
  • Nx1 optical switches 25 for varying the magnitude of optical delay times.
  • optical delay line memory 31 it is not possible to make a loop gain of 1, thus leading to the basic deficiency that the optical intensity loss increases as the optical pulses are propagated around the loop, and that the spontaneous emission noise accumulates leading to a degradation in the S/N ratio.
  • multiplexed optical signals consisting of ⁇ 1, ⁇ 2,..., ⁇ n are separated into N pieces of optical signals ⁇ i, and are outputted from the corresponding output waveguide 47j.
  • the utilization factor is low, thus wasting the vast multiplexing capabilities of this optical device.
  • the present invention was made in view of the background of the technology presented above, and the main object is to present an optical multi/demultiplexer device, of a simple construction and stable performance, having an arrayed waveguide grating with loop-back optical paths.
  • the optical multi/demultiplexer device is referred to as the arrayed waveguide grating multi/demultiplexer (abbreviated as AWGMD) with loop-back optical paths.
  • AWGMD arrayed waveguide grating multi/demultiplexer
  • the arrayed waveguide grating multi/demultiplexer with loop-back optical paths is provided with a common arrayed waveguide grating shared between a plurality of input sections and a plurality of output sections. A part of the optical signals from the output sections is inputted and looped through the corresponding input section of the plurality of input sections to generate output optical signals containing optical information. Therefore, the performance of the optical device of the present invention is superior to that of using several conventional multiplexers and demultiplexers of matched performance characteristics.
  • optical device of the present invention is defined in claim 1.
  • the wavelength characteristics of the demultiplexer and the multiplexer are perfectly matched.
  • the optical signals are passed through the same devices several times, and the output signals thus become narrowband.
  • the device production yield is therefore improved.
  • each wavelength of the wavelength-multiplexed signals can be processed separately while minimizing splitting losses, therefore, the optical band width of the optical signals becomes narrowband, and it becomes possible to decrease the undesired noise components of the optical signal spectrum are greatly decreased.
  • optical device of the present invention it becomes possible to present an optical device having low splitting losses, large signal to noise ratio, and a simplified device construction, thereby leading to significantly improved and stable production yield.
  • Optical signal splitting and insertion, delay line memory and delay equalization functions which are essential in optical information transmission and switching can all be provided by the same circuit configuration, thus presenting an optical device which is superior to the conventional optical devices of similar capability.
  • FIG. 1 is a schematic drawing of the multi/demultiplexer of the arrayed waveguide grating type (AWGMD) having optical paths in the first embodiment.
  • AGMD arrayed waveguide grating type
  • Figure 2 is a schematic drawing of the examples of the signal processor in which (a) is an optical pulse regenerating circuit comprising Optical/Electrical converter, Electrical/ Optical converter and waveform reshaping circuit; (b) is an optical amplifier; (c) is a signal processor having 2x2 switches; and (d) is an optical filter.
  • a is an optical pulse regenerating circuit comprising Optical/Electrical converter, Electrical/ Optical converter and waveform reshaping circuit
  • (b) is an optical amplifier
  • (c) is a signal processor having 2x2 switches
  • (d) is an optical filter.
  • Figure 3 is the second embodiment of the multi/ demultiplexer having the arrayed waveguide grating with loop-back optical paths.
  • FIG 4 is an illustration to explain the principle of performing further division operation on group multiplexed dense wavelength-division-multiplexed (WDM) optical signals.
  • WDM wavelength-division-multiplexed
  • Figure 5 is a schematic drawing of the third embodiment of the AWGMD with loop-back optical paths.
  • Figure 6 is a schematic drawing of the forth embodiment of the AWGMD with loop-back optical paths.
  • Figure 7 is a schematic drawing of the fifth embodiment of the AWGMD with loop-back optical paths.
  • Figure 8 is a schematic drawing showing the signal processor of the multi/demultiplexer of the fifth embodiment.
  • Figure 9 is a schematic drawing of an example of an optical gate switch as the signal processor in the AWGMD with loop-back optical paths.
  • Figure 10 is a schematic drawing showing the sixth embodiment of the AWGMD with loop-back optical paths.
  • Figure 11 is an illustration to explain the compression of the grouped time-arranged optical pulse signals.
  • Figure 12 is an illustration to explain the division of the grouped time-arranged optical pulse signals.
  • Figure 13 is a schematic drawing showing the seventh embodiment of the AWGMD with loop-back optical paths.
  • Figure 14 is a schematic drawing showing the eighth embodiment of the AWGMD with loop-back optical paths.
  • Figure 15 shows various waveforms of optical pulses.
  • Figure 16 is a schematic drawing showing the ninth embodiment of the AWGMD with loop-back optical paths.
  • Figure 17 is a schematic drawing showing the tenth embodiment of the AWGMD with loop-back optical paths.
  • Figure 18 is an illustration to show the state of input/output of the optical signals in the tenth embodiment.
  • FIG 19 is a schematic drawing of the conventional type of optical add-drop multiplexer (ADM).
  • ADM optical add-drop multiplexer
  • Figure 20 is a schematic drawing of another conventional type of optical ADM.
  • Figure 21 is a schematic drawing of the conventional optical delay line memory of a parallel distribution type.
  • Figure 22 is a schematic drawing of the conventional optical delay line memory of a circulating loop type.
  • Figure 23 is a schematic drawing of the conventional AWGMD.
  • FIG. 1 is a schematic drawing to show the first embodiment of the arrayed waveguide grating (AWGMD) with loop-back optical paths.
  • AGMD arrayed waveguide grating
  • the AWGMD with loop-back optical paths shown in this figure comprises: optical lines 6, 7; an AWGMD 41 disposed between the lines 6, 7; output waveguides 47; input waveguides 43; and optical fibers 51 to loop-back the optical signals outputted from the output waveguides 47 into the corresponding input waveguides 43; and respective signal processor 52 in each of the optical fibers 51.
  • the optical line 6 is connected to an input waveguide 43h which is one of the eight input waveguides 43a to 43h; and the optical line 7 is connected to an output waveguide 47h which is one of the eight output waveguides 47a to 47h.
  • the seven wavelength-multiplexed optical signals of seven waveforms having the wavelengths ⁇ 1, ⁇ 2, ..., ⁇ 7 are inputted into the input waveguide 43h of the AWGMD 41 after propagating through the optical line 6.
  • the wavelength-multiplexed optical signals are diverged by the diffraction effects at the slab waveguide 44, and are guided into the various waveguides constituting the arrayed waveguide grating 46.
  • the optical signals are condensed by the slab waveguide 45 after propagating in the arrayed waveguide grating 46, but the nodes of the bundle of lights are different because of the phase differences generated during the propagation in the arrayed waveguide grating 46.
  • the optical signals are thus demultiplexed.
  • the demultiplexed signals are propagated through the respective optical fibers 51a to 51g, and are guided to the respective signal processors 52a to 52g.
  • the signal processors 52 receive the optical signals, thereby obtaining the information transmitted.
  • Each of the signal processors 52a to 52g is provided with a light source to generate an optical signal of the same wavelength as the received wavelength, and the information to be forwarded is superimposed on the optical signal, and is returned to the AWGMD 41 through the optical fibers 51.
  • the optical signal inputted into the input waveguide 43 is multiplexed by the same effect as that in the first propagation, in the output waveguide 47h.
  • the important result in this operation is that the optical fiber 51j of the jth fiber is connected to the input waveguide 43j of the jth waveguide.
  • the optical signal of the wavelength ⁇ i inputted from the input waveguide 43j is outputted from the output waveguide 47h. That is to say that all the optical signal having the wavelengths ⁇ 1, ⁇ 2, ..., ⁇ 7 are forwarded to the optical line 7 from the waveguide 47h.
  • the pilot optical signal of wavelength ⁇ 0 does not pass through the optical fibers 51 and the signal processor 52, but is outputted through the input waveguide 43h, the arrayed waveguide grating 46 and the output waveguide 47h.
  • the arrayed waveguide grating multi/demultiplexer (AWGMD) of the present invention it is possible to perform multiplexing and demultiplexing operations using one AWGMD 41 by adopting an efficient loop-back configuration, i.e., looping the demultiplexed optical signal back to the input side with the use of the optical fibers 51.
  • a signal processor 52 is provided for each of the fibers 51 so as to be able to process all seven wavelengths. In general, however, it is not common to provide a signal processor for all the optical signals of the wavelength-multiplexed optical signals propagating in the optical line 6. In such a case, there is no need to provide a signal processor 52 in the optical fibers 51 in which is propagating an optical signal which does not need processing, and the signal processor 52 should be removed.
  • the signal processor shown in Figure 2 (a) is an optical pulse regenerating circuit, and comprises: an optical/electrical (O/E) converter 53 consisting of a photodiode and its control circuits; an electrical/optical (E/O) converter 54 consisting of a semiconductor laser and its control circuits; a waveform reshaping circuit (not shown), disposed between the O/E converter 53 and the E/O converter 54, which reshapes the waveform degraded by propagation.
  • This waveform reshaping circuit has a capability to regenerate the electrically degraded pulse signals into rectangular-pulses of the same bit rate.
  • optical signals containing the desired information are converted into electrical signals by the O/E converter 53, and are outputted from the electrical output terminal 55.
  • the information to be forwarded is inputted as electrical signals into the electrical input terminal 56 which are converted into optical signals by the E/O converter 54, and are outputted into optical fibers 51 (or into waveguide).
  • the signal processor shown in Figure 2 (b) comprises a glass waveguide amplifier; an optical semiconductor amplifier, and an optical amplifier 57 such as erbium-doped optical fiber amplifier. These amplifiers regenerate the light intensity of optical signals degraded by propagating in the optical line 6 and the arrayed waveguide grating 46.
  • Figure 2 (c) is an example of using a 2x2 optical switch 58 to connect the signal processor 52 with the optical fibers 51.
  • the optical switch 58 comprises a 2x2 Mach-Zehnder interferometer made with a silica type glass, an optical semiconductors, or lithium niobate optical waveguide.
  • the optical switch 58 has four input/output ports 61 to 64, and when the switch is in the through-state, port 61 is connected with port 63 and port 62 is connected with port 64, and the optical signals pass through without being processed. When the ports are cross-connected, port 61 is connected with port 64 and port 62 is connected with port 63, and the signal processing is performed.
  • the signal processor shown in Figure 2 (d) includes such devices as waveguide-type ring resonator having wavelength selectivity; waveguide-type Mach-Zehnder interferometer; and optical filters 65 using dielectric multilayer film (interference film).
  • waveguide-type ring resonator having wavelength selectivity waveguide-type Mach-Zehnder interferometer
  • optical filters 65 using dielectric multilayer film (interference film) dielectric multilayer film (interference film).
  • the terminal end input waveguide 43h is connected to optical line 6, and the terminal end output waveguide 47h is connected to the optical line 7, but the first embodiment is not limited only to such a configuration.
  • the same effect can be obtained by connecting input waveguide 43b with optical line 6, and output waveguide 47b with optical line 7.
  • the AWGMD 41 provides the highest diffraction efficiency and the lowest loss when the centrally positioned input waveguides 43 and the output waveguides 47 are utilized. Therefore, the optical line 6 should be connected to input waveguide 43d (or input waveguide 43e) which is close to the center, and the optical line 7 to output waveguide 47d (or output waveguide 47e) near the center.
  • the number of wavelength multiplexing by the AWGMD 41 is chosen to be eight, but the first embodiment is not limited to this number, and this number can be changed suitably by changing the design of the arrayed waveguide grating 46.
  • signal processor 52 can be made of a 2x2 optical coupler.
  • one of the two optical signals split into two optical signals by the optical coupler propagates through the optical fibers 51, and simultaneously, the other signal is outputted to an external receiver. It is thus possible to monitor propagated optical signals without severing the optical fibers 51. It is also possible to insert a new signal of the same wavelength in the optical fibers 51 with the use of the optical coupler.
  • the polarization dependence can also be eliminated by depositing a layer of amorphous silicon on or inserting a ⁇ /2 plate into the arrayed waveguide grating 46.
  • Figure 3 is a schematic illustration of the second embodiment of the AWGMD with loop-back optical paths.
  • the difference between the AWGMD with loop-back optical paths in the first and second embodiment is the provision of optical fibers 51 between each output waveguides 47 and the input waveguides 43, and one optical fiber 51d of the optical fiber bundle, in which an optical signal having the wavelength ⁇ 4 is propagated, is provided with an AWGMD 41.
  • this optical circuit it is possible to further demultiplex the group demultiplexed dense wavelength-division multiplexed (dense WDM) optical signal ⁇ 4 (or frequency modulated optical signal) into wavelengths ⁇ 41, ⁇ 42, ..., ⁇ 47 (or a plurality of frequency modulated optical signals). It is also possible to multiplex a plurality of closely spaced wavelengths ⁇ 41, ⁇ 42, ..., ⁇ 47 (or a plurality of frequency-modulated optical signals) into dense WDM optical signals ⁇ 4 (or a frequency modulated optical signals).
  • dense WDM optical signals ⁇ 4 or frequency modulated optical signals
  • Figure 5 is a schematic illustration of the third embodiment of the AWGMD with loop-back optical paths.
  • this AWGMD circuit is that the arrayed waveguide grating 41, a plurality of waveguides (loop-back optical paths) 71, and a plurality of signal processors 72 comprising optical semiconductors are all installed on one common substrate 73.
  • the operation of and the signal flow of this circuit is the same as those in the first embodiment.
  • the input waveguides 43, the output waveguides 47 and the waveguide 71 are disposed on the same substrate 73, the labor of making connections is eliminated. Therefore, the number of component parts and the assembly steps are reduced, thus making the device further compact and increasing the device reliability.
  • the signal processor 72 made of optical semiconductor waveguides is integrated with the AWGMD 41 made of silica type glass. If the AWGMD 41 were made of optical semiconductor waveguides, it is possible to fabricate both devices at the same time on the same substrate 73, thus resulting in further savings in the manufacturing cost.
  • this AWGMD with the loop-back optical paths is fabricated by having all the devices on a common substrate, it is also possible to make the circuit by employing laser welding, optical bonding agents such as light hardening resins and soldering to bond the various component parts.
  • Figure 6 is a schematic illustration of the fourth embodiment of the AWGMD device with loop-back optical paths.
  • This device comprises: a wavelength-tunable semiconductor laser source 81; an intensity modulator (optical modulator) 82; a polarization compensator 83; an optical line 6 on the input side; a 7x7 AWGMD 41 made of silica glass; a plurality of delay line optical fibers (signal delay means) 84; a plurality of signal processors (optical signal processing means) 85; an optical line 7 on the output side; photodetector element 86.
  • the wavelength-tunable semiconductor laser source 81 is able to vary the wavelength of the output laser beam by changing the input current, for example.
  • a laser source 81 capable of generating seven wavelengths, ⁇ 1, ⁇ 2, ..., ⁇ 7 was used.
  • the delay line optical fibers 84 are provided to correspond with the respective transmission waveguides between the output waveguides 47 and the input waveguides 43.
  • the first output waveguide (first o/w) 47a joins with the first delay line optical fiber 84a and the first input waveguide (i/w) 43a; second o/w 47b with second delay line optical fiber 84b and the second i/w 43b; and so on, so that signal light outputted from the output waveguides 47 will be given a certain delay time.
  • AGMD arrayed waveguide grating multi/demultiplexer
  • the signal is then passed through the polarization compensator 83 to coincide the polarization plane of the various signals, and, after passing through the optical line 6 on the input side, is inputted into the input waveguide 43a to 43g of the AWGMD 41.
  • the signal pulses inputted into the input waveguide (i/w) 43a are dispersed by diffraction at the slab waveguide 44, are inputted into a plurality of waveguides comprising the arrayed waveguide grating 46, and after passing through the grating 46, are condensed by the slab waveguide 45.
  • the location of interference of diffracted signal i.e. the location of condensing light
  • the optical signal pulses pass through the optical line 7 on the output side, and are converted into electrical signals by the photodetector element 86, and thus constitute delayed information.
  • the optical signal pulses of wavelengths ⁇ i inputted into the i/w 43j are forwarded to delay line fibers 84j via o/w 43j.
  • the AWGMD with loop-back optical paths comprises a wavelength-tunable semiconductor laser source 81; an intensity modulator (optical modulator) 82; a polarization compensator 83; an optical line 6 on the input side; a 7x7 AWGMD 41 made of silica glass; a plurality of delay line fibers (signal delay means) 84; a plurality of signal processors (optical signal processing means) 85; and an optical line 7 on the output side; a photodetector element 86. Therefore, it is possible to change the time delay of optical pulses freely and quickly.
  • wavelength switching are performed using a wavelength-tunable semiconductor laser source 81, switching to selected wavelength can be performed readily. Also, because the variable delay times are produced by one AWGMD 41, it is possible to minimize the variations due to variables associated with a number of devices. The yield of the circuit is thus increased.
  • the light signal pulses are passed through the AWGMD 41 twice, through the delay line fibers 84, the bandwidth of the signal pulses becomes a narrowband, therefore, it becomes possible to significantly decrease the noise component of the optical signal spectrum.
  • a wavelength-tunable semiconductor laser source 81 was used as the variable wavelength light source, it is not limited to this device, and other light sources can be used.
  • DBR distributed Bragg reflected
  • DFB distributed feedback
  • FP Farby-Perot
  • external cavity semiconductor laser may also be used to produce the same effect as the wavelength-tunable laser source 81 used in this embodiment.
  • the wavelength-tunable laser source it is also permissible to use a combination of N laser sources having a fixed but differing wavelengths with an Nx1 optical coupler, a combination of N laser sources having a fixed but differing wavelengths with an optical gate switch and multiplexing with an Nx1 optical coupler.
  • the wavelength can be changed by switching the Nx1 optical coupler, and in the latter circuit, by turning on the optical gate switches.
  • FIG. 7 is an illustration of the fifth embodiment the arrayed waveguide grating multi/demultiplexer (AWGMD) with loop-back optical paths.
  • AGMD arrayed waveguide grating multi/demultiplexer
  • the substrate 91 has the following devices integrally fabricated thereon; i.e. a wavelength-tunable semiconductor laser source 81 integrated with an intensity modulator 82 serving a wavelength-tunable optical transmitter 92 (wavelength-tunable light source, optical modulator); lensed fibers 93, an AWGMD 41; delay line waveguides (optical delay means) 94 replacing the delay line fibers 84; a plurality of optical signal processors 85.
  • the two devices are connected with lensed fibers 93, because of the size difference between the optical transmitter 92 and the AWGMD 41, since it is difficult to connect them directly.
  • the following fabricated devices may be used for the optical signal processor 85.
  • optical signal processor 85 is made by incorporating an optical amplifier 95 such as semiconductor amplifier or glass waveguide amplifier in the delay line waveguide 94, and this optical amplifier 95 compensates for the loss in signal intensity generated in the transmission paths and in the AWGMD 41.
  • optical amplifier 95 such as semiconductor amplifier or glass waveguide amplifier
  • optical signal processor 85 is made by incorporating an optical gate switch 96, such as lithium niobate (LiNbO 3 ) optical modulator or a semiconductor switch in the delay line waveguide 94. These devices perform optical signal processing by passing or blocking a part of optical signal by turning on the optical gate switch 96 or the wavelength-tunable optical transmitter 92.
  • optical gate switch 96 such as lithium niobate (LiNbO 3 ) optical modulator or a semiconductor switch in the delay line waveguide 94.
  • the AWGMD of the present embodiment comprises an integrated circuit on a common substrate 91 including such devices as wavelength-tunable optical transmitter 92; lensed fiber 93; AWGMD 41; delay line waveguide 94; optical processors 85. Therefore, the circuit is able to provide the same functions as the AWGMD with loop-back optical paths presented in the embodiment 3. Also, the connections and the connecting steps required for connecting the laser source 81 with the intensity modulator 82 can be eliminated, and the polarization compensator 83 between the intensity modulator 82 and the AWGMD 41 can be eliminated. Therefore, the circuit can be made even more compact, and the number of parts required and the fabrication steps can be reduced.
  • this integration was made on a common substrate, it is also possible to make this circuit by employing laser welding, optical bonding agents such as light hardening resins and soldering to bond the various component parts.
  • the wavelength-tunable optical transmitter 92 and the AWGMD 41 was connected with lensed fibers 93, other optical merging techniques can be utilized.
  • guided-wave spot size converter to effectively connect the two devices can be fabricated on the same substrate as the AWGMD 41 thereby further making the circuit more compact.
  • Figure 10 is an illustration of the sixth embodiment of the AWGMD with loop-back optical paths.
  • the lengths of the plurality of delay line waveguides (optical delay means) 97, which joins the input waveguides 43 and the output waveguides 47 on the same substrate 91, are made to be inversely proportional to the respective propagating wavelengths; and that the optical line 6 is connected to an external laser source.
  • the delay line waveguides 97 are made so that the length becomes longer the shorter the wavelength being propagated therein, therefore, it is possible to compress or separate the time-sequenced optical pulses arranged in the wavelength order on the time axis, or to arrange the optical pulses in the wavelength order, at a same time point, and to control their positions on the time axis.
  • optical pulse groups on the time axis can be compressed or separated.
  • the pulse width of the optical pulse tends to widen as a result of mode dispersion during the pulse transmission, or chirping in the semiconductor laser source.
  • the wavelength components of the widened pulse are the same as those of the pulses multiplexed on the time axis.
  • the pulses for inputting are those short wavelength pulse group, ⁇ N,..., ⁇ 2, ⁇ 1, which propagate faster.
  • the lengths of the plurality of the delay line waveguides 97, through which the demultiplexed optical pulses pass, are adjusted so that the time interval T between the pulses is the same as the delay time ⁇ between the neighboring delay line waveguides so that the long wavelength components propagate faster than the short wavelength components.
  • the result is that the pulses having short wavelength components are delayed, and the expanded pulses on the time axis are compressed on a plurality of delay line waveguides 97 having the reverse delay properties.
  • a multi-wavelength generating semiconductor laser beam can be regarded as a synthesized beam comprising a number of simultaneously generated wavelengths, ⁇ 1, ⁇ 2, ..., and ⁇ N.
  • this laser beam is externally multiplexed to produce simultaneously generated wavelengths ⁇ 1, ⁇ 2, ..., ⁇ N
  • the short wavelength components propagate slower than the long wavelength components. Therefore, when the pulse group passes through the plurality of delay line waveguides, the component pulses distribute themselves on the time axis, as shown in Figure 12.
  • the simultaneously generated optical pulse group comprising ⁇ N,..., ⁇ 2, ⁇ 1, can be separated on the time axis.
  • the AWGMD with loop-back optical paths is fabricated so that the lengths of the plurality of delay line waveguides 97 joining the input waveguides 43 and the output waveguides 47, whose circuits are formed on the same substrate 94, are inversely proportional to the wavelengths being propagated therein. Therefore, the AWGMD of this embodiment enables to compress or separate the optical pulse group comprising pulses arranged in the order of wavelengths on the time axis.
  • Figure 13 is an illustration of the seventh embodiment of the AWGMD with loop-back optical paths.
  • the difference between the AWGMD with loop-back optical paths of this embodiment and that in the first embodiment is that one signal processor 52b is served by a wavelength converter 101, and the slab waveguide 45 is provided with new output waveguides 47K, 47m, which are connected with new optical transmission lines 102k, 102m.
  • the wavelength converter 101 comprises: an O/E converter 103 to convert optical signal to electrical signal; and an E/O converter 104 which activates another laser source having another wavelength based on the electrical signal.
  • O/E converter 103 to convert optical signal to electrical signal
  • E/O converter 104 which activates another laser source having another wavelength based on the electrical signal.
  • nonlinear crystals such as potassium titanium phosphate (KTP), lithium niobate (LiNbO 3 ) lithium tantanate (LiTaO 3 ), or acousto-optic modulators (A/O modulator) based on crystalline materials such as molybdenum plumbate (PbMbO 4 ), tellurium dioxide (TeO 2 ).
  • PbMbO 4 molybdenum plumbate
  • TeO 2 tellurium dioxide
  • the optical signal converted by the wavelength converter 101 is not outputted from the optical line 7, but is outputted from another optical fiber 102 after propagating through the output waveguide 47.
  • an optical signal demultiplexed into the optical fibers 51 having the wavelength ⁇ 2 is converted to a wavelength ⁇ 3
  • an optical signal having the wavelength ⁇ 3 can be forwarded to the optical fiber 102k through the output waveguide 47. Therefore, if the AWGMD with loop-back optical paths of the seventh embodiment is used as nodes in a ring network, it would be possible to exit the ring network and select an optical route to propagate to an external node or a terminal station.
  • Figure 14 illustrates the eighth embodiment of the AWGMD with loop-back optical paths.
  • one of the signal processor 52b includes an optical bistable device 111.
  • the optical bistable device 111 is an application of the non-linear optic effect of semiconductor lasers having a saturable absorption region. As shown in Figure 15, when an optical pulse is inputted into an optical bistable device 111, the device 111 enters an oscillating state because of the non-linear optic effect. When an electrical reset pulse is impressed on the saturable absorption region, the device 111 changes to a non-oscillating state. Therefore, it enables to generate a new optical signal whose ON-period is between the input of a trigger optical pulse and the impression of an electrical reset signal. It is clear that the duration of the ON-period can be altered suitably.
  • Figure 16 is an illustration of the ninth embodiment of the AWGMD with loop-back optical paths.
  • the difference between the ninth embodiment and the first embodiment is that one slab waveguide 44 is provided with the end terminals of the arrayed waveguide grating 46, the slab waveguide 44 is provided with the input waveguide 43 and the output waveguide 47, and the signal processors 85 are removed from the delay line waveguides.
  • the lengths of each of the waveguides of the delay line waveguides are chosen to be inversely related to the short wavelength components, ⁇ s. Therefore, the delay line waveguides 97 function as the normal dispersion medium having a larger dispersion coefficient than that of the zero-dispersion wavelength of the optical fiber having a dispersion shift wavelength of 1.3 ⁇ m.
  • the optical fiber when an optical pulse having a wavelength of 1.55 ⁇ m propagates through an optical fiber having a 1.3 ⁇ m dispersion shift, the optical fiber functions as an anomalous dispersion medium, thus causing the shorter wavelength components, ⁇ s, to propagate faster than the longer wavelength components, ⁇ l. Therefore, it means that the width of propagating pulses expands.
  • the delay line waveguide 97 acts as a normal dispersion medium having reverse dispersion properties, and is capable of narrowing the pulse width caused by wavelength dispersion, and in effect performs so-called dispersion compensation.
  • the delay line waveguides 97 can function as an anomalous dispersion medium. For example, it enables to compensate (equalize) pulse width broadening of optical pulses having a wavelength shorter than the zero-dispersion wavelength of a 1.3 ⁇ m dispersion shift optical fiber.
  • the dispersion compensation function of the delay line waveguides 97 is able to generate the same effect as presented above for optical pulses of any wavelengths to be transmitted by setting the delay times to correspond with the dispersion values.
  • the circuit uses only one slab waveguide 44, the entire AWGMD with loop-back optical paths can be made compact.
  • Figure 17 is an illustration of the tenth embodiment of the AWGMD with loop-back optical paths.
  • optical fibers 51a to 51d are provided between each of the output waveguides 47 and the input waveguides 43, that each of the optical fibers 51a to 51d is provided with nodes 121a to 121d, and that a 4x4 optical matrix switch 122 is provided straddling the optical fibers 51a to 51d.
  • the optical matrix switch 122 it is possible to select any optical path by operating the optical matrix switch 122 to switch the input waveguides 43a to 43d for returning a plurality of optical signals.
  • the waveguide 43e is used as the input terminal for the wavelength division multiplexing signal
  • the output waveguide (o/w) 47a is connected to the input waveguide (i/w) 43b; o/w 47b to i/w 43a; o/w 47c to i/w 43d; o/w 47d to i/w 43c, then an optical signal having the wavelength ⁇ 1 is outputted to optical transmission line 7 through the nodes 12b, 121c, 121d and 121a.
  • an optical signal having the wavelength ⁇ 2 passes through the nodes, 121a and 121b; an optical signal having the wavelength ⁇ 3 passes through the nodes, 121d, and 121c; an optical signal having the wavelength ⁇ 4 passes through the nodes 121c, 121b, 121a and 121d to be transmitted to optical line 7.
  • each optical signal is outputted to the common optical line 7 after passing through more than one node 121a to 121d provided on the optical fiber bundle 51.
  • the pilot signal of ⁇ 0 does not pass through the optical matrix switch 122 and the nodes 121a to 121d, but it passes through input waveguides 43e, arrayed waveguide grating 46 and the output waveguide 47e, and is outputted to optical line 7.
  • the optical matrix switch 122 by switching the optical matrix switch 122, it is possible to suitably switch the connections between the output waveguides 47a to 47d and the input waveguides 43a to 43d, and to select the nodes, 121a to 121d to be passed through. Further, even when using only one wavelength, by setting the optical path by switching the optical matrix switch 122, it is possible to select more than one suitable nodes of the nodes 121a to 121d to pass through. The order of passing through the nodes of the nodes 121 to 121d can also be suitably selected.
  • the optical matrix switch 122 can serve as a temporary optical memory for storing the optical cells or optical packets, which are groups of optical pulses, for a certain specific interval of time.

Claims (33)

  1. Optische Multiplex/Demultiplexvorrichtung zum Durchführen von Wellenlängen-Multiplexen und -Demultiplexen eines optischen Signales aus einer Vielzahl von Wellenlängen (λ0, λ1, λ2, ...), wobei die Vorrichtung aufweist:
    eine angeordnete Wellenleitergitter-Multiplexer/Demultiplexervorrichtung (41) mit einem angeordneten Wellenleitergitter (46), einer Vielzahl von Eingangsabschnitten (43) zum Empfangen von eingegebenen optischen Signalen, wobei einer der Eingangsabschnitte (6) eine Eingangsleitung für die Vorrichtung ist, mit einer Vielzahl von Ausgangsabschnitten (47) zum Liefern abgegebener optischer Signale, wobei einer der Ausgangsabschnitte (7) eine Ausgangsleitung für die Vorrichtung ist, einem ersten Flachwellenleiter (44) zum Verteilen oder Koppeln von optisch angeordneten Wellenlängensignalen zwischen den mehreren Eingangsabschnitten (43) und dem Wellenleitergitter (46) und einem zweiten Flachwellenleiter (45) zum Verteilen oder Koppeln von optisch angeordneten Wellenlängensignalen zwischen den mehreren Ausgangsabschnitten (47) und dem Wellenleitergitter (46), gekennzeichnet durch mehrere optische Rückschleifenpfadeinrichtungen (51), die optisch mit den mehreren Eingangsabschnitten (43) und den mehreren Ausgangsabschnitten verbunden sind und eine Signalprozessoreinrichtung (52) aufweisen, die auf gewählten optischen Pfadeinrichtungen der optischen Pfadeinrichtungen angeordnet ist, um ein Wellenlängensignal von den mehreren Ausgangsabschnitten (47) in wenigstens einen Eingangsabschnitt der mehreren entsprechenden Eingangsabschnitte auszubreiten, wodurch jede Wellenlänge getrennt in eine einzelne optische Rückschleifenpfadeinrichtung ausgebreitet wird, um mit dem Wellenlängensignal wenigstens einmal in einer optischen Pfadeinrichtung eine Schleife zu bilden, damit ein Multiplexen/Demultiplexen und Signalzeitverzögerungsoperationen dadurch ausgeführt werden.
  2. Optische Vorrichtung nach Anspruch 1, bei der jede der mehreren optischen Rückschleifenpfadeinrichtungen (51) mit einer Signalprozessoreinrichtung (52) versehen ist.
  3. Optische Vorrichtung nach Anspruch 1 oder 2, bei der ein Flachwellenleiter (44) zwischen den mehreren Eingangsabschnitten (43) und den mehreren Ausgangsabschnitten (47) angeordnet ist.
  4. Optische Vorrichtung nach einem der Ansprüche 1, 2 und 3, bei dem die angeordnete Wellenleitergitter-Multiplex/Demultiplexvorrichtung (41) derart aufgebaut ist, daß ein optisches Pilotsignal (λ0), das in den optischen Signalen enthalten ist, keine Rückschleife in die optische Rückschleifenpfadeinrichtung (51) bildet und bei Einspeisung in den Eingangsabschnitt (43) direkt von dem Ausgangsabschnitt (47) ausgegeben wird.
  5. Optische Vorrichtung nach Anspruch 1, 2 oder 3, bei der die Länge von jeder der mehreren optischen Rückschleifenpfadeinrichtungen (51) proportional zu der Wellenlänge eines optischen Signales ist, das in einer einzelnen Pfadeinrichtung der mehreren optischen Rückschleifenpfadeinrichtungen (51) ausgebreitet wird.
  6. Optische Vorrichtung nach Anspruch 1, 2 oder 3, bei der die Länge von jeder der mehreren optischen Rückschleifenpfadeinrichtungen (51) umgekehrt proportional zu der Wellenlänge eines optischen Signales ist, das sich in einer einzelnen Pfadeinrichtung der mehreren optischen Rückschleifenpfadeinrichtungen (51) ausbreitet.
  7. Optische Vorrichtung nach Anspruch 1, 2 oder 3, bei der wenigstens ein Eingangsabschnitt der mehreren Eingangsabschnitte (43) mit einer Lichtquelle versehen ist, die aus einer Gruppe ausgewählt ist, die aus einer in der Wellenlänge abstimmbaren Lichtquelle (81), einer Mehrfachwellenlängen-Lichtquelle und einer Lichtquelle mit fester Wellenlänge besteht.
  8. Optische Vorrichtung nach Anspruch 1, 2 oder 3, bei der wenigstens ein Ausgangsabschnitt der mehreren Ausgangsabschnitte (47) mit einer Photodetektoreinrichtung versehen ist.
  9. Optische Vorrichtung nach Anspruch 7, bei der ein optischer Modulator (82) zwischen jedem Eingangsabschnitt der mehreren Eingangsabschnitte (43) und der in der Wellenlänge abstimmbaren Lichtquelle (81) vorgesehen ist.
  10. Optische Vorrichtung nach Anspruch 7, bei der ein Polarisationskompensator (83) zwischen einen Eingangsabschnitt der mehreren Eingangsabschnitte (43) und der in der Wellenlänge abstimmbaren Lichtquelle (81) vorgesehen ist.
  11. Optische Vorrichtung nach Anspruch 1, bei der die optische Vorrichtung (41) und die optische Rückschleifenpfadeinrichtung (51) integriert hergestellt sind.
  12. Optische Vorrichtung nach Anspruch 1, bei der die optische Vorrichtung (41) und die optische Rückschleifenpfadeinrichtung (71) auf einer gemeinsamen Substratbasis (73) integriert hergestellt sind.
  13. Optische Vorrichtung nach Anspruch 11 oder 12, bei der jede der mehreren optischen Rückschleifenpfadeinrichtungen (71) mit einer Signalprozessoreinrichtung (72) zum Verarbeiten eines optischen Signales ausgestattet ist, das sich gerade in der optischen Rückschleifenpfadeinrichtung (71) ausbreitet.
  14. Optische Vorrichtung nach Anspruch 13, bei der wenigstens eine der Signalprozessoreinrichtungen (72) aus einer Gruppe ausgewählt ist, die aus einem optischen Verstärker (95), einer optischen Schaltereinrichtung (96), einer optischen Filtereinrichtung, einem Photodetektor und einer Lichtquelleneinrichtung sowie einer optischen Kopplereinrichtung besteht.
  15. Optische Vorrichtung nach Anspruch 11 oder 12, bei der eine Länge von jeder der optischen Rückschleifenpfadeinrichtungen (97) proportional zu der Wellenlänge eines optischen Signales ist, das sich gerade in einem jeweiligen Pfad der optischen Rückschleifenpfadeinrichtungen (97) ausbreitet.
  16. Optische Vorrichtung nach Anspruch 11 oder 12, bei der eine Länge von jeder der optischen Rückschleifenpfadeinrichtungen (97) umgekehrt proportional zu der Wellenlänge eines optischen Signales ist, das sich in jeweils einer der optischen Rückschleifenpfadeinrichtungen (97) ausbreitet.
  17. Optische Vorrichtung nach Anspruch 11 oder 12, bei der wenigstens ein Eingangsabschnitt der mehreren Eingangsabschnitte (43) mit einer Lichtquelle versehen ist, die aus einer Gruppe ausgewählt ist, die aus einer in der Wellenlänge abstimmbaren Lichtquelle (81), einer Mehrfachwellenlängen-Lichtquelle und einer Lichtquelle mit fester Wellenlänge besteht.
  18. Optische Vorrichtung nach Anspruch 17, bei der ein optischer Modulator (82) zwischen einem Eingangsabschnitt der mehreren Eingangsabschnitte (43) und der in der Wellenlänge abstimmbaren Lichtquelle (81) vorgesehen ist.
  19. Optische Vorrichtung nach Anspruch 2, bei der wenigstens eine Signalprozessoreinrichtung (52) aus einer Gruppe ausgewählt ist, die aus einer optischen Schaltereinrichtung (58), einer optischen Vermischungs/Teilungsschaltungseinrichtung, einer optischen Filtereinrichtung (65) und einer optischen Kopplereinrichtung besteht.
  20. Optische Vorrichtung nach Anspruch 19, bei der die optische Schaltereinrichtung (58) ein optischer Matrixschalter (122) ist, der so angeordnet ist, daß er sich über mehrere der mehreren optischen Rückschleifenpfadeinrichtungen (51) erstreckt, wobei er optisch einzelne der mehreren optischen Rückschleifenpfadeinrichtungen (51) verbindet.
  21. Optische Vorrichtung nach Anspruch 2, bei der wenigstens eine Signalprozessoreinrichtung (52) eine optische Knoteneinrichtung (121) ist, um optische Signale zu übertragen, verstärken, aufzuteilen und zu vermischen.
  22. Optische Vorrichtung nach Anspruch 2, bei der wenigstens eine der Signalprozessoreinrichtungen (52) eine Photodetektoreinrichtung (53) und eine Lichtquelle (54) aufweist.
  23. Optische Vorrichtung nach Anspruch 2, bei der die Signalprozessoreinrichtung (52) eine Signalverzögerungseinrichtung (84) ist.
  24. Optische Vorrichtung nach Anspruch 2, bei der die Signalprozessoreinrichtung (52) eine Signalverstärkereinrichtung (57) ist.
  25. Optische Vorrichtung nach Anspruch 2, bei der die Signalprozessoreinrichtung (52) eine Wellenlängenumsetzungseinrichtung (101) ist.
  26. Optische Vorrichtung nach Anspruch 2, bei der die Signalprozessoreinrichtung (52) eine optisch bistabile Vorrichtung (111) ist.
  27. Optische Vorrichtung nach Anspruch 2, bei der die Signalprozessoreinrichtung (52) eine optische Impulsregeneratorvorrichtung ist.
  28. Optische Vorrichtung nach Anspruch 2, bei der die Signalprozessoreinrichtung (52) eine optische Impulsausgleichseinrichtung (97) ist.
  29. Optische Vorrichtung nach Anspruch 2, bei der die Signalprozessoreinrichtung (52) eine wellenlängenselektive optische Filtereinrichtung (65) ist.
  30. Optische Vorrichtung nach Anspruch 29, bei der die wellenlängenselektive optische Filtereinrichtung (52) ein angeordneter Wellenleitergitter-Multiplexer/Demultiplexer (41) ist.
  31. Optische Vorrichtung nach Anspruch 29, bei der die welleniängenselektive optische Filtereinrichtung (52) ein Interferenzfilm ist.
  32. Optische Vorrichtung nach Anspruch 29, bei der die wellenlängenselektive optische Filtereinrichtung (52) ein Ringresonator ist.
  33. Optische Vorrichtung nach Anspruch 29, bei der die wellenlängenselektive optische Filtereinrichtung (52) ein Mach-Zehnder-Interferometer ist.
EP93402364A 1992-09-29 1993-09-28 Multi/Demultiplexer mit Gitter aus gruppierten Wellenleitern und zurückgefürten optischen Wegen Expired - Lifetime EP0591042B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP260222/92 1992-09-29
JP26022292 1992-09-29
JP12448893 1993-05-26
JP124488/93 1993-05-26

Publications (2)

Publication Number Publication Date
EP0591042A1 EP0591042A1 (de) 1994-04-06
EP0591042B1 true EP0591042B1 (de) 1997-05-28

Family

ID=26461174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93402364A Expired - Lifetime EP0591042B1 (de) 1992-09-29 1993-09-28 Multi/Demultiplexer mit Gitter aus gruppierten Wellenleitern und zurückgefürten optischen Wegen

Country Status (4)

Country Link
US (1) US5414548A (de)
EP (1) EP0591042B1 (de)
CA (1) CA2107181C (de)
DE (1) DE69311048T2 (de)

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612164A1 (de) * 1993-02-19 1994-08-24 AT&T Corp. Schnell abstimmbarer breitbandiger intergrierter optischer Filter
US5546483A (en) * 1993-08-02 1996-08-13 Nippon Telegraph And Telephone Corporation Integrated optical waveguide circuit and optical branch line test system using the same
DE59502068D1 (de) * 1994-01-11 1998-06-10 Siemens Ag Optische Anordnung aus streifenförmigen optischen Wellenleitern
EP0695428B1 (de) * 1994-02-11 2001-10-10 Koninklijke Philips Electronics N.V. Phasengekoppelte optische vorrichtung
JPH07253519A (ja) * 1994-03-16 1995-10-03 Fujitsu Ltd 光接続装置
JPH07336301A (ja) * 1994-06-06 1995-12-22 Kokusai Denshin Denwa Co Ltd <Kdd> 光波長多重通信装置
JPH0815556A (ja) * 1994-06-29 1996-01-19 Shin Etsu Chem Co Ltd 広帯域光ファイバカプラおよびその製造方法
CA2128645C (en) * 1994-07-22 2002-07-16 Francois Gonthier Multiport optical waveguide interferometer and method of making the same
FR2725040A1 (fr) * 1994-09-23 1996-03-29 Bruno Adrien Dispositif optoelectronique integrant un recepteur multilongueur d'onde perfectionne
US5617234A (en) * 1994-09-26 1997-04-01 Nippon Telegraph & Telephone Corporation Multiwavelength simultaneous monitoring circuit employing arrayed-waveguide grating
US5701371A (en) * 1994-10-31 1997-12-23 Nippon Telegraph And Telephone Corporation Tunable optical filter
US5515460A (en) * 1994-12-22 1996-05-07 At&T Corp. Tunable silicon based optical router
US5566014A (en) * 1994-12-28 1996-10-15 At&T Corp. Tunable add/drop optical filter providing arbitrary channel arrangements
US5852505A (en) * 1994-12-28 1998-12-22 Lucent Technologies Inc. Dense waveguide division multiplexers implemented using a first stage fourier filter
US5524155A (en) * 1995-01-06 1996-06-04 Texas Instruments Incorporated Demultiplexer for wavelength-multiplexed optical signal
US5519796A (en) * 1995-03-06 1996-05-21 International Business Machines Corporation Gain equalization using monolithic planar waveguide grating multiplexer and demultiplexer
US5629992A (en) * 1995-09-14 1997-05-13 Bell Communications Research, Inc. Passband flattening of integrated optical filters
JPH09116490A (ja) * 1995-10-16 1997-05-02 Fujitsu Ltd 光多重システム用分岐装置
JP3039347B2 (ja) * 1995-12-27 2000-05-08 日立電線株式会社 スイッチング機能を備えた光部品及びそれに使用する導波路型フィルタ
DE19609289A1 (de) * 1996-03-09 1997-09-11 Iot Integrierte Optik Gmbh Verfahren zur Herstellung integriert optischer Bauteile durch Ionenaustausch mit Gittermaske für Schichtwellenleiter
ES2155247T3 (es) * 1996-03-29 2001-05-01 British Telecomm Nodo de compensacion de la dispersion cromatica.
US5838851A (en) * 1996-06-24 1998-11-17 Trw Inc. Optical-loop signal processing using reflection mechanisms
GB2316759A (en) * 1996-07-30 1998-03-04 Northern Telecom Ltd Optical multiplexer/demultiplexer having diffraction gratings in tandem
EP1452896B1 (de) * 1996-09-02 2009-12-02 Nippon Telegraph and Telephone Corporation Optische Signalverarbeitungsvorrichtung und optisches Signalverarbeitungsverfahren
JPH1093164A (ja) * 1996-09-17 1998-04-10 Kokusai Denshin Denwa Co Ltd <Kdd> 多波長光源及び離散波長可変光源
US5701372A (en) * 1996-10-22 1997-12-23 Texas Instruments Incorporated Hybrid architecture for integrated optic switchable time delay lines and method of fabricating same
KR0183945B1 (ko) 1996-11-28 1999-05-15 삼성전자주식회사 광 디멀티플렉서
JPH10173598A (ja) * 1996-12-09 1998-06-26 Fujitsu Ltd 光合分波装置及びこれを用いた光伝送システム
US5740289A (en) * 1996-12-30 1998-04-14 At&T Corp Optical arrangement for amplifying WDM signals
CA2278482C (en) * 1997-01-17 2002-06-04 Tellium, Inc. Integrated multi-wavelength transmitter
JP2858655B2 (ja) * 1997-01-22 1999-02-17 日立電線株式会社 光波長合分波器
US6025944A (en) * 1997-03-27 2000-02-15 Mendez R&D Associates Wavelength division multiplexing/code division multiple access hybrid
FI103619B (fi) * 1997-05-26 1999-07-30 Nokia Telecommunications Oy Optinen multipleksointi ja demultipleksointi
US6072612A (en) * 1997-08-08 2000-06-06 Lucent Technologies, Inc. WDM transmitter for optical networks using a loop-back spectrally sliced light emitting device
JP3346233B2 (ja) * 1997-08-18 2002-11-18 ケイディーディーアイ株式会社 光伝送線路監視装置
US6631018B1 (en) 1997-08-27 2003-10-07 Nortel Networks Limited WDM optical network with passive pass-through at each node
SE521765C2 (sv) * 1997-08-29 2003-12-02 Ericsson Telefon Ab L M Anordning och förfarande relaterande till optisk transmission
US5926587A (en) * 1997-09-08 1999-07-20 Lucent Technologies Inc. Optical passband filters
US6281997B1 (en) * 1997-09-11 2001-08-28 Ciena Corporation Dense WDM optical multiplexer and demultiplexer
TWI239847B (en) * 1997-12-02 2005-09-21 Elan Pharm Inc N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease
US6137927A (en) * 1998-01-16 2000-10-24 Corning Incorporated N-port reconfigurable DWDM multiplexer and demultiplexer
GB9801183D0 (en) * 1998-01-20 1998-03-18 Alsthom Cge Alcatel A reconfigurable branching unit for a submarine communications system
EP0936482A3 (de) * 1998-02-13 2002-09-25 Nortel Networks Limited Optischer Multiplexer/Demultiplexer
US6111996A (en) 1998-03-13 2000-08-29 Northern Telecom Limited Optical multiplexer/demultiplexer
GB2334343A (en) 1998-02-13 1999-08-18 Northern Telecom Ltd Optical waveguide multiplexer/demultiplexer with diffraction gratings embracing one another
US5937113A (en) * 1998-04-17 1999-08-10 National Research Council Of Canada Optical grating-based device having a slab waveguide polarization compensating region
US6169616B1 (en) * 1998-06-04 2001-01-02 Avanex Corporation Optical and programmable fiber optic wavelength add/drop system
JP3098235B2 (ja) * 1998-08-04 2000-10-16 日本電信電話株式会社 波長分波器、光スペクトラムアナライザおよび光バンドパスフィルタ
JP3248573B2 (ja) * 1998-08-13 2002-01-21 日本電気株式会社 光遅延装置および光遅延方法
EP1004908A1 (de) * 1998-11-27 2000-05-31 PIRELLI CAVI S.p.A. Modulares Filter zur Entnahme von optischen Signalen und/oder ihre Einfügung in optische Ubertragungssysteme mit mehreren Wellenlängen
US6580534B2 (en) * 1999-01-27 2003-06-17 Lucent Technologies Inc. Optical channel selector
US7127172B1 (en) 1999-06-02 2006-10-24 Massachusetts Institute Of Technology Optical frequency filter
US6628440B1 (en) 1999-07-07 2003-09-30 Spirent Communications Of Rockville, Inc. System for diverting an optical component signal from a multiplexed optical signal
FR2799070B1 (fr) * 1999-09-23 2002-02-08 Cit Alcatel Regenerateur de signaux optiques multiplexes en longueur d'onde
WO2001023930A1 (en) 1999-09-29 2001-04-05 Koninklijke Philips Electronics N.V. Optical device having second arrayed waveguide grating for temperature control
JP3346751B2 (ja) * 1999-10-14 2002-11-18 日本電気株式会社 アレイ導波路格子
US6301409B1 (en) 1999-12-23 2001-10-09 Nortel Networks Limited Optical comb filter
EP1115222B1 (de) * 2000-01-06 2008-07-02 Nippon Telegraph and Telephone Corporation CDMA Kodierer-Dekodierer, CDMA Nachrichtenübertragungssystem, WDM-CDMA Nachrichtenübertragungssystem
CA2333436C (en) * 2000-03-03 2006-12-05 Hitachi Cable, Ltd. Optical multiplexer/ demultiplexer
JP3527455B2 (ja) * 2000-03-09 2004-05-17 日本電信電話株式会社 光信号処理装置
EP1137306A1 (de) * 2000-03-24 2001-09-26 BRITISH TELECOMMUNICATIONS public limited company Optisches Signalisierungssystem
JP4460031B2 (ja) * 2000-03-28 2010-05-12 古河電気工業株式会社 アレイ導波路型回折格子
GB0012554D0 (en) * 2000-05-24 2000-07-12 Bae Systems Electronics Limite Improvements in or relating to optical delay lines
US6707962B1 (en) * 2000-07-20 2004-03-16 Fujitsu Network Communications, Inc. Method for providing signal power tilt compensation in optical transmission systems
US6795605B1 (en) * 2000-08-01 2004-09-21 Cheetah Omni, Llc Micromechanical optical switch
JP3654170B2 (ja) * 2000-09-29 2005-06-02 日本電気株式会社 出力監視制御装置および光通信システム
US6665476B2 (en) 2000-09-29 2003-12-16 Sarnoff Corporation Wavelength selective optical add/drop multiplexer and method of manufacture
US20020048065A1 (en) * 2000-10-19 2002-04-25 Lynx Photonic Networks Inc. AWG based OADM with improved crosstalk
US6690855B2 (en) * 2000-12-15 2004-02-10 Nortel Networks Limited Planar waveguide dispersion compensator
US6636662B1 (en) * 2000-12-15 2003-10-21 Nortel Networks Limited Planar waveguide dispersion compensator
US6959129B2 (en) * 2000-12-22 2005-10-25 Metrophotonics Inc. Bidirectional multiplexer and demultiplexer based on a single echelle waveguide grating
US7145704B1 (en) 2003-11-25 2006-12-05 Cheetah Omni, Llc Optical logic gate based optical router
JP3679016B2 (ja) * 2001-02-27 2005-08-03 エヌティティエレクトロニクス株式会社 光合波回路、および、光合波装置
US6307986B1 (en) * 2001-04-24 2001-10-23 Seneca Networks Protection switching in bidirectional WDM optical communication networks with transponders
AU2002314324A1 (en) * 2001-06-18 2003-01-02 Bookham Technology Plc Integrated optical device
US6766074B1 (en) 2001-08-15 2004-07-20 Corning Incorporated Demultiplexer/multiplexer with a controlled variable path length device
US6587267B2 (en) 2001-11-09 2003-07-01 Jds Uniphase Inc. Beam directing device
US6879743B2 (en) * 2001-12-19 2005-04-12 Intel Corporation Crystal-core fiber mode converter for low-loss polarization-insensitive planar lightwave circuits
JP3991719B2 (ja) * 2002-03-08 2007-10-17 Kddi株式会社 光遅延装置
US7006719B2 (en) * 2002-03-08 2006-02-28 Infinera Corporation In-wafer testing of integrated optical components in photonic integrated circuits (PICs)
ES2192151B1 (es) * 2002-03-15 2005-02-01 Universidad Politecnica De Valencia Linea de retardo multiple basada en awg y diferentes tramos de un medio optico dispersivo.
US7283739B2 (en) * 2002-05-29 2007-10-16 Fujitsu Limited Multiple subnets in an optical ring network and method
US7283740B2 (en) * 2002-05-29 2007-10-16 Fujitsu Limited Optical ring network with optical subnets and method
US7184663B2 (en) * 2002-05-29 2007-02-27 Fujitsu Limited Optical ring network with hub node and method
US7099587B2 (en) * 2002-05-22 2006-08-29 Doron Handelman Apparatus and method for delaying optical signals for optical buffering and optical storage applications
US7079731B2 (en) * 2002-10-21 2006-07-18 Prima Luci, Inc. All-optical bistable devices
US7321729B2 (en) * 2003-05-29 2008-01-22 Fujitsu Limited Optical ring network with selective signal regeneration and wavelength conversion
US7167620B2 (en) * 2003-07-16 2007-01-23 Doron Handelman Devices and methods for all-optical processing and storage
DE10343615A1 (de) * 2003-09-20 2005-04-14 Marconi Communications Gmbh Netzknoten für ein optisches Nachrichtenübertragungsnetz
US7483637B2 (en) * 2003-11-26 2009-01-27 Fujitsu Limited Optical ring network with optical subnets and method
KR100594040B1 (ko) * 2004-01-08 2006-06-30 삼성전자주식회사 듀얼 밴드 파장분할 다중화기
US20050175346A1 (en) * 2004-02-10 2005-08-11 Fujitsu Limited Upgraded flexible open ring optical network and method
JP4677195B2 (ja) * 2004-03-22 2011-04-27 富士通株式会社 光ネットワークシステム及び光合分波装置
US20050286896A1 (en) * 2004-06-29 2005-12-29 Fujitsu Limited Hybrid optical ring network
JP2006189587A (ja) * 2005-01-05 2006-07-20 Nidek Co Ltd 医療用レーザ装置
US7120360B2 (en) * 2005-01-06 2006-10-10 Fujitsu Limited System and method for protecting traffic in a hubbed optical ring network
US7570844B2 (en) * 2005-01-18 2009-08-04 Doron Handelman Photonic integrated circuit device and elements thereof
JP4291281B2 (ja) * 2005-02-03 2009-07-08 富士通株式会社 情報処理システム、計算ノード、情報処理システムの制御方法
US7382953B1 (en) 2007-02-09 2008-06-03 Gemfire Corporation Folded AWG architecture
US8270792B1 (en) * 2009-09-15 2012-09-18 Hrl Laboratories, Llc High-resolution multi-level frequency channelizers
DE102009050051A1 (de) * 2009-10-21 2011-04-28 Deutsche Telekom Ag Verfahren zur Verzögerung von optischen Pulsen
KR101747453B1 (ko) * 2012-02-29 2017-06-16 한국전자통신연구원 파장 다중화 및 역다중화 기능이 통합된 배열 도파로 격자 라우터 장치
US9036957B2 (en) * 2012-06-29 2015-05-19 Infinera Corporation Shared propagation region for an optical multiplexer or an optical demultiplexer
US8682114B2 (en) * 2012-06-29 2014-03-25 Infinera Corporation Coherent detection for an integrated circuit having a multiplexer or a demultiplexer with a shared propagation region
CN104823089B (zh) * 2012-09-27 2018-12-18 日本电信电话株式会社 光信号处理装置
US9329337B2 (en) * 2014-04-25 2016-05-03 Inphi Corporation Silicon photonics device and communication system therefor
US9450597B1 (en) 2014-05-02 2016-09-20 Hrl Laboratories, Llc Hardware based compressive sampling ADC architecture for non-uniform sampled signal recovery
US9268093B2 (en) * 2014-05-21 2016-02-23 Corning Incorporated Systems and methods for converting legacy multimode links to longer-wavelength links
EP3029783B1 (de) * 2014-12-01 2020-03-04 Huawei Technologies Co., Ltd. Mehrkanaliger abstimmbarer Laser
US10254477B2 (en) * 2015-12-09 2019-04-09 Finisar Corporation Polarization independent multiplexer / demultiplexer
CN109765654A (zh) * 2019-02-15 2019-05-17 中山大学 基于氮化硅光波导的可调微波光子真延时芯片及其制备方法
EP4113179A1 (de) 2021-07-02 2023-01-04 Imec VZW Integrierte photonische vorrichtung, sensorsystem und verfahren

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3740560A (en) * 1971-09-08 1973-06-19 Westinghouse Electric Corp Communication means
US4166212A (en) * 1977-06-03 1979-08-28 International Standard Electric Corporation Recirculating optical delay line
US4511207A (en) * 1981-11-19 1985-04-16 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic data distributor
US4468766A (en) * 1982-09-30 1984-08-28 The United States Of America As Represented By The Secretary Of The Navy Optical RF downconverter
FR2553951B1 (fr) * 1983-10-25 1985-12-27 Thomson Csf Dispositif de memorisation d'informations dans un systeme de transmission par fibre optique
NL8304311A (nl) * 1983-12-15 1985-07-01 Philips Nv Reflectieraster.
US4671605A (en) * 1985-02-06 1987-06-09 The United States Of America As Represented By The Secretary Of The Air Force Length dependent, optical time delay/filter device for electrical signals
US4715027A (en) * 1986-05-29 1987-12-22 Polaroid Corporation Integrated optic multi/demultiplexer
JPS6420506A (en) * 1987-07-15 1989-01-24 Nippon Telegraph & Telephone Optical filter
GB2220764B (en) * 1988-07-15 1992-02-19 Stc Plc Single mode couplers
DE3904752A1 (de) * 1989-02-16 1990-08-23 Siemens Ag Vorrichtung fuer den optischen direktempfang mehrerer wellenlaengen
US4890893A (en) * 1989-03-02 1990-01-02 Bell Communications Research, Inc. Dark fiber switched bandwidth filter
FR2649494B1 (fr) * 1989-07-10 1991-10-11 Onera (Off Nat Aerospatiale) Systeme de transmission d'informations optiques, notamment pour aeronef
JPH0367231A (ja) * 1989-08-07 1991-03-22 Oki Electric Ind Co Ltd 光中継伝送方式
US5031235A (en) * 1989-10-27 1991-07-09 Hoechst Celanese Corp. Cable system incorporating highly linear optical modulator
US5002350A (en) * 1990-02-26 1991-03-26 At&T Bell Laboratories Optical multiplexer/demultiplexer
US5101455A (en) * 1991-04-26 1992-03-31 The United States Of America As Represented By The Secretary Of The Air Force Recirculating binary fiberoptic delay line apparatus for time steering
US5136671A (en) * 1991-08-21 1992-08-04 At&T Bell Laboratories Optical switch, multiplexer, and demultiplexer

Also Published As

Publication number Publication date
DE69311048T2 (de) 1997-12-11
DE69311048D1 (de) 1997-07-03
US5414548A (en) 1995-05-09
CA2107181A1 (en) 1994-03-30
EP0591042A1 (de) 1994-04-06
CA2107181C (en) 1998-12-29

Similar Documents

Publication Publication Date Title
EP0591042B1 (de) Multi/Demultiplexer mit Gitter aus gruppierten Wellenleitern und zurückgefürten optischen Wegen
Hill et al. A transport network layer based on optical network elements
Borella et al. Optical components for WDM lightwave networks
KR100380924B1 (ko) 광 전송 관련 장치 및 방법
Elmirghani et al. Technologies and architectures for scalable dynamic dense WDM networks
US20020196495A1 (en) Device for adding and dropping optical signals
US20020093707A1 (en) Optical node device and system including the device
WO2000036446A1 (en) Wavelength selective optical routers
EP0923264B1 (de) Optische Koppelmatrix für Wellenlängen- Multiplexsignale
US6252698B1 (en) Method and device for wavelength conversion, and system including the device
Tervonen Challenges and opportunities for integrated optics in optical networks
US7801446B2 (en) Wavelength division multiplexed optical communication system with rapidly-tunable optical filters
US6744986B1 (en) Tunable wavelength add/drop multiplexer based on integrated optic devices
JP3293698B2 (ja) ループバック光路付アレイ導波路回折格子型光合分波器
US6748176B1 (en) Optical dropping apparatus and optical add/drop multiplexer
US6487329B2 (en) Non-blocking wavelength router architecture with wavelength reuse capability
US7019907B2 (en) Integrated lithium niobate based optical transmitter
KR20010085802A (ko) 동조가능 애드/드롭 멀티플렉서
JP3201566B2 (ja) 光多重分離回路
KR100264950B1 (ko) 궤환잡음이 없는 파장다중방식(wdm) 통신용 파장가변광 추출/투과필터
JP2658114B2 (ja) 波長変換スイッチ
JP2923684B2 (ja) 波長同期型光波長変換装置
Larsen et al. Experimental evaluation of novel, tunable MMI-MZI demultiplexer in InP
JPH10148791A (ja) 光合波器とこれを用いた波長多重光源
Tian et al. Novel fully dynamic and reconfigurable optical add/drop multiplexer based on AOTF with low crosstalk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19940628

17Q First examination report despatched

Effective date: 19960202

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIPPON TELEGRAPH AND TELEPHONE CORPORATION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69311048

Country of ref document: DE

Date of ref document: 19970703

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120926

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120926

Year of fee payment: 20

Ref country code: DE

Payment date: 20120927

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69311048

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69311048

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20131001