EP0588685B1 - Programmierbare integrierte Schaltung zur Detonationsverzögerung - Google Patents

Programmierbare integrierte Schaltung zur Detonationsverzögerung Download PDF

Info

Publication number
EP0588685B1
EP0588685B1 EP93402166A EP93402166A EP0588685B1 EP 0588685 B1 EP0588685 B1 EP 0588685B1 EP 93402166 A EP93402166 A EP 93402166A EP 93402166 A EP93402166 A EP 93402166A EP 0588685 B1 EP0588685 B1 EP 0588685B1
Authority
EP
European Patent Office
Prior art keywords
firing
ignition
control unit
modules
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93402166A
Other languages
English (en)
French (fr)
Other versions
EP0588685A1 (de
Inventor
André Guimard
Denis Harle
Claude Pathe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Davey Bickford SAS
Original Assignee
Davey Bickford SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Davey Bickford SAS filed Critical Davey Bickford SAS
Publication of EP0588685A1 publication Critical patent/EP0588685A1/de
Application granted granted Critical
Publication of EP0588685B1 publication Critical patent/EP0588685B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay

Definitions

  • the present invention relates to a method for controlling detonators of the type with an integrated electronic delay ignition module, as well as to a coded firing control assembly and to coded ignition modules for its implementation.
  • the various delay times between the explosions of the charges are obtained by a pyrotechnic process at the level of the detonators themselves.
  • the detonators are initiated simultaneously by an exploder which delivers a certain electrical energy in a firing line which connects said detonators in series or in parallel.
  • the pyrotechnic delay generated by the combustion of a retarding pyrotechnic composition is of relative precision sometimes insufficient for certain applications.
  • the fire control unit is designed to be able to transmit identification information of delay times and other control information and signals. In addition, it displays the response of the detonators, following an interrogation made by the fire control unit, representing the identification and the delay time stored in memory for each of them.
  • the detonators receive successively loading orders from the firing control unit, then firing orders. They send information back to the fire control unit enabling the said control unit to control the proper conduct of the fire sequence.
  • the detonators are provided for this purpose with local intelligence by microprocessor. The delay times for which they are programmed are stored on non-volatile memories.
  • the aim of the present invention is to propose a method for controlling electronic ignition modules with integrated delay, as well as a coded fire control assembly and a coded ignition module for its implementation, giving detonators the aforementioned advantages of detonators with integrated electronic delay, but also great simplicity of manufacture and operation.
  • the subject of the present invention is a method for controlling detonators of the type with an integrated electronic delay ignition module, each coded ignition module comprising a tank capacity intended, after loading, to discharge into a sound initiating head.
  • detonator to generate an electric ignition pulse, a time base and a logic unit provided with a memory for storing in said ignition module an explosion delay time of said detonator, during 'A firing sequence, said ignition modules being able to communicate with a firing control unit intended to transmit to them in particular an order to load the tank capacity, as well as a firing order and to receive said modules one or information relating to their state, process in which, before a firing sequence, their delay time is memorized with a programming unit in the ignition modules.
  • the method is characterized in that, once the ignition modules have been programmed, the programmed delay times are transferred to the fire control unit using the programming unit, in that the firing control unit simultaneously interrogates the online ignition modules by a test command, before the loading step and the firing step and in that the ignition modules refer to the firing control unit global information relating to their state, according to a time sequence which corresponds to the firing time sequence.
  • the exchanges between the fire control unit and the ignition modules are done by means of coded binary messages.
  • the messages transmitted to the detonator are coded in the form C (8,4).
  • a word formed of 4 bits of information is transmitted, on the transmission channel, in the form of an 8-bit message.
  • the code C (8,4), used for the present invention is constructed from a cyclic code C (7,4) to which a parity bit calculated as a function of the value of the other 7 bits of the message is associated.
  • the ignition module After receiving a message, the ignition module goes through a decoding phase allowing the recovery of the 4 bits of information of this message. In the event that a detected error cannot be corrected, an error message is returned to the fire control unit.
  • the ignition module When the ignition module is in the reception phase, it knows what type of massage will be transmitted to it. Indeed, any reception is preceded by the reception of an appropriate order.
  • the logic unit of the ignition module After receiving and decoding a command, the logic unit of the ignition module proceeds to perform the appropriate function.
  • the time base of each ignition module is measured during programming of the corresponding module in time delay.
  • the delay times are different for each module and the modules return the information requested after a feedback time depending on the delay time stored in each of them, said fire control unit opening for each of the modules reception time windows corresponding to said return time.
  • the firing control unit simultaneously interrogates the online ignition modules by a test command, before the loading step and the firing step and the ignition modules return to the control unit. to draw global information relating to their state.
  • Another subject of the invention is a coded fire control assembly comprising a fire control unit and integrated electronic delay ignition modules for detonator, electrically connected in line to said fire control unit, and a fire control unit. programming.
  • connection between the fire control unit and the ignition modules is used to power said ignition modules, as well as for dialogue between said fire control unit and said ignition modules.
  • the coded fire control assembly is characterized in that the ignition modules include means enabling them to send information to the fire control unit in the form of over-consumption of the line current, the unit of fire control being provided with means for detecting an overconsumption of the line current with respect to the average consumption of the ignition modules.
  • Another object of the invention is still a detonator ignition module comprising a supply circuit, a communication interface, a pyrotechnic charge management circuit comprising in particular a tank capacity intended, after loading, to discharge into a detonator primer head, as well as a logical unit for managing the assembly.
  • this ignition module is characterized in that the pyrotechnic charge management circuit comprises, mounted in series with the tank capacity, a power source, for example the line voltage, a transistor for controlling the load of said tank capacity and a resistor connected by that of its terminals which is not directly connected to the capacity tank to a discharge switching transistor of said tank capacity to earth.
  • a power source for example the line voltage
  • a transistor for controlling the load of said tank capacity and a resistor connected by that of its terminals which is not directly connected to the capacity tank to a discharge switching transistor of said tank capacity to earth.
  • the simplicity of structure of the ignition modules proposed by the invention makes it possible to provide them with high reliability of use.
  • the means of communication between the ignition modules of the invention and their firing line control unit are extremely simplified.
  • the ignition modules and detonators will be all identical and coded in production; they may only be individualized on site when programming the delay time.
  • These ignition modules are non-polarized. They can be used in large numbers, (200 or more) in parallel mounting, without this resulting in problems which could be due to a too large line current.
  • the detonators of the firing assemblies are very safe to operate.
  • the ignition modules are devoid of internal energy sources and do not present a risk of inadvertent ignition outside of the firing sequences.
  • Procedures limiting access to the programming of the modules and to the control of the firing sequences are in particular provided, with in particular a coded pairing between on the one hand, the programming unit and the unit fire control, and secondly, the fire control assembly and the ignition modules.
  • the impedance between the power supply of the pyrotechnic charge management circuit and the primer head is large enough so that the current generated by the line voltage in the primer head is, whatever the state of the control transistors, lower than the value of the non-operating limit current of said primer head.
  • the discharge resistance of the reservoir capacitor is of a sufficiently large value so that the current generated by said supply in the primer head is whatever the state of the control transistors less than the value of the current limit of non-functioning of the primer head.
  • Figure 1 is a schematic representation of a detonator equipped with an integrated electronic delay ignition module according to an embodiment of the invention.
  • FIGS 2A, 2B and 2C are schematic representations of a firing assembly comprising detonators mounted in parallel, of the type of those shown in Figure 1, showing the communication circuits established respectively during firing, during programming and when transferring programming information to the fire console.
  • FIG. 3 is an overall representation of an ignition module according to the invention.
  • Figure 4 is a representation of the pyrotechnic charge management circuit of an ignition module according to the invention.
  • Figure 5 is a representation of the communication interface of the same ignition module.
  • Figure 6 is a representation of the supply circuit of the same ignition module.
  • Figure 7 is an illustration of the logic unit of the same ignition module.
  • Figure 8 is a schematic illustration of the communication principle, in a preferred embodiment. (during transmission (A) and during reception (B)).
  • the integrated electronic delay detonator shown in Figure 1 has a case 1 which serves as a housing and whose body 2 has an elongated cylindrical shape terminated at one end by a bottom 3. At its other end, this case 1 is closed by a plug also elongated 4, the walls of said case 1 being integral with said plug 4 by means of a crimping 5.
  • the case 1 is made of aluminum alloy, the plug 4 being made of standard PVC.
  • the end 3 of the case is associated with an aluminum cover 6 comprising a bottom 7 arranged in a cross section of the case 1 and bordered by a cylindrical skirt 8 extending from said bottom 7 towards the bottom 3, the walls external of said skirt 8 substantially matching the internal walls of the case 1.
  • the bottom 7 of this cover 6 is traversed in its thickness by a bore 9 whose outline is a circle centered on the axis of the case 1.
  • This cover 6 defines with the bottom 3 and the walls of the body 2 of the case 1 a chamber 10 containing inside a charge 11, such as penthrite, this charge 11 being supplemented by a priming mixture 12 placed in said chamber 10 at the level of the cover 6.
  • the proportions of penthrite and priming mixture are 0.6 g and 0.2 g respectively.
  • a primer head 13 On the side of the cover 6 which is opposite to the chamber 10 is disposed a primer head 13 extending axially in the case 1 and protected by a cylindrical casing 14. This primer head 13 is directly connected to a integrated delay electronic ignition module 15 disposed in said case 1 between the casing 14 and the plug 4. This electronic module 15 is supplied, at its end, at the plug 4 by two sheathed wires 16a and 16b which pass through the plug 4 in its height and connect the module 15 to the ignition circuit.
  • a current of an intensity greater than the operating threshold intensity initiates the primer head 13, which through the cover 6 in the opening 9 excites the charge 12 and triggers the detonation.
  • the ignition modules 15 of the detonators are mounted in line in a parallel network with a fire control unit 17, also called a fire console.
  • the firing unit also includes a programming unit or console 18. This is intended to allow, on the one hand, the programming of each module 15, before its installation in a hole, and in particular the storage in each module 15, the delay time allocated to it.
  • the programming console 18 allows the memorization of the delay times programmed in the fire control unit 17.
  • Figure 2A shows the firing assembly in the connected state during a firing sequence.
  • the fire control unit 17 is connected to the detonators, the programming console 18 then being inactive.
  • Figure 2B shows the firing assembly in a first connection state before a firing sequence.
  • the programming unit 18 is connected to the ignition modules 15 for the unitary programming of the ignition modules in time delay.
  • Figure 2C shows the firing assembly in a second connection state before a firing sequence.
  • This second connection state makes it possible, after having programmed the ignition modules 15 using the programming console 18, to transfer the programmed delay times to the fire control unit 17.
  • An ignition module 15 as shown diagrammatically in FIG. 3, comprises four subsystems: a pyrotechnic charge management circuit 300, a communication interface 301, a supply circuit 302, a logic unit 303 for managing the entire micro-system.
  • the pyrotechnic charge management circuit has been shown more particularly in FIG. 4.
  • This circuit mainly comprises five N-channel MOS field effect transistors referenced in the diagram by 19, 20, 22, 23 and 192, and two transistors P-channel MOS field effect, referenced in the diagram by 21 and 191.
  • the transistor 19 is mounted as a common source, its source being directly connected to the ground. Its drain is connected, through a resistor 26, to a test circuit of a capacitor 29 which constitutes the reservoir capacity of the ignition module. Its grid is connected to a test line voltage.
  • the transistor 20 is mounted as a common source and is directly connected by its source to the ground. Its gate is connected to the logic management unit 303 of the detonator firing micro-system from which it receives the charge order for the capacitor 29. By its drain, the transistor 20 is connected to the gate of the transistor 21. A resistor 30 is mounted in derivation between the gate and the source of the transistor 21.
  • the transistor 21 is connected by its drain to a non-return diode 28, which is conducting for the currents passing through said transistor 21 to a resistor 27 of 12 kohms.
  • the resistor 27 is mounted in series with the diode 28 and the transistor 21, these three components connecting a terminal of the primer head 13 to the line voltage L.
  • Resistor 27 and primer head 13 are also connected by their common terminal to one of the terminals of capacitor 29, the other terminal of which is connected to earth.
  • This capacitor 29 has a capacity of 100 ⁇ F.
  • the transistor 22 realizes with a resistor 31 a discharge circuit without firing the reservoir capacitor 29.
  • this transistor 22 closes and puts the condenser 29 to earth by its two terminals. The capacitor 29 then discharges through the resistor 31.
  • the transistor 23 is connected by its drain to the other terminal, relative to that connected to the line voltage L, of the primer head 13. Its source is connected to the ground and its gate is connected to the unit logic 303 to be able to receive a firing control signal.
  • a resistor 24 is connected in derivation between the gate of transistor 23 and the earth.
  • the transistor 20 only has the function of adjusting the voltage level between the outputs of the logic unit 303 for managing the microsystem and the commands of the other transistors.
  • the charging of the reservoir capacitor 29 is controlled by the transistor 21, which is intended to put this capacitor 29 in connection with the line voltage L.
  • the closing order is transmitted to the transistor 21 via the adaptation transistor of level 20.
  • the transistor 23 is the load firing member. When the firing order is transmitted to it, the transistor 23 closes and puts that of the terminals of the primer head 13 which is not connected to the capacitor 29 to earth. The capacitor 29 discharges in the primer head 13 and triggers the ignition.
  • a circuit 400 comprising a comparator 193, by means of which the voltage of the capacitor 29 can be quantified, ensures the connection of the management circuit with a microcontroller 45 of the logic unit 303.
  • the circuit shown in Figure 4 brings together all the necessary management elements of the firing process: the transistor 23 switches the pyrotechnic charge; the transistors 20 and 21 charge the firing capacitor 29; transistor 22 constitutes, with resistor 31, the discharge circuit of capacitor 29; and the transistors 19, 191 and 192 constitute a test circuit for the capacitor 29 and the primer head 13.
  • transistor 20 is open, this which means that the transistor 21 is also open and that the capacitor 29 cannot be charged.
  • the transistor 22 is closed, so that any possible charge of the capacitor 29 is discharged.
  • Transistors 19 and 191 are open, which causes the test circuit to be inhibited.
  • the transistor 23 is open, so that no current can flow through the primer head 13.
  • the transistors 21 and 191 In order for a current to possibly be considered dangerous and to ignite the primer head 13, the transistors 21 and 191 would have to be simultaneously closed, the transistor 22 being open and the transistor 23 being broken closed. This eventuality is highly unlikely. If it appeared, the primer head would be connected to the voltage line L through the transistor 21 and the resistor 27 of 12 kohms. Given the importance of the impedance made up of the primer head 13 and of the resistor 27, the maximum current passing through said primer head 13 would be of an intensity of the order of 2 milliamps, it that is to say much lower than the threshold intensity necessary for the operation of said primer head 13, or, in other words, much lower than the maximum non-operating current which is of the order of 130 milliamps. Thus, the resistor 27 has a double function in the pyrotechnic circuit: it limits the current when the capacitor 29 is charged; it protects the primer head 13 in the highly unlikely event of a simultaneous failure of the transistors 21, 22 and 23.
  • the transistor 19 charges the firing capacitor 29 with 100 ⁇ F at a voltage of 3 V.
  • the energy related to the resistance the primer is then 0.16 mJ / ohm. This value is lower than the maximum non-operating energy which is 0.16 mJ for 5 ⁇ F.
  • charging the shot capacitor during the test phase does not represent any danger.
  • the test circuit is capable of detecting the presence of the primer head 13.
  • This current is of the order of 1 mA, that is to say below the maximum intensity threshold of non-functioning, which is of the order of 130 mA.
  • the communication interface of an ignition module has been more particularly shown in FIG. 5. It comprises a receiver sub-assembly 32 and a transmitter sub-assembly 33. These two sub-assemblies 32 and 33 provide the bidirectional connection on the one hand with the firing console 17 and on the other hand with the programming console 18 when it is connected to said module 15.
  • the receiver sub-assembly 32 is intended to detect the polarity changes applied to the line by the shooting consoles 17 or programming consoles 18. It mainly comprises four N-channel field effect VMOS transistors, referenced at 341 to 344, mounted each with a common source, the source being connected directly to earth, as well as a P-channel field effect VMOS transistor, referenced at 345, mounted as a common drain, the drain being connected to earth through a resistor 374.
  • the gate of transistor 341 is connected on the one hand to the logic unit 303 for managing the microsystem and on the other hand to a resistor 373 through which the gate is connected to earth.
  • the drain of transistor 341 is connected on the one hand to the gate of transistor 342 and on the other hand through a resistor 371 connected to the module power supply described in more detail with reference to Figure 6.
  • the drain of transistor 342 is connected to a common terminal 361 to which are also connected a resistor 36, the drain of transistor 343 and the line.
  • the common terminal 361 is connected through the resistor 36 to the operating voltage V CC .
  • the gate of transistor 343 is connected on the one hand, through a resistor 372, to the power supply module and on the other hand to the drain of transistor 344.
  • the gate of transistor 344 is connected on the one hand, through a resistor 374, to earth, and on the other hand to the drain of transistor 345.
  • the source of transistor 345 is connected to the operating voltage V CC and the gate of transistor 345 is connected to logic unit 303 for managing the microsystem.
  • the transistors 342 and 343 convert the switching of the line into pulses understandable by the logic unit 303, while the transistors 341 and 344 fix the quiescent state of the signal "line in". Since the receiver sub-assembly 32 is only sensitive to the polarity and not to the amplitude of the signals applied to its input, this sub-assembly is more tolerant of online loss phenomena.
  • the emitter sub-assembly 33 includes a VMOS N-channel field effect transistor, referenced at 38 and, two resistors referenced at 39 and 391.
  • the transistor 38 is mounted at common source, the source being connected directly to earth. Its grid is connected on the one hand through the resistor 391, to the earth and on the other hand to the output line.
  • the drain of the transistor 38 is connected, through the resistor 39 to the line voltage E.
  • the resistor 39 of 470 ohm creates an over-consumption of current on the line E when a voltage pulse is supplied by the output line of the microcontroller to the gate of transistor 38.
  • the supply of an ignition module 15 is shown in Figure 6.
  • This circuit is intended to provide a DC voltage of about 4 volts, including during the firing phase.
  • This module essentially comprises a pair of Zener diodes 40, a rectifier bridge 41, a first voltage regulator 42, a second voltage regulator 43 and a capacitor 44 of 1000 ⁇ F.
  • the rectifier bridge 41 switches the voltage coming from the line and frees the ignition module from any polarization.
  • the first voltage regulator 42 guarantees a charging voltage of 12 volts at capacitor 44 for a line voltage comprised "in absolute value" between 12 volts and 30 volts.
  • the second voltage regulator 43 uses, to supply the rest of the system at 4 volts, the line voltage or the energy stored by the capacitor 44.
  • the logic unit 303 which manages each ignition module 15 is of the conventional type. It is shown in Figure 7.
  • the logic unit 303 manages the communications with the line, as well as the commands of the pyrotechnic charge. It comprises a microcontroller 45, including a program memory, as well as a "delay time" memory 47 which is chosen to be of the EEPROM type. The memorization of the delay time is therefore permanent, but can be erased and reprogrammed electrically at any time.
  • the microcontroller 45 technology allows consumption as low as possible, a speed of execution and a sufficient number of inputs and outputs.
  • the time base is not controlled by a quartz but by a simple RC circuit, referenced in 48 and 49.
  • the oscillation frequency of each pilot can vary by ⁇ 20% compared to the precision required for the ignition module delay time.
  • the setting error of the management clock is measured and a corrective factor for adjustment to the precise value sought is deduced therefrom and applied to the ignition module to obtain the correct delay.
  • the implementation procedure is as follows: the operator programs the time on the keyboard desired delay in milliseconds. Delay times can range from 1 to 3000 milli-seconds. They are different for each ignition module and are used to identify them during dialogues between the ignition modules and the consoles. For artificers, a difference of 8 milli-seconds between two detonator delay times is not significant. It is therefore possible, if one wishes to detonate several detonators in a pyrotechnically synchronous manner, to assign them delay times offset from one another from milli-seconds to milli-seconds.
  • each delay time can be completed by a programming order number.
  • the console 18 then sends the programming order to the ignition module 15 and requests it to read the programmed delay time. If the information returned by the module corresponds to one millisecond near to that programmed, the screen of the console 18 displays that the programming is correct. Otherwise, the console 18 requests that programming be resumed.
  • the erase function is used if the operator has made a mistake in entering the delay time.
  • the delay time is stored in an EEPROM memory of the programming console 18. Once all the delay times programmed and memorized, these are transferred to the console of shot 17, automatically during the connection between the two consoles, by means of the RS232 type serial link, by a transfer function provided on the programming console 18.
  • An internal self-test also makes it possible to test each ignition module 15.
  • L return indication is global. A red light indicates any incorrect procedure or asking for confirmation.
  • the firing console 17 comprises three test / arm / firing keys, two green and red indicator lights for the test phase and a magnetic card suitable for the firing console; it has five functions: automatic transfer of data from the programming console 18; ignition module test 15; cancellation of the shooting; charging of the capacitor-tanks 29; shoot.
  • the implementation of a firing sequence is as follows. Once the ignition modules 15 have been programmed using the programming console 18, and as indicated above, the programmed delay times will be transferred from the storage EEPROM memories of said programming console 18 to the EEPROM storage memories of said firing console 17, after the introduction of the appropriate magnetic card or any other security device to the firing console authorizing connection with the programming console. Once the transfer has been made, the operator gives the firing console 17 an order to test the ignition modules 15 online.
  • Each ignition module 15 returns binary information on the line relating to its operating state: information of the "correct module” or “incorrect module” type, or possibly more complicated.
  • the pulses sent to the firing console 17 are returned for each ignition module 15 with a delay time corresponding to the delay time for which said module 15 has been programmed.
  • the firing console 17 opens for each detonator a time window around the delay time programmed by the console 18 and which it has in memory. It is in the delay time with which the console 17 receives information which makes it possible to identify the module 15 from which it comes, this delay time corresponding to the firing delay time from which the module has been programmed. This therefore assumes that the transfer to the firing console of the delay times by the programming console has been carried out.
  • FIGS. 8A and 8B shows the timing diagram in sending, and of which FIG. 8B shows the timing diagram in reception.
  • the modules 15, referenced by M 1 , M 2 ... M n return to the firing console 17 one or more binary pulses corresponding to the information to be transmitted to the console. firing 17.
  • the pulses are offset with respect to an identical zero time for each ignition module 15 by a time T 1 , T 2 , ... T m corresponding to the firing delay time, including the module M m returning information has been programmed.
  • the shooting console 17 will open as many windows F 1 , F 2 , F m of time observation as there are ignition modules M N. For a pulse lasting 250 micro-seconds, the time observation windows F 1 , F 2 , F m opened by the firing console 17 may be of the order of 750 micro-seconds (250 micro-seconds before and after l 'impulse).
  • the console 17 awaits the firing order. After validation, the firing order is given to the different ignition modules.
  • the ignition module does not include any energy source. It is therefore very reliable, since it presents no risk of inadvertent ignition of the pyrotechnic charge as long as the detonator with which said ignition module is associated is not mounted in line.
  • the discharge of the capacitor 29 from an ignition module 15 will be controlled either directly by an operator from the firing console 17, or internally by the ignition module itself, after four seconds following the line wires cut after explosion of the first detonator.
  • the shooting console can be provided with a magnetic card authorizing its use.
  • connection points are designated by signal names or indications of type of voltage. Points of the same name are then intended to be connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)

Claims (11)

  1. Verfahren zur Steuerung von Sprengzündern vom Typ mit elektronischem Zündmodul (15) mit integrierter Verzögerung, wobei jedes codierte Zündmodul (15) ein Speicher-C-Glied (29), das dafür bestimmt ist, sich nach dem Aufladen in einen Zünderkopf (13) seines Sprengzünders zu entladen, um dort einen elektrischen Zündimpuls zu erzeugen, eine Zeitbasis sowie eine Logikeinheit (303) aufweist, die mit einem Speicher zum Speichern einer Verzögerungszeit im Zündmodul (15) für die Explosion des Sprengzünders bei einer Sprengfolge versehen ist, wobei die Zündmodule dafür geeignet sind, mit einer Steuereinheit (17) für das Sprengen zu kommunizieren, die dafür bestimmt ist, ihnen insbesondere einen Ladebefehl für das Speicher-C-Glied (29) sowie einen Sprengbefehl zu übertragen und von den Modulen eine Information oder Informationen zu erhalten, die deren Zustand enstsprechen, bei welchem Verfahren vor einer Sprengfolge in den Zündmodulen ihre Verzögerungszeiten mit einer Programmiereinheit (18) gespeichert werden, dadurch gekennzeichnet, daß, wenn die Programmierung der Zündmodule ausgeführt ist, die programmierten Verzögerungszeiten mittels der Programmiereinheit (18) zur Steuereinheit (17) für das Sprengen übertragen werden, und dadurch, daß die Steuereinheit für das Sprengen Vor dem Schritt des Ladens und dem Schritt des Sprengens die Speichermodule durch einen Prüfbefehl direkt abfragt, und dadurch, daß die Zündmodule eine ihren Zustand betreffende Gesamt information an die Steuereinheit (17) für das Sprengen gemäß einer zeitlichen Folge zurückgibt, die der zeitlichen Folge des Sprengens entspricht.
  2. Steuerverfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei der Programmierung die Zeitbasis jedes Zündmoduls gemessen wird.
  3. Steuerverfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Verzögerungszeiten für jedes Modul (15) verschieden sind und daß die Module die angeforderten Informationen nach einer Zeit für die Rückkehr von Informationen, die von der in jedem von ihnen gespeicherten Verzögerungszeit abhängt, zurückgeben, wobei die Steuereinheit (17) für das Sprengen für jedes der Module Zeitfenster für den Empfang öffnet, die den Rückkehrzeiten entsprechen.
  4. Codierter Aufbau zur Steuerung eines Sprengens, der eine Steuereinheit (17) für das Sprengen und Zündmodule (15) mit integrierter elektronischer Verzögerung für den Sprengzünder, die elektrisch direkt mit der Steuereinheit (17) für das Sprengen verbunden sind, wobei die Verbindung zwischen der Steuereinheit für das Sprengen und den Zündmodulen (15) zur Versorgung der Zündmodule sowie zur Kommunikation zwischen der Steuereinheit für das Sprengen und den Zündmodulen (15) dient, und eine Programmiereinheit (18) aufweist, dadurch gekennzeichnet, daß die Zündmodule Mittel aufweisen, die ihnen gestatten, der Steuereinheit (17) für das Sprengen Informationen in Form eines Mehrverbrauchs an Netzstrom zu senden, wobei die Steuereinheit (17) für das Sprengen mit Mitteln zur Erfassung eines Mehrverbrauchs an Netzstrom im Vergleich zum mittleren Verbrauch der Zündmodule versehen ist.
  5. Codierter Aufbau zur Steuerung eines Sprengens nach Anspruch 4, dadurch gekennzeichnet, daß jedes Zündmodul eine von einem RC-Glied gebildete Zeitbasis umfaßt.
  6. Aufbau nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Programmiereinheit (18) dafür geeignet ist, für die Speicherung der Verzögerungszeiten der Explosion in den Zündmodulen mit jedem Zündmodul (15) getrennt zu kommunizieren, und dadurch, daß die Steuereinheit (17) für das Sprengen dafür geeignet ist, bei einer Sprengfolge die Sprengphasen zu übertragen.
  7. Aufbau nach Anspruch 6, dadurch gekennzeichnet, daß die Programmiereinheit (18) mit Mitteln zur Speicherung der gesamten Verzögerungszeiten versehen ist, die von ihr programmiert werden, und die sie zu jedem der Zündmodule getrennt überträgt, und dadurch, daß die Steuereinheit (17) für das Sprengen und die Programmiereinheit (18) zur Kommunikation geeignet sind, um vor einer Sprengfolge die Übertragung der gesamten programmierten Verzögerungszeiten zu gestatten:
  8. Aufbau nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die Steuereinheit (17) für das Sprengen und die Programmiereinheit (18) mit Codiermitteln, die dafür bestimmt sind, ihren Zugang auf befugte Personen zu beschränken, und Mitteln zur internen gegenseitigen Erkennung vor der Übertragung der programmierten Verzögerungszeiten von der Programmiereinheit (18) zur Steuereinheit (17) versehen sind.
  9. Zündmodul für einen Sprengzünder, das eine Versorgungsschaltung, eine Verbindungsschnittstelle, eine Steuerschaltung für die pyrotechnische Ladung, die insbesondere ein Speicher-C-Glied (29), das dafür bestimmt ist, sich nach dem Aufladen in einen Zünderkopf (13) des Sprengzünders zu entladen, sowie eine logische Steuerschaltung (303) für den Aufbau aufweist, dadurch gekennzeichnet, daß die Steuerschaltung für die pyrotechnische Ladung eine in Serie mit dem Speicher-C-Glied (29) angebrachte Betriebsstromversorgung, beispielsweise unter Netzspannung, einen Schalttransistor (21) zur Steuerung (17) der Ladung des Speicher-C-Glieds (29) und einen Widerstand (27) umfaßt, der durch diejenige seiner Anschlußklemmen, die nicht direkt mit dem Speicher-C-Glied (29) verbunden ist, mit einem Schalttransistor (22) für die Entladung des Speicher-C-Glieds (29) zur Erde verbunden ist.
  10. Modul nach Anspruch 9, dadurch gekennzeichnet, daß die Impedanz zwischen der Versorgung der Steuerschaltung für die pyrotechnische Ladung und dem Zünderkopf (13) ausreichend groß ist, damit der von der Netzspannung im Zünderkopf (13) erzeugte Strom, welchen Zustand die Steuertransistoren auch immer haben mögen, geringer als der Wert des Grenzstroms für die Funktion des Zünderkopfs (13) ist.
  11. Modul nach Anspruch 10, dadurch gekennzeichnet, daß der Entladewiderstand (27) des Speicherkondensators einen ausreichend großen Wert hat, damit der von der Versorgung im Zünderkopf (13) erzeugte Strom, welchen Zustand die Steuertransistoren auch immer haben mögen, geringer als der Wert des Grenzstroms für die Funktion des Zünderkopfs ist.
EP93402166A 1992-09-17 1993-09-06 Programmierbare integrierte Schaltung zur Detonationsverzögerung Expired - Lifetime EP0588685B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9211111A FR2695719B1 (fr) 1992-09-17 1992-09-17 Procédé de commande de détonateurs du type à module d'allumage électronique à retard intégré, ensemble codé de commande de tir et module d'allumage codé pour sa mise en Óoeuvre.
FR9211111 1992-09-17

Publications (2)

Publication Number Publication Date
EP0588685A1 EP0588685A1 (de) 1994-03-23
EP0588685B1 true EP0588685B1 (de) 1997-07-30

Family

ID=9433622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93402166A Expired - Lifetime EP0588685B1 (de) 1992-09-17 1993-09-06 Programmierbare integrierte Schaltung zur Detonationsverzögerung

Country Status (5)

Country Link
US (1) US5520114A (de)
EP (1) EP0588685B1 (de)
DE (1) DE69312609T2 (de)
ES (1) ES2105166T3 (de)
FR (1) FR2695719B1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085659A (en) * 1995-12-06 2000-07-11 Orica Explosives Technology Pty Ltd Electronic explosives initiating device
WO2000057124A1 (de) 1999-03-20 2000-09-28 Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik Verfahren zum auslösen von zündern über eine leitung grosser länge
DE19930904A1 (de) * 1999-07-06 2001-01-11 Dynamit Nobel Ag Auslöseeinheit zur Initiierung von pyrotechnischen Elementen
US6637339B1 (en) 1999-03-20 2003-10-28 Dynamit Nobel Gmbh Explosivstoff Und Systemtechnik Method for exchanging data between a device for programming and triggering electronic detonators and said detonators
US6644202B1 (en) 1998-08-13 2003-11-11 Expert Explosives (Proprietary) Limited Blasting arrangement

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9423314D0 (en) * 1994-11-18 1995-01-11 Explosive Dev Ltd Electrical distribution system
GB9423313D0 (en) * 1994-11-18 1995-01-11 Explosive Dev Ltd Improvements in or relating to detonation means
GB9501306D0 (en) * 1995-01-24 1995-03-15 Explosive Dev Ltd Improvements in or relating to explosive firing arrangements
US5721493A (en) * 1995-02-28 1998-02-24 Altech Industries (Proprietary) Limited Apparatus for locating failures in detonation devices
FR2749073B1 (fr) * 1996-05-24 1998-08-14 Davey Bickford Procede de commande de detonateurs du type a module d'allumage electronique, ensemble code de commande de tir et module d'allumage pour sa mise en oeuvre
US5767437A (en) * 1997-03-20 1998-06-16 Rogers; Donald L. Digital remote pyrotactic firing mechanism
US5912428A (en) * 1997-06-19 1999-06-15 The Ensign-Bickford Company Electronic circuitry for timing and delay circuits
AUPP021697A0 (en) * 1997-11-06 1997-11-27 Rocktek Limited Radio detonation system
US6047643A (en) * 1997-12-12 2000-04-11 Eg&G Star City, Inc. Hermetically sealed laser actuator/detonator and method of manufacturing the same
US6178888B1 (en) 1998-01-20 2001-01-30 Eg&G Star City, Inc. Detonator
US6263989B1 (en) * 1998-03-27 2001-07-24 Irobot Corporation Robotic platform
AU5202099A (en) * 1998-03-30 1999-11-08 Magicfire, Inc. Precision pyrotechnic display system and method having increased safety and timing accuracy
US20060086277A1 (en) 1998-03-30 2006-04-27 George Bossarte Precision pyrotechnic display system and method having increased safety and timing accuracy
US6752083B1 (en) 1998-09-24 2004-06-22 Schlumberger Technology Corporation Detonators for use with explosive devices
WO2000022279A1 (en) 1998-09-24 2000-04-20 Schlumberger Technology Corporation Initiation of explosive devices
US7347278B2 (en) * 1998-10-27 2008-03-25 Schlumberger Technology Corporation Secure activation of a downhole device
US6283227B1 (en) * 1998-10-27 2001-09-04 Schlumberger Technology Corporation Downhole activation system that assigns and retrieves identifiers
US7383882B2 (en) * 1998-10-27 2008-06-10 Schlumberger Technology Corporation Interactive and/or secure activation of a tool
US6938689B2 (en) 1998-10-27 2005-09-06 Schumberger Technology Corp. Communicating with a tool
US6148263A (en) * 1998-10-27 2000-11-14 Schlumberger Technology Corporation Activation of well tools
FR2787568B1 (fr) * 1998-12-16 2001-02-02 France Etat Dispositif de mise a feu d'une amorce
SE515382C2 (sv) * 1999-12-07 2001-07-23 Dyno Nobel Sweden Ab Elektroniskt detonatorsystem, förfarande för styrning av systemet och tillhörande elektroniksprängkapslar
AU2001216836A1 (en) 2000-02-11 2001-08-20 Inco Limited Remote wireless detonator system
US6584907B2 (en) * 2000-03-17 2003-07-01 Ensign-Bickford Aerospace & Defense Company Ordnance firing system
DE10032139B4 (de) * 2000-05-05 2014-01-16 Orica Explosives Technology Pty. Ltd. Verfahren zur Installation eines Zündsystems und Zündsystem
US7752970B2 (en) * 2000-09-06 2010-07-13 Ps/Emc West, Llc Networked electronic ordnance system
US7644661B1 (en) * 2000-09-06 2010-01-12 Ps/Emc West, Llc Networked electronic ordnance system
US6536798B1 (en) * 2000-09-27 2003-03-25 Aùtoliv ASP, Inc. Controlling activation of restraint devices in a vehicle
WO2002039050A1 (de) * 2000-11-09 2002-05-16 Orica Explosives Technology Pty Limited Sensor zur überwachung elektronischer zündkreise
CA2441471C (en) 2001-06-06 2006-08-08 Senex Explosives, Inc. System for the initiation of rounds of individually delayed detonators
US6565119B2 (en) 2001-07-11 2003-05-20 Trw Inc. Vehicle occupant safety apparatus with restraint communication bus and transformer connections
US6546837B1 (en) 2001-11-02 2003-04-15 Perkinelmer, Inc. Dual load charge manufacturing method and press therefore
FR2832501B1 (fr) * 2001-11-19 2004-06-18 Delta Caps Internat Dci Installation de tirs pyrotechniques programmables
US8375838B2 (en) * 2001-12-14 2013-02-19 Irobot Corporation Remote digital firing system
US7559269B2 (en) 2001-12-14 2009-07-14 Irobot Corporation Remote digital firing system
US6860206B1 (en) * 2001-12-14 2005-03-01 Irobot Corporation Remote digital firing system
US6820557B2 (en) * 2002-01-25 2004-11-23 Daicel Chemical Industries, Ltd. Igniter for air bag system
FR2843191B1 (fr) * 2002-08-01 2006-12-29 Delta Caps Internat Dci Installation de tirs pyrotechniques et detonateur pour une telle installation
CA2493703C (en) * 2002-08-30 2008-01-29 Orica Explosives Technology Pty Ltd. Access control for electronic blasting machines
US6732656B1 (en) 2002-09-16 2004-05-11 The United States Of America As Represented By The Secretary Of The Air Force High voltage tolerant explosive initiation
PT102997A (pt) * 2003-07-10 2005-01-31 Espanola Explosivos Dispositivo electronico de detonacao e processo de operacao do dito dispositivo
US7107908B2 (en) * 2003-07-15 2006-09-19 Special Devices, Inc. Firing-readiness diagnostic of a pyrotechnic device such as an electronic detonator
US7054131B1 (en) 2003-07-15 2006-05-30 Special Devices, Inc. Pre-fire countdown in an electronic detonator and electronic blasting system
US7086334B2 (en) * 2003-07-15 2006-08-08 Special Devices, Inc. Staggered charging of slave devices such as in an electronic blasting system
AR046387A1 (es) * 2003-07-15 2005-12-07 Detnet South Africa Pty Ltd Sistema detonador y programacion de detonadores.
US7577756B2 (en) 2003-07-15 2009-08-18 Special Devices, Inc. Dynamically-and continuously-variable rate, asynchronous data transfer
US20050190525A1 (en) * 2003-07-15 2005-09-01 Special Devices, Inc. Status flags in a system of electronic pyrotechnic devices such as electronic detonators
US7017494B2 (en) * 2003-07-15 2006-03-28 Special Devices, Inc. Method of identifying an unknown or unmarked slave device such as in an electronic blasting system
US6966262B2 (en) * 2003-07-15 2005-11-22 Special Devices, Inc. Current modulation-based communication from slave device
US6789483B1 (en) * 2003-07-15 2004-09-14 Special Devices, Inc. Detonator utilizing selection of logger mode or blaster mode based on sensed voltages
US6892643B2 (en) * 2003-07-15 2005-05-17 Special Devices, Inc. Constant-current, rail-voltage regulated charging electronic detonator
US7870825B2 (en) * 2003-07-15 2011-01-18 Special Devices, Incorporated Enhanced method, device, and system for identifying an unknown or unmarked slave device such as in an electronic blasting system
AR046498A1 (es) * 2003-07-15 2005-12-14 Detnet South Africa Pty Ltd Deteccion del estado de un fusible de detonador
US6988449B2 (en) * 2003-07-15 2006-01-24 Special Devices, Inc. Dynamic baselining in current modulation-based communication
US7617775B2 (en) * 2003-07-15 2009-11-17 Special Devices, Inc. Multiple slave logging device
CN100346129C (zh) * 2003-09-15 2007-10-31 中国兵器工业系统总体部 数码电子雷管控制器
DE10356349A1 (de) * 2003-11-28 2005-06-23 Bohlen Handel Gmbh Verfahren und Einrichtung zum Sprengen von Gesteinsmassen oder dergleichen Massen Übertage oder Untertage
MXPA06014882A (es) * 2004-06-22 2007-04-16 Orica Explosives Tech Pty Ltd Metodos de explosion.
US7594471B2 (en) 2004-07-21 2009-09-29 Detnet South Africa (Pty) Ltd. Blasting system and method of controlling a blasting operation
PE20100529A1 (es) 2005-02-16 2010-07-31 Orica Explosives Tech Pty Ltd Sistemas y metodos de voladura
WO2006128257A1 (en) * 2005-06-02 2006-12-07 Global Tracking Solutions Pty Ltd An explosives initiator, and a system and method for tracking identifiable initiators
US8079307B2 (en) 2005-10-05 2011-12-20 Mckinley Paul Electric match assembly with isolated lift and burst function for a pyrotechnic device
US20080098921A1 (en) * 2006-10-26 2008-05-01 Albertus Abraham Labuschagne Blasting system and method
CA2677828C (en) * 2007-02-16 2015-07-21 Orica Explosives Technology Pty Ltd Method of communication at a blast site, and corresponding blasting apparatus
CN101338995B (zh) * 2008-06-04 2013-05-29 北京铱钵隆芯科技有限责任公司 电子雷管控制芯片及其连接可靠性检测方法
EP3051248B1 (de) 2008-10-24 2018-02-28 Battelle Memorial Institute Elektronisches detonatorsystem
CN101408397B (zh) * 2008-11-26 2013-03-27 北京维深数码科技有限公司 一种本安型电子雷管起爆系统
US8477049B2 (en) * 2009-06-05 2013-07-02 Apple Inc. Efficiently embedding information onto a keyboard membrane
US10384281B2 (en) * 2012-03-02 2019-08-20 Sawstop Holding Llc Actuators for power tool safety systems
CN102735120B (zh) * 2011-04-06 2014-08-06 傲杰得公司 一种雷管网络起爆控制方法
DE102011108000A1 (de) * 2011-07-19 2013-01-24 Diehl Bgt Defence Gmbh & Co. Kg EFI-Zündmodul
GB201207450D0 (en) * 2012-04-26 2012-06-13 Secr Defence An electrical pulse splitter for an explosives system
RU2534782C1 (ru) * 2013-07-29 2014-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Северо-Кавказский горно-металлургический институт (государственный технологический университет) Универсальный автоматический прибор взрывания
FR3013827B1 (fr) * 2013-11-28 2016-01-01 Davey Bickford Detonateur electronique
RU2606265C1 (ru) * 2015-11-12 2017-01-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Прибор для подрыва пиросредств
RU2610610C1 (ru) * 2015-12-17 2017-02-14 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Прибор для подрыва пиросредств
CN106427233B (zh) * 2016-08-31 2017-10-17 湖南神斧集团向红机械化工有限责任公司 一种电子雷管的三码绑定系统
CN113639600A (zh) * 2021-08-16 2021-11-12 北京桓安芯数技术有限公司 点火头发火性能检测仪、检测方法
US20230280141A1 (en) * 2022-03-07 2023-09-07 Trignetra, LLC Remote firing module and method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851589A (en) * 1973-04-25 1974-12-03 Texaco Inc Electronic delay blaster
US4527636A (en) * 1982-07-02 1985-07-09 Schlumberger Technology Corporation Single-wire selective perforation system having firing safeguards
USRE33044E (en) * 1982-09-29 1989-09-05 Larnaston, Ltd. Sails
US4674047A (en) * 1984-01-31 1987-06-16 The Curators Of The University Of Missouri Integrated detonator delay circuits and firing console
US4712477A (en) * 1985-06-10 1987-12-15 Asahi Kasei Kogyo Kabushiki Kaisha Electronic delay detonator
US5214236A (en) * 1988-09-12 1993-05-25 Plessey South Africa Limited Timing of a multi-shot blast
JPH0694996B2 (ja) * 1989-11-24 1994-11-24 繁明 國友 花火点火装置
DE434883T1 (de) * 1989-12-29 1992-04-09 Union Espanola De Explosivos S.A., Madrid Elektronische einrichtung mit hoher zuverlaessigkeit fuer aufeinanderfolgende detonationen.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085659A (en) * 1995-12-06 2000-07-11 Orica Explosives Technology Pty Ltd Electronic explosives initiating device
US6644202B1 (en) 1998-08-13 2003-11-11 Expert Explosives (Proprietary) Limited Blasting arrangement
WO2000057124A1 (de) 1999-03-20 2000-09-28 Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik Verfahren zum auslösen von zündern über eine leitung grosser länge
US6637339B1 (en) 1999-03-20 2003-10-28 Dynamit Nobel Gmbh Explosivstoff Und Systemtechnik Method for exchanging data between a device for programming and triggering electronic detonators and said detonators
DE19930904A1 (de) * 1999-07-06 2001-01-11 Dynamit Nobel Ag Auslöseeinheit zur Initiierung von pyrotechnischen Elementen
DE19930904B4 (de) * 1999-07-06 2005-12-29 Orica Explosives Technology Pty. Ltd., Melbourne Elektronische Auslöseeinheit zur Initiierung von pyrotechnischen Elementen

Also Published As

Publication number Publication date
ES2105166T3 (es) 1997-10-16
DE69312609D1 (de) 1997-09-04
US5520114A (en) 1996-05-28
DE69312609T2 (de) 1998-01-08
EP0588685A1 (de) 1994-03-23
FR2695719A1 (fr) 1994-03-18
FR2695719B1 (fr) 1994-12-02

Similar Documents

Publication Publication Date Title
EP0588685B1 (de) Programmierbare integrierte Schaltung zur Detonationsverzögerung
EP0900354B1 (de) Verfahren zum steuern eines zünders mit einem elektronischen zündmodul; feuerleitungscodes- und zündmoduleinheit
FR2599136A1 (fr) Element de mise a feu de detonateur
EP2531809B1 (de) System zur programmierung und zündung von elektronischen sprengzündern sowie zugehöriges verfahren
CA2858793A1 (fr) Systeme de mise a feu de plusieurs ensembles de detonateurs electroniques
EP3394559B1 (de) Peripheres stromversorgungsmodul für elektronischen detonator
EP0210889A1 (de) Modulare Überwachungs- und Alarmzentrale grosser Sicherheit und entsprechendes Betriebsverfahren
FR2710404A1 (fr) Procédé de commande de détonateurs du type à module d'allumage électronique à retard intégré, ensemble codé de commande de tir et module d'allumage codé pour sa mise en Óoeuvre.
EP3265746A1 (de) System zur steuerung mindestens eines elektronischen detonators
CA2256037C (fr) Procede de commande de detonateurs du type a module d'allumage electronique, ensemble code de commande de tir et module d'allumage pour sa mise en oeuvre
FR3072164A1 (fr) Detonateur electronique sans fil
WO1990003549A1 (fr) Dispositif d'armement et de tempage d'une fusee pour une munition a tirer par un lanceur, en particulier par un lanceur automatique
FR2545207A1 (fr) Dispositif de programmation et de transfert d'energie pour systemes d'arme et projectile pour systemes d'armes munis d'un tel dispositif
EP1456598A1 (de) Anlage für programmierbare pyrotechnische abschüsse
EP1342982B1 (de) Sicherheitselektropyrotechnische Vorrichtung und Verfahren zur Steuerung
WO2023170369A1 (fr) Détonateur électronique mono-condensateur et système de mise à feu de tels détonateurs électroniques mono-condensateur
FR2574922A1 (fr) Fusee a retard programmable pour mise a feu d'elements pyrotechniques
EP0730072A1 (de) Anordnung bestehend aus einem elektrischen Türschloss mit einer elektrischen Notfunktion und aus seinen Steuerungsmitteln
EP4306900A1 (de) Autonomer pyrotechnischer zündsimulator
FR2474155A1 (fr) Dispositif de programmation et projectile pour systeme d'arme
BE1004724A3 (fr) Dispositif de surveillance de la proximite d'un objet portatif.
EP0283386A1 (de) Ferngesteuerte Vorrichtung zum Feuern eines Geschosses
FR2591327A1 (fr) Dispositif de programmation par contact pour fusee chronometrique de munition
FR2633653A1 (fr) Systeme d'actionnement, notamment pour le verrouillage d'une enceinte a proteger
CA3202387A1 (fr) Procede d'installation d'un ensemble de detonateurs electroniques et procede de mise a feu associe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB SE

17P Request for examination filed

Effective date: 19940221

17Q First examination report despatched

Effective date: 19950712

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAVEY BICKFORD

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970731

REF Corresponds to:

Ref document number: 69312609

Country of ref document: DE

Date of ref document: 19970904

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2105166

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120814

Year of fee payment: 20

Ref country code: SE

Payment date: 20120918

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120810

Year of fee payment: 20

Ref country code: FR

Payment date: 20120803

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121109

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20130123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69312609

Country of ref document: DE

Representative=s name: PATENTANWAELTE VOLLMANN & HEMMER, DE

Effective date: 20130227

Ref country code: DE

Ref legal event code: R081

Ref document number: 69312609

Country of ref document: DE

Owner name: DAVEY BICKFORD, FR

Free format text: FORMER OWNER: BICKFORD, DAVEY, ROUEN, FR

Effective date: 20130227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69312609

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130905

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130905

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130907