EP0588690B1 - Installation de traitement cryogénique, notamment de distillation d'air - Google Patents

Installation de traitement cryogénique, notamment de distillation d'air Download PDF

Info

Publication number
EP0588690B1
EP0588690B1 EP93402179A EP93402179A EP0588690B1 EP 0588690 B1 EP0588690 B1 EP 0588690B1 EP 93402179 A EP93402179 A EP 93402179A EP 93402179 A EP93402179 A EP 93402179A EP 0588690 B1 EP0588690 B1 EP 0588690B1
Authority
EP
European Patent Office
Prior art keywords
column
principal
plant according
cold
under vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93402179A
Other languages
German (de)
English (en)
Other versions
EP0588690A1 (fr
Inventor
Maurice Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9433574&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0588690(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0588690A1 publication Critical patent/EP0588690A1/fr
Application granted granted Critical
Publication of EP0588690B1 publication Critical patent/EP0588690B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04236Integration of different exchangers in a single core, so-called integrated cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04945Details of internal structure; insulation and housing of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0358Heat exchange with the fluid by cooling by expansion
    • F17C2227/0362Heat exchange with the fluid by cooling by expansion in a turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/905Column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/905Column
    • Y10S62/907Insulation

Definitions

  • the present invention relates to a cryogenic treatment installation, in particular for air distillation, of the type comprising a cryogenic treatment column and a heat exchange line for cooling at least one fluid to be treated before its introduction into the column.
  • the main cold box contains a solid insulator surrounding the column and the heat exchange line (see "Tieftemperatur-technik, 1985, pages 490 to 495).
  • vacuum insulation has been limited to small installations, that is to say treating an air flow of the order of a few thousand m 3 / h, and in particular to those which are kept cold by injection into the column of a relatively expensive cryogenic liquid of external origin (so-called "bottle-fed” installations).
  • FR-A-1 295 048 describes an installation in which the exchange line and the column are each insulated by two types of insulation, namely, insulation with solid insulation and vacuum insulation.
  • the object of the invention is to provide a thermal insulation technique for cryogenic treatment installations whose performance is close to vacuum insulation of the entire installation despite a clearly reduced cost, and which can be implemented. works on relatively large installations while allowing convenient transportation.
  • the subject of the invention is an installation for cryogenic air treatment of the aforementioned type, characterized in that the column is isolated only by a single envelope under main vacuum, while the heat exchange line is isolated only by a main cold box at atmospheric pressure containing a solid insulator, in particular particulate.
  • the installation shown in the drawing is intended to produce mainly gaseous oxygen under high pressure, gaseous nitrogen under high pressure and nitrogen gas under low pressure. It essentially consists of a double distillation column 1, a heat exchange line 2 and various accessories.
  • the pumps are connected to a hot element, namely their electric drive motor.
  • the turbines and the pumps can therefore be mounted on the edge of the cold box 19, possibly in special boxes insulated with perlite and attached to this cold box.
  • the double column 1 is of the so-called "minaret" type, that is to say that the low pressure production nitrogen comes from the top of the low pressure column 1A.
  • the high pressure oxygen and the high pressure nitrogen are both obtained by pumping, respectively, liquid oxygen withdrawn from the tank of column 1A and medium pressure liquid nitrogen withdrawn at the head of the medium pressure column 1B, and vaporization in the exchange line 2 of the liquids thus compressed.
  • the air circulates in the exchange line 2 under three different pressures: part of the air is at the discharge pressure of the compressor 3; a second part of the air, supercharged at 5, is at a high pressure higher than this discharge pressure; and a third part of the air, taken between the two turbines 11 and 12, is at the medium pressure of column 1B.
  • the air from the turbine 12 is blown at low pressure into the column 1A.
  • the installation also produces liquid oxygen via a line 13 and liquid nitrogen via a line 14.
  • This insulation consists of two parts of different natures: on the one hand, a cylindrical vacuum envelope 15 which surrounds the double column 1, and on the other hand means 16 of insulation under atmospheric pressure, using a particulate insulating material which is preferably perlite.
  • the envelope 15 has a certain number of inputs / outputs 17 for all of the pipes supplying the double column and leaving from it (twelve in number in the example shown) and contains only the double column and the sections pipe 18 connecting it to the corresponding inputs / outputs.
  • the insulation means 16 consist of two cold boxes filled with perlite at atmospheric pressure: a main cold box 19 containing the exchange line 2 and all of the cold accessories, namely the valves 8, the pumps 9 and 10 and the turbines 11 and 12, and a cold connection box 20 which contains all the pipe sections 21 connecting the cold box 19 to the inlets / outlets of the vacuum envelope 15.
  • the vacuum envelope can have a diameter closely adapted to the outside diameter of the double column, which can be of constant diameter over its entire height, which makes it possible to produce a double column 1-envelope 15 assembly which is conveniently transportable for large column diameters, corresponding to oxygen productions of up to approximately 1,000 tonnes / day.
  • this solution is also very advantageous, although it is much less costly than vacuum insulation enclosing the entire installation.
  • 75 to 85% of the heat losses are borne by the double column and, in the heat exchange line, the losses are concentrated in the coldest part.
  • the insulation performance of the 15-16 assembly is around 90% of that obtained with vacuum insulation of the entire installation.
  • the set of cold accessories 8 to 11 can be mounted in an auxiliary cold box filled with perlite, at atmospheric pressure, attached to the main cold box 19 for the connection of the accessories. It is possible to provide in this auxiliary box spaces without perlite receiving the hot accessories, including the installation control cabinet, or mount these against the auxiliary box, so as to constitute a service module containing all the accessories.
  • the double column can be completed by an impure argon production column coupled to the low pressure column 1A, in which case this additional column can either be housed in the casing 15, or be arranged in a vacuum casing auxiliary attached to the casing 15 and connected to the latter by a cold connection box similar to the cold box 20 and intended for the passage of the pipes necessary for the operation of the column for producing impure argon.
  • the invention also applies to other types of installation comprising a cryogenic treatment column and a heat exchange line used to cool the fluid or fluids treated in this column, for example washing installations of a gas with liquid nitrogen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • La présente invention est relative à une installation de traitement cryogénique, notamment de distillation d'air, du type comprenant une colonne de traitement cryogénique et une ligne d'échange thermique pour refroidir au moins un fluide à traiter avant son introduction dans la colonne.
  • Le fonctionnement à très basse température des installations de distillation d'air nécessite d'en isoler thermiquement les parties froides, qui sont essentiellement la ligne d'échange thermique, la colonne de distillation et les divers accessoires "froids" tels que les vannes et éventuellement des pompes d'oxygène liquide ou d'azote liquide et/ou des turbines de détente.
  • Classiquement, la boîte froide principale contient un isolant solide entourant la colonne et la ligne d'échange thermique (voir "Tieftemperatur-technik, 1985, pages 490 à 495).
  • Actuellement, l'isolation sous vide de l'ensemble de l'installation est de loin la technique la plus performante. Malheureusement, son coût est élevé et ses possibilités d'utilisation sont limitées, notamment pour les raisons suivantes.
    • (1) Pour des raisons d'accessibilité, l'ensemble des accessoires froids précités doivent être placés en dehors de l'enveloppe sous vide, ce qui oblige à prévoir de nombreuses entrées/sorties de conduites sur cette enveloppe.
    • (2) Une enveloppe sous vide, par définition cylindrique, s'adapte mal à l'implantation en son sein d'une colonne de distillation, souvent de grande hauteur, et d'un ou plusieurs échangeurs de chaleur parallélépipédiques du type à plaques brasées. Il en résulte une limitation des tailles d'installations dont l'enveloppe est transportable aisément.
  • Pour ces raisons, l'isolation sous vide a été limitée aux installations de petites tailles, c'est-à-dire traitant un débit d'air de l'ordre de quelques milliers de m3/h, et notamment à celles qui sont maintenues en froid par injection dans la colonne d'un liquide cryogénique d'origine extérieure, relativement coûteux (installations dites "biberonnées").
  • Il est connu de EP-A-0.538.857A, un état de la technique selon l'article 54 (3) CBE, d'isoler une colonne de distillation à l'intérieur d'une double enveloppe d'isolation, avec un bain de liquide entourant la colonne. Cette disposition est compliquée à fabriquer et donc coûteuse.
  • FR-A-1 295 048 décrit une installation dans laquelle la ligne d'échange et la colonne sont chacune isolée par deux types d'isolation, à savoir, une isolation avec un isolant solide et une isolation sous vide.
  • L'invention a pour but de fournir une technique d'isolation thermique des installations de traitement cryogénique dont les performances soient voisines de l'isolation sous vide de l'ensemble de l'installation malgré un coût nettement réduit, et qui puisse être mise en oeuvre sur des installations de taille relativement grande tout en en permettant un transport commode.
  • A cet effet, l'invention a pour objet une installation de traitement cryogénique d'air du type précité, caractérisée en ce que la colonne est isolée uniquement par une seule enveloppe sous vide principale, tandis que la ligne d'échange thermique est isolée uniquement par une boîte froide principale à la pression atmosphérique contenant un isolant solide, notamment particulaire.
  • Suivant des modes de réalisation de l'invention
    • l'ensemble des accessoires froids de l'installation, tels que les vannes et éventuellement les pompes et/ou les turbines de détente, sont isolés à la pression atmosphérique au moyen d'un isolant solide, notamment particulaire;
    • l'ensemble desdits accessoires froids sont regroupés dans une boîte froide auxiliaire accolée à la boîte froide principale;
    • la boîte froide auxiliaire est également équipée des accessoires chauds de l'installation, de façon à constituer un module de service;
    • l'installation comprend une boîte froide de liaison thermiquement isolée qui contient l'ensemble des conduites reliant la boîte froide principale à l'enveloppe sous vide principale;
    • la boîte froide de liaison est à la pression atmosphérique et contient un isolant solide, notamment particulaire;
    • l'installation, destinée à la distillation d'air, comprend une double colonne de distillation d'air dans l'enveloppe sous vide principale, et une colonne de production d'argon impur isolée sous vide;
    • la colonne de production d'argon impur est contenue dans une enveloppe sous vide auxiliaire reliée à l'enveloppe sous vide principale;
    • la colonne de production d'argon impur est logée dans l'enveloppe sous vide principale;
    • la colonne de distillation d'air, notamment constituée par une double colonne de distillation, présente un diamètre extérieur constant sur toute sa hauteur.
  • Un exemple de réalisation de l'invention va maintenant être décrit en regard du dessin annexé, dont la Figure unique représente schématiquement une installation de distillation d'air conforme à l'invention.
  • L'installation représentée au dessin est destinée à produire principalement de l'oxygène gazeux sous haute pression, de l'azote gazeux sous haute pression et de l'azote gazeux sous basse pression. Elle est constituée essentiellement d'une double colonne de distillation 1, d'une ligne d'échange thermique 2 et de divers accessoires.
  • Ces accessoires sont répartis en deux catégories :
    • d'une part, des accessoires "chauds" fonctionnant à la température ambiante ou au-dessus, à savoir un compresseur d'air 3, un appareil 4 d'épuration d'air en eau et en CO2 par adsorption, régénéré par le gaz résiduaire W de la double colonne (azote impur), une soufflante 5 de surpression d'une partie de l'air épuré, le réfrigérant à eau 6 de cette soufflante, et un alternateur-frein 7;
    • d'autre part, des accessoires "froids", c'est-à-dire fonctionnant très au-dessous de la température ambiante : de nombreuses vannes 8, dont certaines sont des vannes d'arrêt ou de réglage et d'autres sont des vannes de détente; une pompe d'oxygène liquide 9; une pompe d'azote liquide 10; et deux turbines 11, 12 en série dont la première est couplée à la soufflante 5 tandis que la seconde est freinée par l'alternateur 7.
  • Il faut noter toutefois que, de même que les turbines, les pompes sont reliées à un élément chaud, à savoir leur moteur électrique d'entraînement. Les turbines et les pompes peuvent donc être montées en bordure de la boîte froide 19, éventuellement dans des caissons particuliers isolés par de la perlite et accolés à cette boîte froide.
  • On ne décrira pas en détail le fonctionnement de l'installation, qui est connue en soi hormis ses moyens d'isolation thermique. On indiquera seulement ci-dessous certaines caractéristiques de l'installation.
  • La double colonne 1 est du type dit "à minaret", c'est-à-dire que l'azote basse pression de production provient du sommet de la colonne basse pression 1A. L'oxygène haute pression et l'azote haute pression sont tous deux obtenus par pompage, respectivement d'oxygène liquide soutiré en cuve de la colonne 1A et d'azote liquide moyenne pression soutiré en tête de la colonne moyenne pression 1B, et vaporisation dans la ligne d'échange 2 des liquides ainsi comprimés.
  • Pour obtenir cette vaporisation, l'air circule dans la ligne d'échange 2 sous trois pressions différentes : une partie de l'air se trouve à la pression de refoulement du compresseur 3; une seconde partie de l'air, surpressé en 5, se trouve à une haute pression supérieure à cette pression de refoulement; et une troisième partie de l'air, prélevée entre les deux turbines 11 et 12, se trouve à la moyenne pression de la colonne 1B. De plus, l'air issu de la turbine 12 est insufflé en basse pression dans la colonne 1A.
  • L'installation produit également de l'oxygène liquide via une conduite 13 et de l'azote liquide via une conduite 14.
  • On décrira maintenant l'isolation thermique de l'installation.
  • Cette isolation est constituée de deux parties de natures différentes : d'une part, une enveloppe sous vide cylindrique 15 qui entoure la double colonne 1, et d'autre part des moyens 16 d'isolation sous la pression atmosphérique, utilisant un matériau isolant particulaire qui est de préférence la perlite.
  • L'enveloppe 15 comporte un certain nombre d'entrées/sorties 17 pour l'ensemble des conduites alimentant la double colonne et partant de celle-ci (au nombre de douze dans l'exemple représenté) et contient uniquement la double colonne et les tronçons de conduite 18 reliant celle-ci aux entrées/sorties correspondantes.
  • Les moyens d'isolation 16 sont constitués de deux boîtes froides emplies de perlite à la pression atmosphérique : une boîte froide principale 19 contenant la ligne d'échange 2 et l'ensemble des accessoires froids, à savoir les vannes 8, les pompes 9 et 10 et les turbines 11 et 12, et une boîte froide de liaison 20 qui contient tous les tronçons de conduite 21 reliant la boîte froide 19 aux entrées/sorties de l'enveloppe sous vide 15.
  • Grâce à ce mode d'isolation, l'enveloppe sous vide peut avoir un diamètre étroitement adapté au diamètre extérieur de la double colonne, laquelle peut être de diamètre constant sur toute sa hauteur, ce qui permet de réaliser un ensemble double colonne 1-enveloppe 15 commodément transportable pour des diamètres de colonne importants, correspondant à des productions d'oxygène pouvant aller jusqu'à 1 000 tonnes/jour environ.
  • De plus, tous les accessoires froids 8 à 12 sont facilement accessibles puisqu'ils sont constamment à la pression atmosphérique.
  • Du point de vue énergétique, cette solution est également très avantageuse, bien qu'elle soit beaucoup moins coûteuse qu'une isolation sous vide renfermant l'ensemble de l'installation. En effet, dans une installation de distillation d'air, 75 à 85% des pertes thermiques sont supportées par la double colonne et, dans la ligne d'échange thermique, les pertes sont concentrées dans la partie la plus froide. Au total, les performances d'isolation de l'ensemble 15-16 sont de l'ordre de 90% de celles obtenues avec une isolation sous vide de l'ensemble de l'installation.
  • En variante, l'ensemble des accessoires froids 8 à 11 peut être monté dans une boîte froide auxiliaire emplie de perlite, à la pression atmosphérique, accolée à la boîte froide principale 19 pour le raccordement des accessoires. On peut prévoir dans cette boîte auxiliaire des espaces sans perlite recevant les accessoire chauds, y compris l'armoire de commande de l'installation, ou monter ces derniers contre la boîte auxiliaire, de manière à constituer un module de service contenant tous les accessoires.
  • En variante également, la double colonne peut être complétée par une colonne de production d'argon impur couplée à la colonne basse pression 1A, auquel cas cette colonne supplémentaire peut soit être logée dans l'enveloppe 15, soit être disposée dans une enveloppe sous vide auxiliaire accolée à l'enveloppe 15 et reliée à celle-ci par une boîte froide de liaison analogue à la boîte froide 20 et destinée au passage des conduites nécessaires au fonctionnement de la colonne de production d'argon impur.
  • On comprend que l'invention s'applique également à d'autres types d'installations comportant une colonne de traitement cryogénique et un ligne d'échange thermique servant à refroidir le ou les fluides traités dans cette colonne, par exemple à des installations de lavage d'un gaz à l'azote liquide.

Claims (10)

  1. Installation de traitement cryogénique, notamment de distillation d'air, du type comprenant une colonne de traitement cryogénique (1) et une ligne d'échange thermique (2) pour refroidir au moins un fluide à traiter avant son introduction dans la colonne, caractérisée en ce que la colonne (1) est isolée uniquement par une seule enveloppe sous vide principale (15), tandis que la ligne d'échange thermique (2) est isolée uniquement par une boîte froide principale (19) à la pression atmosphérique contenant un isolant solide, notamment particulaire.
  2. Installation selon la revendication 1, caractérisée en ce que l'ensemble des accessoires froids de l'installation, tels que les vannes (8) et éventuellement les pompes (9, 10) et/ou les turbines de détente (11, 12), sont isolés à la pression atmosphérique au moyen d'un isolant solide, notamment particulaire.
  3. Installation selon la revendication 2, caractérisée en ce que l'ensemble desdits accessoires froids (8 à 12) sont regroupés dans une boîte froide auxiliaire accolée à la boîte froide principale (19).
  4. Installation selon la revendication 3, caractérisée en ce que la boîte froide auxiliaire est également équipée des accessoires chauds de l'installation, de façon à constituer un module de service.
  5. Installation selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'elle comprend une boîte froide de liaison (20) thermiquement isolée qui contient l'ensemble (21) des conduites reliant la boîte froide principale (19) à l'enveloppe sous vide principale (15).
  6. Installation selon la revendication 5, caractérisée en ce que la boîte froide de liaison (20) est à la pression atmosphérique et contient un isolant solide, notamment particulaire.
  7. Installation suivant l'une quelconque des revendications 1 à 6, destinée à la distillation d'air, caractérisée en ce qu'elle comprend une double colonne (1) de distillation d'air dans l'enveloppe sous vide principale (15), et une colonne de production d'argon impur isolée sous vide.
  8. Installation suivant la revendication 7, caractérisée en ce que la colonne de production d'argon impur est contenue dans une enveloppe sous vide auxiliaire reliée à l'enveloppe sous vide principale (15).
  9. Installation suivant la revendication 7, caractérisée en ce que la colonne de production d'argon impur est logée dans l'enveloppe sous vide principale (15).
  10. Installation suivant l'une quelconque des revendications 1 à 9, destinée à la distillation d'air, caractérisée en ce que la colonne de distillation (1), notamment constituée par une double colonne de distillation, présente un diamètre extérieur constant sur toute sa hauteur.
EP93402179A 1992-09-16 1993-09-08 Installation de traitement cryogénique, notamment de distillation d'air Expired - Lifetime EP0588690B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9211051 1992-09-16
FR9211051A FR2695714B1 (fr) 1992-09-16 1992-09-16 Installation de traitement cryogénique, notamment de distillation d'air.

Publications (2)

Publication Number Publication Date
EP0588690A1 EP0588690A1 (fr) 1994-03-23
EP0588690B1 true EP0588690B1 (fr) 1997-05-28

Family

ID=9433574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93402179A Expired - Lifetime EP0588690B1 (fr) 1992-09-16 1993-09-08 Installation de traitement cryogénique, notamment de distillation d'air

Country Status (8)

Country Link
US (1) US5412954A (fr)
EP (1) EP0588690B1 (fr)
JP (1) JP3436394B2 (fr)
CN (1) CN1072351C (fr)
CA (1) CA2106106A1 (fr)
CZ (1) CZ283688B6 (fr)
DE (1) DE69311040T2 (fr)
FR (1) FR2695714B1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701553B1 (fr) 1993-02-12 1995-04-28 Maurice Grenier Procédé et installation de production d'oxygène sous pression.
JPH0933166A (ja) * 1995-07-21 1997-02-07 Teisan Kk 超高純度窒素製造方法及び装置
JP3030502B2 (ja) * 1997-05-06 2000-04-10 日本酸素株式会社 空気液化分離装置
DE19737521A1 (de) * 1997-08-28 1999-03-04 Messer Griesheim Gmbh Anlage zur Tieftemperaturzerlegung von Luft
JPH1183309A (ja) * 1997-09-04 1999-03-26 Nippon Air Rikiide Kk アルゴン精製方法及び装置
US5983666A (en) * 1997-10-27 1999-11-16 The Boc Group, Inc. Air separation plant and method of fabrication
FR2774753B1 (fr) * 1998-02-06 2000-04-28 Air Liquide Installation de distillation d'air comprenant plusieurs unites de distillation cryogenique de meme nature
FR2774752B1 (fr) * 1998-02-06 2000-06-16 Air Liquide Installation de distillation d'air et boite froide correspondante
FR2778234B1 (fr) * 1998-04-30 2000-06-02 Air Liquide Installation de distillation d'air et boite froide correspondante
US5896755A (en) * 1998-07-10 1999-04-27 Praxair Technology, Inc. Cryogenic rectification system with modular cold boxes
US6134915A (en) * 1999-03-30 2000-10-24 The Boc Group, Inc. Distillation column arrangement for air separation plant
FR2799822B1 (fr) * 1999-10-18 2002-03-29 Air Liquide Boite froide, installation de distillation d'air et procede de construction correspondants
DE10040391A1 (de) * 2000-08-18 2002-02-28 Linde Ag Tieftemperaturluftzerlegungsanlage
GB0307404D0 (en) * 2003-03-31 2003-05-07 Air Prod & Chem Apparatus for cryogenic air distillation
FR2854682B1 (fr) * 2003-05-05 2005-06-17 Air Liquide Procede et installation de separation d'air par distillation cryogenique
US7340921B2 (en) * 2004-10-25 2008-03-11 L'Air Liquide - Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Cold box and cryogenic plant including a cold box
EP1666822A1 (fr) * 2004-12-03 2006-06-07 Linde Aktiengesellschaft Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
FR2917490A1 (fr) * 2007-06-12 2008-12-19 Air Liquide Boite froide d'un appareil de separation cryogenique par distillation
EP2462291A1 (fr) * 2009-08-07 2012-06-13 Conocophillps Company Moyen de fixation d'isolation cryogénique et procédé correspondant
FR2962526B1 (fr) * 2010-07-09 2014-07-04 Air Liquide Appareil de refroidissement et d'epuration d'air destine a une unite de distillation cryogenique d'air
DE102012008415A1 (de) * 2012-04-27 2013-10-31 Linde Aktiengesellschaft Transportables Paket mit einer Coldbox, Tieftemperatur-Luftzerlegungsanlage und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage
CN109676367A (zh) * 2018-12-28 2019-04-26 乔治洛德方法研究和开发液化空气有限公司 一种热交换器组件及装配所述热交换器组件的方法
FR3096442B1 (fr) 2019-05-22 2021-05-21 Air Liquide Enceinte isolée thermiquement contenant un équipement devant fonctionner à une température en dessous de 0°C

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538857A1 (fr) * 1991-10-25 1993-04-28 Linde Aktiengesellschaft Installation pour la séparation à basse température

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1240397A (en) * 1913-12-03 1917-09-18 Linus Wolf Apparatus for producing liquefied gas.
US1354380A (en) * 1914-01-07 1920-09-28 Godfrey L Cabot Apparatus for producing liquid oxygen
BE487786A (fr) * 1943-05-27
DE1068282B (de) * 1958-08-06 1959-11-05 Gesellschaft für Linde's Eismaschinen Aktiengesellschaft, Zweigniederlassung Hölllriiegelskreuth, Höllriegelskreuth bei München Kälteisolationsanotdnung bei technischen Großapparaturen für bei tiefen Temperaturen durchzuführende Verfahren
US2999366A (en) * 1958-12-19 1961-09-12 Chicago Bridge & Iron Co Insulated cryogenic storage tank
FR1295048A (fr) * 1960-07-29 1962-06-01 Sulzer Ag Dispositif d'isolation calorifique d'éléments d'une installation à basse température
US3130561A (en) * 1961-06-30 1964-04-28 Nat Res Corp Insulation device
DE2257984A1 (de) * 1972-11-27 1974-05-30 Linde Ag Speicherbehaelter fuer verfluessigten wasserstoff
JPH0731002B2 (ja) * 1987-12-21 1995-04-10 日本酸素株式会社 空気液化分離装置
JPH1167567A (ja) * 1997-08-12 1999-03-09 Sumitomo Metal Ind Ltd ボンド磁石の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538857A1 (fr) * 1991-10-25 1993-04-28 Linde Aktiengesellschaft Installation pour la séparation à basse température

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. Hausen, H. Linde, Tieftemperaturtechnik, Springer Verlag, 1985, pages 490 à 495 *

Also Published As

Publication number Publication date
DE69311040T2 (de) 1997-12-11
JPH06194035A (ja) 1994-07-15
JP3436394B2 (ja) 2003-08-11
DE69311040D1 (de) 1997-07-03
CA2106106A1 (fr) 1994-03-17
US5412954A (en) 1995-05-09
FR2695714A1 (fr) 1994-03-18
FR2695714B1 (fr) 1994-10-28
CN1072351C (zh) 2001-10-03
CZ283688B6 (cs) 1998-06-17
CZ192293A3 (en) 1994-06-15
CN1085312A (zh) 1994-04-13
EP0588690A1 (fr) 1994-03-23

Similar Documents

Publication Publication Date Title
EP0588690B1 (fr) Installation de traitement cryogénique, notamment de distillation d'air
EP0628778B1 (fr) Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air
EP0223107B1 (fr) Machine synchrone à enroulements stator et rotor supraconducteurs
EP0576314B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
FR2699992A1 (fr) Procédé et installation de production d'oxygène gazeux sous pression.
CA2124898A1 (fr) Installation de distillation d'air
US4732595A (en) Oxygen gas production apparatus
FR2700836A1 (fr) Appareil pour produire de l'azote liquide.
EP0661505B1 (fr) Procédé et installation de liquéfaction d'un gaz
EP0618415A1 (fr) Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation d'air
FR2711778A1 (fr) Procédé et installation de production d'oxygène et/ou d'azote sous pression.
EP0644390B1 (fr) Procédé et ensemble de compression d'un gaz
FR2778234A1 (fr) Installation de distillation d'air et boite froide correspondante
FR2782544A1 (fr) Pompe pour un liquide cryogenique ainsi que groupe de pompage et colonne de distillation equipes d'une telle pompe
CH527398A (fr) Procédé de liquéfaction de néon, installation pour sa mise en oeuvre et application du procédé
FR2761897A1 (fr) Installation de separation d'un melange gazeux par distillation
FR2751060A1 (fr) Procede et installation de distillation cryogenique d'un melange gazeux
EP0869322A1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
FR3133076A3 (fr) Appareil de liquéfaction d’hydrogéne
EP0327457B1 (fr) Procédé et appareillage pour l'obtention de très basses températures
FR3121744A3 (fr) Module à incorporer dans une installation de distillation d’air
FR3110962A3 (fr) Appareil de separation d’un melange gazeux par distillation cryogenique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19950922

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69311040

Country of ref document: DE

Date of ref document: 19970703

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040812

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040817

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040818

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050908

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060531