EP0588685B1 - Circuit intégré et programmable pour l'allumage des détonateurs à retard - Google Patents
Circuit intégré et programmable pour l'allumage des détonateurs à retard Download PDFInfo
- Publication number
- EP0588685B1 EP0588685B1 EP93402166A EP93402166A EP0588685B1 EP 0588685 B1 EP0588685 B1 EP 0588685B1 EP 93402166 A EP93402166 A EP 93402166A EP 93402166 A EP93402166 A EP 93402166A EP 0588685 B1 EP0588685 B1 EP 0588685B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- firing
- ignition
- control unit
- modules
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42D—BLASTING
- F42D1/00—Blasting methods or apparatus, e.g. loading or tamping
- F42D1/04—Arrangements for ignition
- F42D1/045—Arrangements for electric ignition
- F42D1/05—Electric circuits for blasting
- F42D1/055—Electric circuits for blasting specially adapted for firing multiple charges with a time delay
Definitions
- the present invention relates to a method for controlling detonators of the type with an integrated electronic delay ignition module, as well as to a coded firing control assembly and to coded ignition modules for its implementation.
- the various delay times between the explosions of the charges are obtained by a pyrotechnic process at the level of the detonators themselves.
- the detonators are initiated simultaneously by an exploder which delivers a certain electrical energy in a firing line which connects said detonators in series or in parallel.
- the pyrotechnic delay generated by the combustion of a retarding pyrotechnic composition is of relative precision sometimes insufficient for certain applications.
- the fire control unit is designed to be able to transmit identification information of delay times and other control information and signals. In addition, it displays the response of the detonators, following an interrogation made by the fire control unit, representing the identification and the delay time stored in memory for each of them.
- the detonators receive successively loading orders from the firing control unit, then firing orders. They send information back to the fire control unit enabling the said control unit to control the proper conduct of the fire sequence.
- the detonators are provided for this purpose with local intelligence by microprocessor. The delay times for which they are programmed are stored on non-volatile memories.
- the aim of the present invention is to propose a method for controlling electronic ignition modules with integrated delay, as well as a coded fire control assembly and a coded ignition module for its implementation, giving detonators the aforementioned advantages of detonators with integrated electronic delay, but also great simplicity of manufacture and operation.
- the subject of the present invention is a method for controlling detonators of the type with an integrated electronic delay ignition module, each coded ignition module comprising a tank capacity intended, after loading, to discharge into a sound initiating head.
- detonator to generate an electric ignition pulse, a time base and a logic unit provided with a memory for storing in said ignition module an explosion delay time of said detonator, during 'A firing sequence, said ignition modules being able to communicate with a firing control unit intended to transmit to them in particular an order to load the tank capacity, as well as a firing order and to receive said modules one or information relating to their state, process in which, before a firing sequence, their delay time is memorized with a programming unit in the ignition modules.
- the method is characterized in that, once the ignition modules have been programmed, the programmed delay times are transferred to the fire control unit using the programming unit, in that the firing control unit simultaneously interrogates the online ignition modules by a test command, before the loading step and the firing step and in that the ignition modules refer to the firing control unit global information relating to their state, according to a time sequence which corresponds to the firing time sequence.
- the exchanges between the fire control unit and the ignition modules are done by means of coded binary messages.
- the messages transmitted to the detonator are coded in the form C (8,4).
- a word formed of 4 bits of information is transmitted, on the transmission channel, in the form of an 8-bit message.
- the code C (8,4), used for the present invention is constructed from a cyclic code C (7,4) to which a parity bit calculated as a function of the value of the other 7 bits of the message is associated.
- the ignition module After receiving a message, the ignition module goes through a decoding phase allowing the recovery of the 4 bits of information of this message. In the event that a detected error cannot be corrected, an error message is returned to the fire control unit.
- the ignition module When the ignition module is in the reception phase, it knows what type of massage will be transmitted to it. Indeed, any reception is preceded by the reception of an appropriate order.
- the logic unit of the ignition module After receiving and decoding a command, the logic unit of the ignition module proceeds to perform the appropriate function.
- the time base of each ignition module is measured during programming of the corresponding module in time delay.
- the delay times are different for each module and the modules return the information requested after a feedback time depending on the delay time stored in each of them, said fire control unit opening for each of the modules reception time windows corresponding to said return time.
- the firing control unit simultaneously interrogates the online ignition modules by a test command, before the loading step and the firing step and the ignition modules return to the control unit. to draw global information relating to their state.
- Another subject of the invention is a coded fire control assembly comprising a fire control unit and integrated electronic delay ignition modules for detonator, electrically connected in line to said fire control unit, and a fire control unit. programming.
- connection between the fire control unit and the ignition modules is used to power said ignition modules, as well as for dialogue between said fire control unit and said ignition modules.
- the coded fire control assembly is characterized in that the ignition modules include means enabling them to send information to the fire control unit in the form of over-consumption of the line current, the unit of fire control being provided with means for detecting an overconsumption of the line current with respect to the average consumption of the ignition modules.
- Another object of the invention is still a detonator ignition module comprising a supply circuit, a communication interface, a pyrotechnic charge management circuit comprising in particular a tank capacity intended, after loading, to discharge into a detonator primer head, as well as a logical unit for managing the assembly.
- this ignition module is characterized in that the pyrotechnic charge management circuit comprises, mounted in series with the tank capacity, a power source, for example the line voltage, a transistor for controlling the load of said tank capacity and a resistor connected by that of its terminals which is not directly connected to the capacity tank to a discharge switching transistor of said tank capacity to earth.
- a power source for example the line voltage
- a transistor for controlling the load of said tank capacity and a resistor connected by that of its terminals which is not directly connected to the capacity tank to a discharge switching transistor of said tank capacity to earth.
- the simplicity of structure of the ignition modules proposed by the invention makes it possible to provide them with high reliability of use.
- the means of communication between the ignition modules of the invention and their firing line control unit are extremely simplified.
- the ignition modules and detonators will be all identical and coded in production; they may only be individualized on site when programming the delay time.
- These ignition modules are non-polarized. They can be used in large numbers, (200 or more) in parallel mounting, without this resulting in problems which could be due to a too large line current.
- the detonators of the firing assemblies are very safe to operate.
- the ignition modules are devoid of internal energy sources and do not present a risk of inadvertent ignition outside of the firing sequences.
- Procedures limiting access to the programming of the modules and to the control of the firing sequences are in particular provided, with in particular a coded pairing between on the one hand, the programming unit and the unit fire control, and secondly, the fire control assembly and the ignition modules.
- the impedance between the power supply of the pyrotechnic charge management circuit and the primer head is large enough so that the current generated by the line voltage in the primer head is, whatever the state of the control transistors, lower than the value of the non-operating limit current of said primer head.
- the discharge resistance of the reservoir capacitor is of a sufficiently large value so that the current generated by said supply in the primer head is whatever the state of the control transistors less than the value of the current limit of non-functioning of the primer head.
- Figure 1 is a schematic representation of a detonator equipped with an integrated electronic delay ignition module according to an embodiment of the invention.
- FIGS 2A, 2B and 2C are schematic representations of a firing assembly comprising detonators mounted in parallel, of the type of those shown in Figure 1, showing the communication circuits established respectively during firing, during programming and when transferring programming information to the fire console.
- FIG. 3 is an overall representation of an ignition module according to the invention.
- Figure 4 is a representation of the pyrotechnic charge management circuit of an ignition module according to the invention.
- Figure 5 is a representation of the communication interface of the same ignition module.
- Figure 6 is a representation of the supply circuit of the same ignition module.
- Figure 7 is an illustration of the logic unit of the same ignition module.
- Figure 8 is a schematic illustration of the communication principle, in a preferred embodiment. (during transmission (A) and during reception (B)).
- the integrated electronic delay detonator shown in Figure 1 has a case 1 which serves as a housing and whose body 2 has an elongated cylindrical shape terminated at one end by a bottom 3. At its other end, this case 1 is closed by a plug also elongated 4, the walls of said case 1 being integral with said plug 4 by means of a crimping 5.
- the case 1 is made of aluminum alloy, the plug 4 being made of standard PVC.
- the end 3 of the case is associated with an aluminum cover 6 comprising a bottom 7 arranged in a cross section of the case 1 and bordered by a cylindrical skirt 8 extending from said bottom 7 towards the bottom 3, the walls external of said skirt 8 substantially matching the internal walls of the case 1.
- the bottom 7 of this cover 6 is traversed in its thickness by a bore 9 whose outline is a circle centered on the axis of the case 1.
- This cover 6 defines with the bottom 3 and the walls of the body 2 of the case 1 a chamber 10 containing inside a charge 11, such as penthrite, this charge 11 being supplemented by a priming mixture 12 placed in said chamber 10 at the level of the cover 6.
- the proportions of penthrite and priming mixture are 0.6 g and 0.2 g respectively.
- a primer head 13 On the side of the cover 6 which is opposite to the chamber 10 is disposed a primer head 13 extending axially in the case 1 and protected by a cylindrical casing 14. This primer head 13 is directly connected to a integrated delay electronic ignition module 15 disposed in said case 1 between the casing 14 and the plug 4. This electronic module 15 is supplied, at its end, at the plug 4 by two sheathed wires 16a and 16b which pass through the plug 4 in its height and connect the module 15 to the ignition circuit.
- a current of an intensity greater than the operating threshold intensity initiates the primer head 13, which through the cover 6 in the opening 9 excites the charge 12 and triggers the detonation.
- the ignition modules 15 of the detonators are mounted in line in a parallel network with a fire control unit 17, also called a fire console.
- the firing unit also includes a programming unit or console 18. This is intended to allow, on the one hand, the programming of each module 15, before its installation in a hole, and in particular the storage in each module 15, the delay time allocated to it.
- the programming console 18 allows the memorization of the delay times programmed in the fire control unit 17.
- Figure 2A shows the firing assembly in the connected state during a firing sequence.
- the fire control unit 17 is connected to the detonators, the programming console 18 then being inactive.
- Figure 2B shows the firing assembly in a first connection state before a firing sequence.
- the programming unit 18 is connected to the ignition modules 15 for the unitary programming of the ignition modules in time delay.
- Figure 2C shows the firing assembly in a second connection state before a firing sequence.
- This second connection state makes it possible, after having programmed the ignition modules 15 using the programming console 18, to transfer the programmed delay times to the fire control unit 17.
- An ignition module 15 as shown diagrammatically in FIG. 3, comprises four subsystems: a pyrotechnic charge management circuit 300, a communication interface 301, a supply circuit 302, a logic unit 303 for managing the entire micro-system.
- the pyrotechnic charge management circuit has been shown more particularly in FIG. 4.
- This circuit mainly comprises five N-channel MOS field effect transistors referenced in the diagram by 19, 20, 22, 23 and 192, and two transistors P-channel MOS field effect, referenced in the diagram by 21 and 191.
- the transistor 19 is mounted as a common source, its source being directly connected to the ground. Its drain is connected, through a resistor 26, to a test circuit of a capacitor 29 which constitutes the reservoir capacity of the ignition module. Its grid is connected to a test line voltage.
- the transistor 20 is mounted as a common source and is directly connected by its source to the ground. Its gate is connected to the logic management unit 303 of the detonator firing micro-system from which it receives the charge order for the capacitor 29. By its drain, the transistor 20 is connected to the gate of the transistor 21. A resistor 30 is mounted in derivation between the gate and the source of the transistor 21.
- the transistor 21 is connected by its drain to a non-return diode 28, which is conducting for the currents passing through said transistor 21 to a resistor 27 of 12 kohms.
- the resistor 27 is mounted in series with the diode 28 and the transistor 21, these three components connecting a terminal of the primer head 13 to the line voltage L.
- Resistor 27 and primer head 13 are also connected by their common terminal to one of the terminals of capacitor 29, the other terminal of which is connected to earth.
- This capacitor 29 has a capacity of 100 ⁇ F.
- the transistor 22 realizes with a resistor 31 a discharge circuit without firing the reservoir capacitor 29.
- this transistor 22 closes and puts the condenser 29 to earth by its two terminals. The capacitor 29 then discharges through the resistor 31.
- the transistor 23 is connected by its drain to the other terminal, relative to that connected to the line voltage L, of the primer head 13. Its source is connected to the ground and its gate is connected to the unit logic 303 to be able to receive a firing control signal.
- a resistor 24 is connected in derivation between the gate of transistor 23 and the earth.
- the transistor 20 only has the function of adjusting the voltage level between the outputs of the logic unit 303 for managing the microsystem and the commands of the other transistors.
- the charging of the reservoir capacitor 29 is controlled by the transistor 21, which is intended to put this capacitor 29 in connection with the line voltage L.
- the closing order is transmitted to the transistor 21 via the adaptation transistor of level 20.
- the transistor 23 is the load firing member. When the firing order is transmitted to it, the transistor 23 closes and puts that of the terminals of the primer head 13 which is not connected to the capacitor 29 to earth. The capacitor 29 discharges in the primer head 13 and triggers the ignition.
- a circuit 400 comprising a comparator 193, by means of which the voltage of the capacitor 29 can be quantified, ensures the connection of the management circuit with a microcontroller 45 of the logic unit 303.
- the circuit shown in Figure 4 brings together all the necessary management elements of the firing process: the transistor 23 switches the pyrotechnic charge; the transistors 20 and 21 charge the firing capacitor 29; transistor 22 constitutes, with resistor 31, the discharge circuit of capacitor 29; and the transistors 19, 191 and 192 constitute a test circuit for the capacitor 29 and the primer head 13.
- transistor 20 is open, this which means that the transistor 21 is also open and that the capacitor 29 cannot be charged.
- the transistor 22 is closed, so that any possible charge of the capacitor 29 is discharged.
- Transistors 19 and 191 are open, which causes the test circuit to be inhibited.
- the transistor 23 is open, so that no current can flow through the primer head 13.
- the transistors 21 and 191 In order for a current to possibly be considered dangerous and to ignite the primer head 13, the transistors 21 and 191 would have to be simultaneously closed, the transistor 22 being open and the transistor 23 being broken closed. This eventuality is highly unlikely. If it appeared, the primer head would be connected to the voltage line L through the transistor 21 and the resistor 27 of 12 kohms. Given the importance of the impedance made up of the primer head 13 and of the resistor 27, the maximum current passing through said primer head 13 would be of an intensity of the order of 2 milliamps, it that is to say much lower than the threshold intensity necessary for the operation of said primer head 13, or, in other words, much lower than the maximum non-operating current which is of the order of 130 milliamps. Thus, the resistor 27 has a double function in the pyrotechnic circuit: it limits the current when the capacitor 29 is charged; it protects the primer head 13 in the highly unlikely event of a simultaneous failure of the transistors 21, 22 and 23.
- the transistor 19 charges the firing capacitor 29 with 100 ⁇ F at a voltage of 3 V.
- the energy related to the resistance the primer is then 0.16 mJ / ohm. This value is lower than the maximum non-operating energy which is 0.16 mJ for 5 ⁇ F.
- charging the shot capacitor during the test phase does not represent any danger.
- the test circuit is capable of detecting the presence of the primer head 13.
- This current is of the order of 1 mA, that is to say below the maximum intensity threshold of non-functioning, which is of the order of 130 mA.
- the communication interface of an ignition module has been more particularly shown in FIG. 5. It comprises a receiver sub-assembly 32 and a transmitter sub-assembly 33. These two sub-assemblies 32 and 33 provide the bidirectional connection on the one hand with the firing console 17 and on the other hand with the programming console 18 when it is connected to said module 15.
- the receiver sub-assembly 32 is intended to detect the polarity changes applied to the line by the shooting consoles 17 or programming consoles 18. It mainly comprises four N-channel field effect VMOS transistors, referenced at 341 to 344, mounted each with a common source, the source being connected directly to earth, as well as a P-channel field effect VMOS transistor, referenced at 345, mounted as a common drain, the drain being connected to earth through a resistor 374.
- the gate of transistor 341 is connected on the one hand to the logic unit 303 for managing the microsystem and on the other hand to a resistor 373 through which the gate is connected to earth.
- the drain of transistor 341 is connected on the one hand to the gate of transistor 342 and on the other hand through a resistor 371 connected to the module power supply described in more detail with reference to Figure 6.
- the drain of transistor 342 is connected to a common terminal 361 to which are also connected a resistor 36, the drain of transistor 343 and the line.
- the common terminal 361 is connected through the resistor 36 to the operating voltage V CC .
- the gate of transistor 343 is connected on the one hand, through a resistor 372, to the power supply module and on the other hand to the drain of transistor 344.
- the gate of transistor 344 is connected on the one hand, through a resistor 374, to earth, and on the other hand to the drain of transistor 345.
- the source of transistor 345 is connected to the operating voltage V CC and the gate of transistor 345 is connected to logic unit 303 for managing the microsystem.
- the transistors 342 and 343 convert the switching of the line into pulses understandable by the logic unit 303, while the transistors 341 and 344 fix the quiescent state of the signal "line in". Since the receiver sub-assembly 32 is only sensitive to the polarity and not to the amplitude of the signals applied to its input, this sub-assembly is more tolerant of online loss phenomena.
- the emitter sub-assembly 33 includes a VMOS N-channel field effect transistor, referenced at 38 and, two resistors referenced at 39 and 391.
- the transistor 38 is mounted at common source, the source being connected directly to earth. Its grid is connected on the one hand through the resistor 391, to the earth and on the other hand to the output line.
- the drain of the transistor 38 is connected, through the resistor 39 to the line voltage E.
- the resistor 39 of 470 ohm creates an over-consumption of current on the line E when a voltage pulse is supplied by the output line of the microcontroller to the gate of transistor 38.
- the supply of an ignition module 15 is shown in Figure 6.
- This circuit is intended to provide a DC voltage of about 4 volts, including during the firing phase.
- This module essentially comprises a pair of Zener diodes 40, a rectifier bridge 41, a first voltage regulator 42, a second voltage regulator 43 and a capacitor 44 of 1000 ⁇ F.
- the rectifier bridge 41 switches the voltage coming from the line and frees the ignition module from any polarization.
- the first voltage regulator 42 guarantees a charging voltage of 12 volts at capacitor 44 for a line voltage comprised "in absolute value" between 12 volts and 30 volts.
- the second voltage regulator 43 uses, to supply the rest of the system at 4 volts, the line voltage or the energy stored by the capacitor 44.
- the logic unit 303 which manages each ignition module 15 is of the conventional type. It is shown in Figure 7.
- the logic unit 303 manages the communications with the line, as well as the commands of the pyrotechnic charge. It comprises a microcontroller 45, including a program memory, as well as a "delay time" memory 47 which is chosen to be of the EEPROM type. The memorization of the delay time is therefore permanent, but can be erased and reprogrammed electrically at any time.
- the microcontroller 45 technology allows consumption as low as possible, a speed of execution and a sufficient number of inputs and outputs.
- the time base is not controlled by a quartz but by a simple RC circuit, referenced in 48 and 49.
- the oscillation frequency of each pilot can vary by ⁇ 20% compared to the precision required for the ignition module delay time.
- the setting error of the management clock is measured and a corrective factor for adjustment to the precise value sought is deduced therefrom and applied to the ignition module to obtain the correct delay.
- the implementation procedure is as follows: the operator programs the time on the keyboard desired delay in milliseconds. Delay times can range from 1 to 3000 milli-seconds. They are different for each ignition module and are used to identify them during dialogues between the ignition modules and the consoles. For artificers, a difference of 8 milli-seconds between two detonator delay times is not significant. It is therefore possible, if one wishes to detonate several detonators in a pyrotechnically synchronous manner, to assign them delay times offset from one another from milli-seconds to milli-seconds.
- each delay time can be completed by a programming order number.
- the console 18 then sends the programming order to the ignition module 15 and requests it to read the programmed delay time. If the information returned by the module corresponds to one millisecond near to that programmed, the screen of the console 18 displays that the programming is correct. Otherwise, the console 18 requests that programming be resumed.
- the erase function is used if the operator has made a mistake in entering the delay time.
- the delay time is stored in an EEPROM memory of the programming console 18. Once all the delay times programmed and memorized, these are transferred to the console of shot 17, automatically during the connection between the two consoles, by means of the RS232 type serial link, by a transfer function provided on the programming console 18.
- An internal self-test also makes it possible to test each ignition module 15.
- L return indication is global. A red light indicates any incorrect procedure or asking for confirmation.
- the firing console 17 comprises three test / arm / firing keys, two green and red indicator lights for the test phase and a magnetic card suitable for the firing console; it has five functions: automatic transfer of data from the programming console 18; ignition module test 15; cancellation of the shooting; charging of the capacitor-tanks 29; shoot.
- the implementation of a firing sequence is as follows. Once the ignition modules 15 have been programmed using the programming console 18, and as indicated above, the programmed delay times will be transferred from the storage EEPROM memories of said programming console 18 to the EEPROM storage memories of said firing console 17, after the introduction of the appropriate magnetic card or any other security device to the firing console authorizing connection with the programming console. Once the transfer has been made, the operator gives the firing console 17 an order to test the ignition modules 15 online.
- Each ignition module 15 returns binary information on the line relating to its operating state: information of the "correct module” or “incorrect module” type, or possibly more complicated.
- the pulses sent to the firing console 17 are returned for each ignition module 15 with a delay time corresponding to the delay time for which said module 15 has been programmed.
- the firing console 17 opens for each detonator a time window around the delay time programmed by the console 18 and which it has in memory. It is in the delay time with which the console 17 receives information which makes it possible to identify the module 15 from which it comes, this delay time corresponding to the firing delay time from which the module has been programmed. This therefore assumes that the transfer to the firing console of the delay times by the programming console has been carried out.
- FIGS. 8A and 8B shows the timing diagram in sending, and of which FIG. 8B shows the timing diagram in reception.
- the modules 15, referenced by M 1 , M 2 ... M n return to the firing console 17 one or more binary pulses corresponding to the information to be transmitted to the console. firing 17.
- the pulses are offset with respect to an identical zero time for each ignition module 15 by a time T 1 , T 2 , ... T m corresponding to the firing delay time, including the module M m returning information has been programmed.
- the shooting console 17 will open as many windows F 1 , F 2 , F m of time observation as there are ignition modules M N. For a pulse lasting 250 micro-seconds, the time observation windows F 1 , F 2 , F m opened by the firing console 17 may be of the order of 750 micro-seconds (250 micro-seconds before and after l 'impulse).
- the console 17 awaits the firing order. After validation, the firing order is given to the different ignition modules.
- the ignition module does not include any energy source. It is therefore very reliable, since it presents no risk of inadvertent ignition of the pyrotechnic charge as long as the detonator with which said ignition module is associated is not mounted in line.
- the discharge of the capacitor 29 from an ignition module 15 will be controlled either directly by an operator from the firing console 17, or internally by the ignition module itself, after four seconds following the line wires cut after explosion of the first detonator.
- the shooting console can be provided with a magnetic card authorizing its use.
- connection points are designated by signal names or indications of type of voltage. Points of the same name are then intended to be connected to each other.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Air Bags (AREA)
Description
- La présente invention est relative à un procédé de commande de détonateurs du type à module d'allumage à retard électronique intégré, ainsi qu'à un ensemble codé de commande de tir et à des modules d'allumage codés pour sa mise en oeuvre.
- Dans la plupart des travaux à l'explosif, on provoque la détonation des charges selon une séquence temporelle bien précise, ceci afin d'améliorer le rendement du travail de l'explosif et d'en contrôler mieux les effets.
- De façon classique, les divers temps de retard entre les explosions des charges sont obtenus par un procédé pyrotechnique au niveau des détonateurs eux-mêmes. Les détonateurs sont initiés simultanément par un exploseur qui délivre une certaine énergie électrique dans une ligne de tir qui relie en série ou en parallèle lesdits détonateurs.
- Cependant, le retard pyrotechnique généré par la combustion d'une composition pyrotechnique retardatrice est d'une précision relative parfois insuffisante pour certaines applications.
- Pour pallier cet inconvénient, il a été récemment proposé d'utiliser des dispositifs d'allumage de détonateur à retard intégré du type électronique, qui permettent de tirer partie de la précision qu'il est possible d'obtenir en électronique pour enrichir et affiner les gammes de temps de retard obtenus précédemment de façon pyrotechnique. Il a notamment été proposé dans le brevet US 4.674.047 qui est pris à base des préambules des revendications indépendantes 1 et 4, ainsi que dans un article reprenant une conférence donnée par les inventeurs sur le même sujet, "The Development Concept of the Integrated Electronic Detonator - Worsey-Tyler - Society of Explosives Engineers - Proceedings of the 9th Conference of Explosives and Blasting Techniques - 1983 January 31 - February 4" des détonateurs équipés de moyens électroniques leur permettant de dialoguer avec une unité de commande extérieure. Chaque détonateur est muni d'une capacité dont le déchargement active la charge explosive. Les temps de retard de chaque détonateur peuvent être programmés sur site, un code d'identification ayant été préalablement attribué à chaque détonateur, par exemple en sortie d'usine.
- L'unité de commande de tir est conçue de façon à pouvoir émettre des informations d'identification des temps de retard et d'autres informations et signaux de commande. De plus, elle affiche la réponse des détonateurs, à la suite d'une interrogation faite par l'unité de commande de tir, représentant l'identification et le temps de retard mis en mémoire pour chacun d'eux.
- Lors d'une séquence de tir, les détonateurs reçoivent de l'unité de commande de tir des ordres successivement de chargement de la capacité précitée, puis de tir. Ils renvoient à l'unité de commande de tir des informations permettant à ladite unité de contrôler le bon déroulement de la séquence de tir. Les détonateurs sont munis à cet effet d'une intelligence locale par micro-processeur. Les temps de retard dont ils sont programmés sont stockés sur des mémoires non volatiles.
- Le but de la présente invention est de proposer un procédé de commande de modules d'allumages électroniques à retard intégré, ainsi qu'un ensemble codé de commande de tir et un module d'allumage codé pour sa mise en oeuvre, conférant aux détonateurs les avantages précités des détonateurs à retard électronique intégré, mais également une grande simplicité de fabrication et de fonctionnement.
- La présente invention a pour objet un procédé de commande de détonateurs du type à module d'allumage électronique à retard intégré, chaque module d'allumage codé comportant une capacité réservoir destinée, après chargement, à se décharger dans une tête d'amorce de son détonateur pour y générer une impulsion électrique de mise à feu, une base de temps ainsi qu'une unité logique munie d'une mémoire pour le stockage dans ledit module d'allumage d'un temps de retard d'explosion dudit détonateur, lors d'une séquence de tir, lesdits modules d'allumage étant aptes à dialoguer avec une unité de commande de tir destinée à leur transmettre notamment un ordre de chargement de la capacité réservoir, ainsi qu'un ordre de tir et à recevoir lesdits modules une ou des informations relatives à leur état, procédé dans lequel, avant une séquence de tir, on mémorise avec une unité de programmation dans les modules d'allumage leur temps de retard.
- Selon l'invention, le procédé est caractérisé en ce que, une fois la programmation des modules d'allumage réalisée, les temps de retard programmés sont transférés vers l'unité de commande de tir à l'aide de l'unité de programmation, en ce que l'unité de commande de tir interroge simultanément par un ordre de test les modules d'allumage en ligne, avant l'étape de chargement et l'étape de tir et en ce que les modules d'allumage renvoient à l'unité de commande de tir une information globale relative à leur état, selon une séquence temporelle qui correspond à la séquence temporelle de tir.
- Les échanges entre l'unité de commande de tir et les modules d'allumage se font par l'intermédiaire de messages binaires codés.
- Les communications étant supportées par une ligne bifilaire, l'unité de commande de tir et les modules d'allumage doivent être tolérants aux dégradations que peuvent subir les signaux électriques lors de leur transit sur cette ligne.
- Les messages transmis au détonateur sont codés sous la forme C(8,4).
- Après codage, un mot formé de 4 bits d'information est émis, sur le canal de transmission, sous la forme d'un message de 8 bits.
- L'introduction de 4 bits supplémentaires (bits de contrôle) permet au récepteur:
- de détecter la présence dans le message, d'une ou deux erreurs générées par des perturbations sur le canal de transmission,
- de reconstituer l'information de base dans le cas où le message ne contient qu'une seule erreur.
- Le code C(8,4), utilisé pour la présente invention est construit à partir d'un code cyclique C(7,4) auquel on associe un bit de parité calculé en fonction de la valeur des 7 autres bits du message.
- Après réception d'un message, le module d'allumage passe par une phase de décodage permettant la récupération des 4 bits d'informations de ce message. Dans le cas où une erreur détectée ne peut être corrigée, un message d'erreur est renvoyé vers l'unité de commande de tir.
- Deux types de messages peuvent être reçus par le détonateur:
- une commande,
- un retard + un numéro d'ordre.
- Lorsque le module d'allumage se trouve en phase de réception, il sait quel type de massage va lui être transmis. En effet, toute réception est précédée par la réception d'une commande appropriée.
- Après réception et décodage d'une commande, l'unité logique du module d'allumage passe à la réalisation de la fonction appropriée.
- De manière avantageuse, la base de temps de chaque module d'allumage est mesurée lors de la programmation du module correspondant en temps de retard.
- De préférence, les temps de retard sont différents pour chaque module et les modules renvoient les informations demandées après un temps de retour d'informations fonction du temps de retard mémorisé dans chacun d'eux, ladite unité de commande de tir ouvrant pour chacun des modules des fenêtres temporelles de réception correspondant audit temps de retour.
- De préférence, l'unité de commande de tir interroge simultanément par un ordre de test les modules d'allumage en ligne, avant l'étape de chargement et l'étape de tir et les modules d'allumage renvoient à l'unité de commande de tir une information globale relative à leur état.
- L'invention a encore pour objet un ensemble codé de commande de tir comportant une unité de commande de tir et des modules d'allumages à retard électronique intégré pour détonateur, reliés électriquement en ligne à ladite unité de commande de tir, et une unité de programmation.
- La liaison entre l'unité de commande de tir et les modules d'allumage sert à l'alimentation desdits modules d'allumage, ainsi qu'au dialogue entre ladite unité de commande de tir et lesdits modules d'allumage.
- L'ensemble codé de commande de tir est caractérisé en ce que les modules d'allumage comportent des moyens leur permettant d'envoyer sur l'unité de commande de tir des informations sous forme d'une surconsommation du courant de ligne, l'unité de commande de tir étant munie de moyens pour la détection d'une surconsommation du courant de ligne par rapport à la consommation moyenne des modules d'allumage.
- L'ensemble codé est avantageusement complété par les différentes caractéristiques suivantes prises seules ou selon toutes leurs combinaisons techniquement possibles:
- chaque module d'allumage comprend une base de temps formée par un circuit RC;
- l'unité de programmation est apte à dialoguer séparément avec chaque module d'allumage, pour la mémorisation des temps de retard d'explosion dans lesdits modules d'allumage et l'unité de commande de tir est apte à transmettre les phases de tirs lors d'une séquence de tir;
- l'unité de programmation est munie de moyens pour la mémorisation de l'ensemble des temps de retard qui sont programmés dans les modules d'allumage. L'unité de commande de tir et l'unité de programmation sont aptes à dialoguer pour permettre le transfert, avant une séquence de tir, de l'ensemble des temps de retard programmés;
- les unités de commande de tir et de programmation sont munies de moyens de codage destinés à limiter leur accès à des personnes autorisées et de moyens pour leur reconnaissance mutuelle interne avant le transfert des temps de retard programmés de l'unité de programmation sur l'unité de commande de tir.
- Un autre objet de l'invention est encore un module d'allumage de détonateur comportant un circuit d'alimentation, une interface de communication, un circuit de gestion de la charge pyrotechnique comportant notamment une capacité réservoir destinée, après chargement, à se décharger dans une tête d'amorce de détonateur, ainsi qu'une unité logique de gestion de l'ensemble.
- Conformément à l'invention, ce module d'allumage est caractérisé en ce que le circuit de gestion de la charge pyrotechnique comprend, montée en série avec la capacité réservoir, une source d'alimentation, par exemple la tension de ligne, un transistor pour la commande de la charge de ladite capacité réservoir et une résistance reliée par celle de ses bornes qui n'est pas directement reliée à la capacité réservoir à un transistor de commutation de décharge de ladite capacité réservoir à la terre.
- Compte-tenu de l'environnement dans lequel ces modules d'allumage sont destinés à être utilisés, la simplicité de structure des modules d'allumage proposée par l'invention permet d'assurer à ceux-ci une grande fiabilité d'utilisation. Notamment, les moyens de communication entre les modules d'allumage de l'invention et leur unité de commande en ligne de tir sont extrêmement simplifiés. Egalement, les modules d'allumage et les détonateurs seront en fabrication tous identiques et codés; ils pourront n'être individualisés que sur site lors de leur programmation du temps de retard.
- Ces modules d'allumage sont non polarisés. Ils peuvent être utilisés en nombre important, (200 et plus) en montage parallèle, sans qu'il n'en résulte des problèmes qui pourraient être dûs à un courant de ligne trop important.
- Un autre avantage encore de l'invention tient en ce que les détonateurs des ensembles de tir sont d'une grande sécurité d'exploitation. Les modules d'allumage sont dépourvus de sources d'énergie internes et ne présentent pas de risques de mises à feu intempestives en dehors des séquences de tir. Des procédures limitant l'accès à la programmation des modules et à la commande des séquences de tir sont notamment prévues, avec notamment un appairage codé entre d'une part, l'unité de programmation et l'unité de commande de tir, et d'autre part, l'ensemble de commande de tir et les modules d'allumage.
- De préférence, l'impédance entre l'alimentation du circuit de gestion de la charge pyrotechnique et la tête d'amorce est suffisamment importante pour que le courant généré par la tension de ligne dans la tête d'amorce soit, quel que soit l'état des transistors de commande, inférieur à la valeur du courant limite de non fonctionnement de ladite tête d'amorce.
- De façon avantageuse alors, la résistance de décharge du condensateur réservoir est d'une valeur suffisamment importante pour que le courant généré par ladite alimentation dans la tête d'amorce soit quel que soit l'état des transistors de commande inférieur à la valeur du courant limite de non fonctionnement de la tête d'amorce.
- La description qui suit est purement illustrative et non limitative. Elle doit être lue en regard des dessins annexés sur lesquels:
- La Figure 1 est une représentation schématique d'un détonateur équipé d'un module d'allumage à retard électronique intégré conforme à un mode de réalisation de l'invention.
- Les Figures 2A, 2B et 2C sont des représentations schématiques d'un ensemble de tir comportant des détonateurs montés en parallèle, du type de ceux représentés sur la Figure 1, faisant apparaître les circuits de communications établis respectivement lors du tir, lors de la programmation et lors du transfert des informations de programmation à la console de tir.
- La Figure 3 est une représentation d'ensemble d'un module d'allumage conforme à l'invention.
- La Figure 4 est une représentation du circuit de gestion de la charge pyrotechnique d'un module d'allumage conforme à l'invention.
- La Figure 5 est une représentation de l'interface de communication du même module d'allumage.
- La Figure 6 est une représentation du circuit d'alimentation du même module d'allumage.
- La Figure 7 est une illustration représentation de l'unité logique du même module d'allumage.
- La Figure 8 est une illustration schématique du principe de communication, dans un mode de réalisation préféré. (durant la transmission (A) et durant la réception (B)).
- Le détonateur à retard électronique intégré représenté sur la Figure 1 comporte un étui 1 qui lui sert de boîtier et dont le corps 2 a une forme cylindrique allongée terminée à une de ses extrémités par un fond 3. A son autre extrémité, cet étui 1 est obturé par un bouchon également allongé 4, les parois dudit étui 1 étant solidaires dudit bouchon 4 par l'intermédiaire d'un sertissage 5. L'étui 1 est en alliage d'aluminium, le bouchon 4 étant en PVC standard.
- L'extrémité 3 de l'étui est associée à un opercule en aluminium 6 comportant un fond 7 disposé selon une section droite de l'étui 1 et bordé par une jupe 8 cylindrique s'étendant dudit fond 7 vers le fond 3, les parois externes de ladite jupe 8 épousant sensiblement les parois internes de l'étui 1. Le fond 7 de cet opercule 6 est traversé dans son épaisseur par un alésage 9 dont le contour est un cercle centré sur l'axe de l'étui 1. Cet opercule 6 délimite avec le fond 3 et les parois du corps 2 de l'étui 1 une chambre 10 contenant en son intérieur une charge 11, telle que de la penthrite, cette charge 11 étant complétée par un mélange amorçant 12 disposé dans ladite chambre 10 au niveau de l'opercule 6. Les proportions de penthrite et de mélange amorçant sont respectivement de 0,6g et de 0,2g.
- Du côté de l'opercule 6 qui est opposé à la chambre 10 est disposée une tête d'amorce 13 s'étendant axialement dans l'étui 1 et protégée par une enveloppe cylindrique 14. Cette tête d'amorce 13 est directement reliée à un module d'allumage électronique à retard intégré 15 disposé dans ledit étui 1 entre l'enveloppe 14 et le bouchon 4. Ce module électronique 15 est alimenté, à son extrémité, au niveau du bouchon 4 par deux fils gainés 16a et 16b qui traversent le bouchon 4 dans sa hauteur et relient le module 15 au circuit d'allumage.
- Un courant d'une intensité supérieure à l'intensité-seuil de fonctionnement initie la tête d'amorce 13, qui à travers l'opercule 6 dans l'ouverture 9 excite la charge 12 et déclenche la détonation.
- Si l'on se réfère maintenant aux Figures 2A, 2B et 2C, on voit que les modules d'allumage 15 des détonateurs sont montés en ligne selon un réseau parallèle avec une unité de commande de tir 17, appelé aussi console de tir. L'ensemble de tir comprend également une unité ou console de programmation 18. Celle-ci est destinée à permettre d'une part la programmation de chaque module 15, avant sa mise en place dans un trou, et notamment la mise en mémoire dans chaque module 15, du temps de retard qui lui est attribué. D'autre part, la console de programmation 18 permet la mémorisation des temps de retard programmés dans l'unité de commande de tir 17.
- La Figure 2A montre l'ensemble de tir dans l'état de connexion lors d'une séquence de tir. L'unité de commande de tir 17 est reliée aux détonateurs, la console de programmation 18 étant alors inactive.
- La Figure 2B montre l'ensemble de tir dans un premier état de connexion avant une séquence de tir. L'unité de programmation 18 est reliée aux modules d'allumage 15 pour la programmation unitaire des modules d'allumage en temps de retard.
- La Figure 2C montre l'ensemble de tir dans un deuxième état de connexion avant une séquence de tir. Ce deuxième état de connexion permet, après avoir réalisé la programmation des modules d'allumage 15 à l'aide de la console de programmation 18, de transférer les temps de retard programmés à l'unité de commande de tir 17.
- Un module d'allumage 15, tel qu'il est représenté schématiquement sur la Figure 3 comprend quatre sous-systèmes: un circuit de gestion de la charge pyrotechnique 300, une interface de communication 301, un circuit d'alimentation 302, une unité logique 303 de gestion de l'ensemble du micro-système.
- Le circuit de gestion de la charge pyrotechnique a été représenté plus particulièrement sur la Figure 4. Ce circuit comprend principalement cinq transistors à effet de champ MOS à canal N référencés sur le schéma par 19, 20, 22, 23 et 192, et deux transistors à effet de champ MOS à canal P, référencés sur le schéma par 21 et 191.
- Le transistor 19 est monté en source commune, sa source étant directement reliée à la terre. Son drain est relié, à travers une résistance 26, à un circuit de test d'un condensateur 29 qui constitue la capacité réservoir du module d'allumage. Sa grille est reliée à une tension de ligne de test.
- Le transistor 20 est monté en source commune et est directement relié par sa source à la terre. Sa grille est reliée à l'unité logique de gestion 303 du micro-système de mise à feu du détonateur dont elle reçoit l'ordre de chargement du condensateur 29. Par son drain, le transistor 20 est relié à la grille du transistor 21. Une résistance 30 est montée en dérivation entre la grille et la source du transistor 21.
- Le transistor 21 est relié par son drain à une diode anti-retour 28, qui est passante pour les courants la traversant dudit transistor 21 vers une résistance 27 de 12 kohms. La résistance 27 est montée en série avec la diode 28 et le transistor 21, ces trois composants reliant une borne de la tête d'amorce 13 à la tension de ligne L.
- La résistance 27 et la tête d'amorce 13 sont encore reliées par leur borne commune à l'une des bornes du condensateur 29, dont l'autre borne est reliée à la terre. Ce condensateur 29 est de 100 µF de capacité.
- Le transistor 22 réalise avec une résistance 31 un circuit de décharge sans mise à feu du condensateur réservoir 29. Lorsque l'ordre de déchargement du condensateur 29 est donné audit transistor 22, ce transistor 22 se ferme et met le condenseur 29 à la terre par ses deux bornes. Le condensateur 29 se décharge alors à travers la résistance 31.
- Le transistor 23 est relié par son drain à l'autre borne, par rapport à celle reliée à la tension de ligne L, de la tête d'amorce 13. Sa source est reliée à la terre et sa grille est reliée à l'unité logique 303 pour pouvoir recevoir un signal de commande de mise à feu. Une résistance 24 est reliée en dérivation entre la grille du transistor 23 et la terre.
- Le transistor 20 a uniquement pour fonction l'ajustement du niveau de tension entre les sorties de l'unité logique 303 de gestion du microsystème et les commandes des autres transistors. Le chargement du condensateur réservoir 29 est commandé par le transistor 21, qui est destiné à mettre ce condensateur 29 en liaison avec la tension de ligne L. L'ordre de fermeture est transmis au transistor 21 par l'intermédiaire du transistor d'adaptation de niveau 20.
- Le transistor 23 est l'organe de mise à feu de la charge. Lorsque l'ordre de mise à feu lui est transmis, le transistor 23 se ferme et met celle des bornes de la tête d'amorce 13 qui n'est pas reliée au condensateur 29 à la terre. Le condensateur 29 se décharge dans la tête d'amorce 13 et déclenche la mise à feu.
- Un circuit 400 comportant un comparateur 193, au moyen duquel la tension du condensateur 29 peut être quantifiée, assure la liaison du circuit de gestion avec un microcontrôleur 45 de l'unité logique 303.
- Le circuit montré sur la Figure 4 rassemble tous les éléments de gestion nécessaires du processus de tir: le transistor 23 effectue la commutation de la charge pyrotechnique; les transistors 20 et 21 effectuent la charge du condensateur de mise à feu 29; le transistor 22 constitue, avec la résistance 31, le circuit de décharge du condensateur 29; et le transistors 19, 191 et 192 constituent un circuit de test du condensateur 29 et de la tête d'amorce 13.
- Dès la mise sous tension, le circuit est mis dans l'état suivant: le transistor 20 est ouvert, ce qui fait que le transistor 21 est également ouvert et que le condensateur 29 ne peut pas être chargé. Le transistor 22 est fermé, ce qui fait que toute charge éventuelle du condensateur 29 est déchargée. Les transistors 19 et 191 sont ouverts, ce qui fait que le circuit de test est inhibé. Le transistor 23 est ouvert, ce qui fait qu'aucun courant ne peut traverser la tête d'amorce 13.
- Pour qu'un courant puisse éventuellement être considéré comme dangereux et mette à feu la tête d'amorce 13, il faudrait simultanément que les transistors 21 et 191 soient en panne fermés, que le transistor 22 soit en panne ouvert et que le transistor 23 soit en panne fermé. Cette éventualité est fort improbable. Si elle se présentait, la tête d'amorce serait reliée à la ligne de tension L au travers du transistor 21 et de la résistance 27 de 12 kohms. Compte-tenu de l'importance de l'impédance constituée de la tête d'amorce 13 et de la résistance 27, le courant maximum traversant ladite tête d'amorce 13 serait d'une intensité de l'ordre de 2 milliampères, c'est-à-dire bien inférieure à l'intensité seuil nécessaire pour le fonctionnement de ladite tête d'amorce 13, ou, en d'autres termes, très inférieure au courant maximum de non fonctionnement qui est de l'ordre de 130 milliampères. Ainsi, la résistance 27 a dans le circuit pyrotechnique une double fonction: elle assure la limitation du courant au moment du chargement du condensateur 29; elle assure la protection de la tête d'amorce 13 dans le cas fort improbable d'une défaillance simultanée des transistors 21, 22 et 23.
- Lors du test, le transistor 19 charge le condensateur 29 de mise à feu de 100 µF sous une tension de 3 V. L'énergie rapportée à la résistance d'amorce est alors de 0,16 mJ/ohm. Cette valeur est inférieure à l'énergie maximale de non fonctionnement qui est de 0,16 mJ pour 5 µF. Ainsi, la charge du condensateur de tir pendant la phase de test ne représente aucun danger.
- Par injection de courant, le circuit de test est capable de détecter la présence de la tête d'amorce 13. Ce courant est de l'ordre de 1 mA, c'est-à-dire en dessous du seuil d'intensité maximale de non fonctionnement, qui est de l'ordre de 130 mA.
- L'interface de communication d'un module d'allumage a été plus particulièrement représentée sur la Figure 5. Elle comprend un sous-ensemble récepteur 32 et un sous-ensemble émetteur 33. Ces deux sous-ensembles 32 et 33 assurent la liaison bidirectionnelle avec d'une part la console de tir 17 et d'autre part avec la console de programmation 18 lorsqu'elle est reliée audit module 15.
- Le sous-ensemble récepteur 32 est destiné à détecter les changements de polarité appliqués sur la ligne par les consoles de tir 17 ou de programmation 18. Il comporte principalement quatre transistors VMOS à effet de champ à canal N, référencés en 341 à 344, montés chacun à source commune, la source étant reliée directement à la terre, ainsi qu'un transistor VMOS à effet de champ à canal P, référencé en 345, monté en drain commun, le drain étant relié à la terre à travers une résistance 374. La grille du transistor 341 est reliée d'une part à l'unité logique 303 de gestion du microsystème et d'autre part à une résistance 373 à travers laquelle la grille est reliée à la terre. Le drain du transistor 341 est relié d'une part à la grille du transistor 342 et d'autre part à travers une résistance 371 reliée au module d'alimentation décrit plus en détail en référence à la Figure 6.
- Le drain du transistor 342 est relié à une borne commune 361 à laquelle sont également reliés une résistance 36, le drain du transistor 343 et la ligne. La borne commune 361 est reliée à travers la résistance 36 à la tension de fonctionnement VCC.
- La grille du transistor 343 est reliée d'une part, à travers une résistance 372, au module d'alimentation et d'autre part au drain du transistor 344. La grille du transistor 344 est reliée d'une part, à travers une résistance 374, à la terre, et d'autre part au drain du transistor 345. La source du transistor 345 est reliée à la tension de fonctionnement VCC et la grille du transistor 345 est reliée à l'unité logique 303 de gestion du microsystème.
- Les transistors 342 et 343 convertissent les basculements de la ligne en impulsions compréhensibles par l'unité logique 303, alors que les transistors 341 et 344 fixent au niveau bas l'état de repos du signal "ligne in". Puisque le sous-ensemble récepteur 32 n'est sensible qu'à la polarité et non à l'amplitude des signaux appliqués à son entrée, ce sous-ensemble est plus tolérant aux phénomènes de perte en ligne.
- Le sous-ensemble émetteur 33 comporte un transistor VMOS à effet de champ à canal N, référencé en 38 et, deux résistances référencées en 39 et 391. Le transistor 38 est monté à source commune, la source étant reliée directement à la terre. Sa grille est reliée d'une part à travers la résistance 391, à la terre et d'autre part à la ligne de sortie. Le drain du transistor 38 est relié, à travers la résistance 39 à la tension de ligne E. La résistance 39 de 470 ohm crée une surconsommation de courant sur la ligne E lorsqu'une impulsion en tension est fournie par la ligne de sortie du micro-contrôleur à la grille du transistor 38.
- L'alimentation d'un module d'allumage 15 est représentée sur la Figure 6. Ce circuit est destiné à fournir une tension continue d'environ 4 volts, y compris pendant la phase de tir. Ce module comprend essentiellement une paire de diodes Zener 40, un pont redresseur 41, un premier régulateur de tension 42, un deuxième régulateur de tension 43 et un condensateur 44 de 1000 µF.
- Le pont redresseur 41 aiguille la tension provenant de la ligne et affranchit le module d'allumage de toute polarisation.
- Le premier régulateur de tension 42 garantit une tension de charge de 12 volts au condensateur 44 pour une tension de ligne comprise "en valeur absolue" entre 12 volts et 30 volts.
- Le deuxième régulateur de tension 43 utilise, pour alimenter le reste du système sous 4 volts, la tension de ligne ou l'énergie emmagasinée par le condensateur 44.
- L'unité logique 303 qui assure la gestion de chaque module d'allumage 15 est de type classique. Elle est représentée sur la Figure 7.
- L'unité logique 303 gère les communications avec la ligne, ainsi que les commandes de la charge pyrotechnique. Elle comprend un micro-contrôleur 45, incluant une mémoire programme, ainsi qu'une mémoire "temps de retard" 47 qui est choisie de type EEPROM. La mémorisation du temps de retard est donc permanente, mais peut être à tout moment effacée et reprogrammée électriquement.
- La technologie du micro-contrôleur 45 permet une consommation aussi réduite que possible, une vitesse d'exécution et un nombre d'entrées et de sorties suffisant.
- Afin de se placer dans des conditions industrielles optimales (fiabilité fonctionnelle en environnement d'exploitation et prix de revient en fabrication le plus réduit possible) la base de temps n'est pas pilotée par un quartz mais par un simple circuit RC, référencé en 48 et 49.
- Les tolérances de fabrication de composants R et C standards étant de ± 10%, la fréquence d'oscillation de chaque pilote peut varier de ± 20% par rapport à la précision demandée pour le temps de retard du module d'allumage.
- Si l'on admet que la base de temps, ou l'horloge de gestion d'un module d'allumage, puisse être fausse de ± 30% par rapport à la valeur typique recherchée, on peut garantir des temps de retard à une précision meilleure que 0,5 milliseconde. Lors de l'opération de programmation de chaque module d'allumage, sa base de temps, qui est fausse par construction, est précisément mesurée par rapport au quartz de la console de programmation.
- L'erreur de calage de l'horloge de gestion est mesurée et un facteur correctif d'ajustement à la valeur précise recherchée en est déduit et appliqué au module d'allumage pour obtenir le retard correct.
- Les consoles de tir 17 et les consoles de programmation 18 vont maintenant être décrites. Elles sont de structures voisines et diffèrent principalement par leur fonctionnalité et donc par les logiciels de gestion auxquels elles sont associées. Chaque console comprend:
- une unité logique organisée autour d'un micro-contrôleur, par exemple du type de celui commercialisé par la société MOTOROLA sous la dénomination 68HC11, et qui intègre 512 octets de mémoires EEPROM permettant de stocker de manière non volatile certains paramètres de fonctionnement, tels que les retards des modules programmés, une mémoire vive RAM, un réseau d'entrées et sorties, une communication de type RS232 pour permettre aux consoles de tir 17 et de programmation 18 de dialoguer ensemble;
- un afficheur à cristaux liquides lumineux;
- une alimentation qui fournit une tension de ± 5 volts à l'unité logique, et de plus ou moins 10 volts à l'interface ligne, la tension amont nécessaire étant de 15 volts;
- une interface ligne constituée de deux sous-systèmes, dont une partie émission qui est une alimentation stabilisée pouvant commuter pour délivrer plus 12 ou plus 6 volts, et une partie réception qui mesure le courant consommé sur la ligne et qui détecte les surconsommations transitoires des modules d'allumage 15.
- La console de programmation 18 comprend un clavier de 12 touches alphanumériques et un témoin lumineux rouge et dispose de six fonctions:
- programmation du temps de retard d'un module d'allumage 15;
- effacement de son écran;
- effacement du contenu de la mémoire de stockage de temps de retard d'un module d'allumage 15;
- test d'un module d'allumage;
- lecture du temps de retard d'un module d'allumage;
- transfert des temps de retard des modules d'allumage programmés vers la console de tir.
- La procédure de mise en oeuvre est la suivante: l'opérateur programme sur le clavier le temps de retard désiré en milli-secondes. Les temps de retard peuvent aller de 1 à 3000 milli-secondes. Ils sont différents pour chaque module d'allumage et servent à les identifier lors des dialogues entre les modules d'allumage et les consoles. Pour des artificiers, une différence de 8 milli-secondes entre deux temps de retard de détonateur n'est pas significative. Il est donc possible, si l'on souhaite faire exploser plusieurs détonateurs de façon pyrotechniquement synchrone, de leur affecter des temps de retard décalés les uns par rapport aux autres de milli-seconde en milli-seconde.
- En variante, chaque temps de retard peut être completé par un numéro d'ordre de programmation. Par cette mesure, il est possible d'attribuer à plusieurs modules de commande un même temps de retard, tout en pouvant adresser chaque module de commande individuellement.
- L'opérateur valide ensuite le temps de retard en appuyant sur la touche de validation correspondante. La console 18 envoie alors l'ordre de programmation au module d'allumage 15 et lui demande une lecture du temps de retard programmé. Si les informations retournées par le module correspondent à une milli-seconde près à celles programmées, l'écran de la console 18 affiche que la programmation est correcte. Sinon, la console 18 demande que la programmation soit reprise.
- La fonction effacement est utilisée si l'opérateur s'est trompé dans l'opération de saisie du temps de retard. Après chaque programmation d'un module d'allumage 15, le temps de retard est stocké dans une mémoire EEPROM de la console de programmation 18. Une fois l'ensemble des temps de retard programmé et mémorisé, ceux-ci sont transférés à la console de tir 17, automatiquement lors de la connexion entre les deux consoles, au moyen de la liaison série de type RS232, par une fonction transfert prévue sur la console de programmation 18. Un autotest interne permet également de tester chaque module d'allumage 15. L'indication en retour est globale. Un témoin rouge signale toute procédure incorrecte ou demandant confirmation.
- La console de tir 17 comprend trois touches test/armement/tir, deux voyants vert et rouge témoins pour la phase test et une carte magnétique approprié à la console de tir; elle dispose de cinq fonctions: transfert automatique des données de la console de programmation 18; test des modules d'allumage 15; annulation du tir; charge des condensateurs-réservoirs 29; tir.
- La mise en oeuvre d'une séquence de tir est la suivante. Une fois la programmation des modules d'allumage 15 réalisée à l'aide de la console de programmation 18, et ainsi qu'indiqué précédemment, les temps de retard programmés seront transférés des mémoires EEPROM de stockage de ladite console de programmation 18, sur les mémoires de stockage EEPROM de ladite console de tir 17, après l'introduction de la carte magnétique appropriée ou tout autre organe de sécurité à la console de tir autorisant le raccordement avec la console de programmation. Une fois le transfert effectué, l'opérateur donne à la console de tir 17 un ordre de test des modules d'allumage 15 en ligne.
- Chaque module d'allumage 15 renvoit sur la ligne une information binaire relative à son état de fonctionnement: information du type "module correct" ou "module incorrect", ou éventuellement plus compliqué.
- Les impulsions émises vers la console de tir 17 sont renvoyées pour chaque module d'allumage 15 avec un temps de retard correspondant au temps de retard dont ledit module 15 a été programmé. En réception, la console de tir 17 ouvre pour chaque détonateur une fenêtre temporelle autour du temps de retard programmé par la console 18 et dont elle dispose en mémoire. C'est dans le temps de retard avec lequel la console 17 reçoit une information qui permet d'identifier le module 15 dont elle provient, ce temps de retard correspondant au temps de retard de tir dont le module a été programmé. Ceci suppose donc que le transfert en mémoire de console de tir des temps de retard par la console de programmation a bien été effectué. Ce transfert d'informations des modules d'allumage 15 en ligne a été plus particulièrement illustrée sur les Figures 8A et 8B, dont la Figure 8A montre le chronogramme en envoi, et dont la Figure 8B montre le chronogramme en réception.
- A la réception de l'ordre de test, les modules 15, référencés par M1, M2... Mn, renvoient sur la console de tir 17 une ou plusieurs impulsions binaires correspondant à l'information à transmettre à la console de tir 17. Les impulsions sont décalées par rapport à un temps zéro identique pour chaque module d'allumage 15 d'un temps T1, T2, .....Tm correspondant au temps de retard de tir, dont le module Mm renvoyant l'information a été programmé. La console de tir 17 ouvrira autant de fenêtres F1, F2, Fm d'observation temporelles qu'il y a de modules d'allumage MN. Pour une impulsion durant 250 micro-secondes, les fenêtres d'observation temporelles F1, F2, Fm ouvertes par la console de tir 17 pourront être de l'ordre de 750 micro-secondes (250 micro-secondes avant et après l'impulsion).
- Après ce test, l'opérateur donne, de la console de tir 17, aux modules d'allumage 15, l'ordre de chargement des condensateurs. Un message valide la réalisation de ce chargement.
- A tout moment l'opérateur a la possibilité d'annuler le tir et de donner l'ordre aux modules d'allumage 15 de décharger leur condensateur-réservoir. Après chargement, la console 17 attend l'ordre de tir. Après validation, l'ordre de mise à feu est donné aux différents modules d'allumage.
- Un des avantages du module d'allumage qui vient d'être décrit tient en ce qu'il ne comporte aucune source d'énergie. Il est donc d'une grande fiabilité, puisqu'il ne présente aucun risque de mise à feu intempestive de la charge pyrotechnique tant que le détonateur auquel ledit module d'allumage est associé n'est pas monté en ligne. La décharge du condensateur 29 d'un module d'allumage 15 sera commandée soit directement par un opérateur à partir de la console de tir 17, soit de façon interne par le module d'allumage lui-même, au bout des quatre secondes suivant la coupure des fils de ligne, après explosion du premier détonateur.
- De nombreuses procédures de sécurité sont également prévues. L'accès aux consoles de tir et aux consoles de programmation supposera que l'opérateur soit muni de codes de reconnaissance. Les consoles de tir et de programmation, ainsi que les modules d'allumage peuvent être personnalisés avant la sortie d'usine. Il pourra être également prévu une reconnaissance entre les consoles de programmation et les consoles de tir. En cas de vol notamment, un opérateur ne pourra ainsi utiliser une console de tir que si celle-ci correspondant à la console de programmation qui a servi à programmer les modules d'allumage 15. Une reconnaissance par un code interne de la console de programmation par la console de tir sera prévue à cet effet. Si le code n'est pas reconnu, la console de tir n'enregistrera pas les informations relatives au temps de retard mémorisé dans la console de programmation. Le tir sera bloqué.
- De plus, la console de tir peut être munie d'une carte magnétique autorisant son utilisation.
- On aura également noté que, bien que l'ensemble ait été prévu pour une programmation sur site, une programmation en usine, pour les personnes ne souhaîtant pas de programmation sur site sera également possible.
- Dans les circuits représentés sur les différentes figures, certains points de connexion sont désignés par des noms de signaux ou des indications de type de tension. Des points de même nom sont alors destinés à être reliés l'un à l'autre.
- Les signes de référence insérés après les caractéristiques techniques mentionnées dans les revendications, ont pour seul but de faciliter la compréhension de ces dernières, et n'en limitent aucunement la portée.
Claims (11)
- Procédé de commande de détonateurs du type à module d'allumage (15) électronique à retard intégré, chaque module d'allumage codé (15) comportant une capacité (29) réservoir destinée, après chargement, à se décharger dans une tête d'amorce (13) de son détonateur pour y générer une impulsion électrique de mise à feu, une base de temps ainsi qu'une unité logique (303) munie d'une mémoire pour le stockage dans ledit module d'allumage (15) d'un temps de retard d'explosion dudit détonateur, lors d'une séquence de tir, lesdits moules d'allumage étant aptes à dialoguer avec une unité de commande (17) de tir destinée à leur transmettre notamment un ordre de chargement de la capacité (29) réservoir, ainsi qu'un ordre de tir et à recevoir desdits modules une ou des informations relatives à leur état, procédé dans lequel, avant une séquence de tir, on mémorise avec une unité de programmation (18) dans les modules d'allumage leur temps de retard, caractérisé en ce que, une fois la programmation des modules d'allumage réalisée, les temps de retard programmés sont transférés vers l'unité de commande de tir (17) à l'aide de l'unité de programmation (18), et en ce que l'unité de commande de tir (17) interroge simultanément par un ordre de test les modules d'allumage en ligne, avant l'étape de chargement et l'étape de tir et en ce que les modules d'allumage renvoient à l'unité de commande de tir (17) une information globale relative à leur état, selon une séquence temporelle qui correspond à la sequence temporelle de tir.
- Procédé de commande selon la revendication 1, caractérisé en ce que lors de la programmation, la base de temps de chaque module d'allumage est mesurée.
- Procédé de commande selon l'une des revendications 1 et 2, caractérisé en ce que les temps de retard sont différents pour chaque module (15) et que les modules renvoient les informations demandées après un temps de retour d'informations fonction du temps de retard mémorisé dans chacun d'eux, ladite unité de commande de tir (17 ouvrant pour chacun des modules des fenêtres temporelles de réception correspondants audit temps de retour.
- Ensemble codé de commande de tir comportant une unité de commande de tir (17) et des modules d'allumage (15) à retard électronique intégré pour détonateur, reliés électriquement en ligne à ladite unité de commande de tir (17), la liaison entre l'unité de commande de tir et les modules d'allumage (15) servant à l'alimentation desdits modules d'allumage ainsi qu'au dialogue entre ladite unité de commande de tir et les modules d'allumage (15), et une unité de programmation (18), caractérisé en ce que les modules d'allumage comportent des moyens leur permettant d'envoyer sur l'unité de commande de tir (17) des informations sous forme d'une surconsommation du courant de ligne, l'unité de commande de tir (17) étant munie de moyens pour la détection d'une surconsommation du courant de ligne par rapport à la consommation moyenne des modules d'allumage.
- Ensemble codé de commande de tir selon la revendication 4, caractérisé en ce que chaque module d'allumage comprend une base de temps formée par un circuit RC.
- Ensemble selon la revendication 4 ou 5, caractérisé en ce que l'unité de programmation (18) est apte à dialoguer séparément avec chaque module d'allumage (15), pour la mémorisation des temps de retard d'explosion dans lesdits modules d'allumage, et en ce que l'unité de commande de tir (17) est apte à transmettre les phases de tirs lors d'une séquence de tir.
- Ensemble selon la revendication 6, caractérisé en ce que l'unité de programmation (18) est munie de moyens de mémorisation de l'ensemble des temps de retard qui lui sont programmés et qu'elle transfère séparément à chacun des modules d'allumage, et en ce que l'unité de commande de tir (17) et l'unité de programmation (18) sont aptes à dialoguer pour permettre le transfert, avant une séquence de tir, de l'ensemble des temps de retard programmés.
- Ensemble selon l'une quelconque des revendications 4 à 7, caractérisé en ce que les unités de commande de tir (17) et de programmation (18) sont munies de moyens de codage destinés à limiter leur accès à des personnes autorisées et de moyens pour leur reconnaissance mutuelle interne avant le transfert des temps de retard programmés de l'unité de programmation (18) sur l'unité de commande (17).
- Module d'allumage de détonateur comportant un circuit d'alimentation, une interface de communication, un circuit de gestion de la charge pyrotechnique comportant notamment une capacité réservoir (29) destinée, après chargement, à se décharger dans une tête d'amorce (13) de détonateur, ainsi qu'une unité logique (303) de gestion de l'ensemble, caractérisé en ce que le circuit de gestion de la charge pyrotechnique comprend, montée en série avec la capacité réservoir (29), une source d'alimentation, par exemple en tension de ligne, un transistor de commutation (21) pour la commande (17) de la charge de ladite capacité réservoir (29) et une résistance (27) reliée par celle de ses bornes qui n'est pas directement reliée à la capacité réservoir (29) à un transistor (22) de commutation de décharge de ladite capacité réservoir (29) à la terre.
- Module selon la revendication 9, caractérisé en ce que l'impédance entre l'alimentation du circuit de gestion de la charge pyrotechnique et la tête d'amorce (13) est suffisamment importante pour que le courant généré par la tension de ligne dans la tête d'amorce (13) soit, quel que soit l'état des transistors de commande, inférieur à la valeur du courant limite de fonctionnement de ladite tête d'amorce (13).
- Module selon la revendication 10, caractérisé en ce que la résistance (27) de décharge du condensateur réservoir est d'une valeur suffisamment importante pour que le courant généré par ladite alimentation dans la tête d'amorce (13) soit quel que soit l'état des transistors de commande, inférieure à la valeur du courant limite de fonctionnement de la tête d'amorce.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9211111 | 1992-09-17 | ||
FR9211111A FR2695719B1 (fr) | 1992-09-17 | 1992-09-17 | Procédé de commande de détonateurs du type à module d'allumage électronique à retard intégré, ensemble codé de commande de tir et module d'allumage codé pour sa mise en Óoeuvre. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0588685A1 EP0588685A1 (fr) | 1994-03-23 |
EP0588685B1 true EP0588685B1 (fr) | 1997-07-30 |
Family
ID=9433622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93402166A Expired - Lifetime EP0588685B1 (fr) | 1992-09-17 | 1993-09-06 | Circuit intégré et programmable pour l'allumage des détonateurs à retard |
Country Status (5)
Country | Link |
---|---|
US (1) | US5520114A (fr) |
EP (1) | EP0588685B1 (fr) |
DE (1) | DE69312609T2 (fr) |
ES (1) | ES2105166T3 (fr) |
FR (1) | FR2695719B1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6085659A (en) * | 1995-12-06 | 2000-07-11 | Orica Explosives Technology Pty Ltd | Electronic explosives initiating device |
WO2000057124A1 (fr) | 1999-03-20 | 2000-09-28 | Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik | Procede pour declencher des amorces par l'intermediaire d'une ligne de longueur importante |
DE19930904A1 (de) * | 1999-07-06 | 2001-01-11 | Dynamit Nobel Ag | Auslöseeinheit zur Initiierung von pyrotechnischen Elementen |
US6637339B1 (en) | 1999-03-20 | 2003-10-28 | Dynamit Nobel Gmbh Explosivstoff Und Systemtechnik | Method for exchanging data between a device for programming and triggering electronic detonators and said detonators |
US6644202B1 (en) | 1998-08-13 | 2003-11-11 | Expert Explosives (Proprietary) Limited | Blasting arrangement |
Families Citing this family (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9423313D0 (en) * | 1994-11-18 | 1995-01-11 | Explosive Dev Ltd | Improvements in or relating to detonation means |
GB9423314D0 (en) * | 1994-11-18 | 1995-01-11 | Explosive Dev Ltd | Electrical distribution system |
GB9501306D0 (en) * | 1995-01-24 | 1995-03-15 | Explosive Dev Ltd | Improvements in or relating to explosive firing arrangements |
US5721493A (en) * | 1995-02-28 | 1998-02-24 | Altech Industries (Proprietary) Limited | Apparatus for locating failures in detonation devices |
FR2749073B1 (fr) * | 1996-05-24 | 1998-08-14 | Davey Bickford | Procede de commande de detonateurs du type a module d'allumage electronique, ensemble code de commande de tir et module d'allumage pour sa mise en oeuvre |
US5767437A (en) * | 1997-03-20 | 1998-06-16 | Rogers; Donald L. | Digital remote pyrotactic firing mechanism |
US5912428A (en) * | 1997-06-19 | 1999-06-15 | The Ensign-Bickford Company | Electronic circuitry for timing and delay circuits |
AUPP021697A0 (en) * | 1997-11-06 | 1997-11-27 | Rocktek Limited | Radio detonation system |
US6047643A (en) * | 1997-12-12 | 2000-04-11 | Eg&G Star City, Inc. | Hermetically sealed laser actuator/detonator and method of manufacturing the same |
US6178888B1 (en) | 1998-01-20 | 2001-01-30 | Eg&G Star City, Inc. | Detonator |
US6263989B1 (en) * | 1998-03-27 | 2001-07-24 | Irobot Corporation | Robotic platform |
US20060086277A1 (en) * | 1998-03-30 | 2006-04-27 | George Bossarte | Precision pyrotechnic display system and method having increased safety and timing accuracy |
WO1999054676A2 (fr) * | 1998-03-30 | 1999-10-28 | Magicfire, Inc. | Systeme et procede de presentation pyrotechnique de precision a securite et precision de synchronisation accrues |
US6752083B1 (en) | 1998-09-24 | 2004-06-22 | Schlumberger Technology Corporation | Detonators for use with explosive devices |
WO2000022279A1 (fr) | 1998-09-24 | 2000-04-20 | Schlumberger Technology Corporation | Amorçage de dispositifs explosifs |
US7383882B2 (en) | 1998-10-27 | 2008-06-10 | Schlumberger Technology Corporation | Interactive and/or secure activation of a tool |
US6283227B1 (en) | 1998-10-27 | 2001-09-04 | Schlumberger Technology Corporation | Downhole activation system that assigns and retrieves identifiers |
US7347278B2 (en) * | 1998-10-27 | 2008-03-25 | Schlumberger Technology Corporation | Secure activation of a downhole device |
US6148263A (en) * | 1998-10-27 | 2000-11-14 | Schlumberger Technology Corporation | Activation of well tools |
US6938689B2 (en) | 1998-10-27 | 2005-09-06 | Schumberger Technology Corp. | Communicating with a tool |
FR2787568B1 (fr) * | 1998-12-16 | 2001-02-02 | France Etat | Dispositif de mise a feu d'une amorce |
SE515382C2 (sv) * | 1999-12-07 | 2001-07-23 | Dyno Nobel Sweden Ab | Elektroniskt detonatorsystem, förfarande för styrning av systemet och tillhörande elektroniksprängkapslar |
WO2001059401A1 (fr) | 2000-02-11 | 2001-08-16 | Inco Limited | Systeme detonateur distant sans fil |
US6584907B2 (en) | 2000-03-17 | 2003-07-01 | Ensign-Bickford Aerospace & Defense Company | Ordnance firing system |
DE10032139B4 (de) * | 2000-05-05 | 2014-01-16 | Orica Explosives Technology Pty. Ltd. | Verfahren zur Installation eines Zündsystems und Zündsystem |
US7644661B1 (en) * | 2000-09-06 | 2010-01-12 | Ps/Emc West, Llc | Networked electronic ordnance system |
US7752970B2 (en) | 2000-09-06 | 2010-07-13 | Ps/Emc West, Llc | Networked electronic ordnance system |
US6536798B1 (en) * | 2000-09-27 | 2003-03-25 | Aùtoliv ASP, Inc. | Controlling activation of restraint devices in a vehicle |
AU1233102A (en) * | 2000-11-09 | 2002-05-21 | Orica Explosives Tech Pty Ltd | Sensor for monitoring electronic detonation circuits |
EP1405011A4 (fr) | 2001-06-06 | 2010-03-24 | Senex Explosives Inc | Systeme permettant l'amoreage de serie de detonateurs a retardement individuel |
US6565119B2 (en) | 2001-07-11 | 2003-05-20 | Trw Inc. | Vehicle occupant safety apparatus with restraint communication bus and transformer connections |
US6546837B1 (en) | 2001-11-02 | 2003-04-15 | Perkinelmer, Inc. | Dual load charge manufacturing method and press therefore |
FR2832501B1 (fr) * | 2001-11-19 | 2004-06-18 | Delta Caps Internat Dci | Installation de tirs pyrotechniques programmables |
US7559269B2 (en) | 2001-12-14 | 2009-07-14 | Irobot Corporation | Remote digital firing system |
US6860206B1 (en) * | 2001-12-14 | 2005-03-01 | Irobot Corporation | Remote digital firing system |
US8375838B2 (en) * | 2001-12-14 | 2013-02-19 | Irobot Corporation | Remote digital firing system |
US6820557B2 (en) * | 2002-01-25 | 2004-11-23 | Daicel Chemical Industries, Ltd. | Igniter for air bag system |
FR2843191B1 (fr) * | 2002-08-01 | 2006-12-29 | Delta Caps Internat Dci | Installation de tirs pyrotechniques et detonateur pour une telle installation |
EP1570229A1 (fr) * | 2002-08-30 | 2005-09-07 | Orica Explosives Technology Pty Ltd | Controle d'acces pour exploseurs electroniques |
US6732656B1 (en) | 2002-09-16 | 2004-05-11 | The United States Of America As Represented By The Secretary Of The Air Force | High voltage tolerant explosive initiation |
PT102997A (pt) * | 2003-07-10 | 2005-01-31 | Espanola Explosivos | Dispositivo electronico de detonacao e processo de operacao do dito dispositivo |
US7086334B2 (en) * | 2003-07-15 | 2006-08-08 | Special Devices, Inc. | Staggered charging of slave devices such as in an electronic blasting system |
AR046387A1 (es) * | 2003-07-15 | 2005-12-07 | Detnet South Africa Pty Ltd | Sistema detonador y programacion de detonadores. |
US7107908B2 (en) * | 2003-07-15 | 2006-09-19 | Special Devices, Inc. | Firing-readiness diagnostic of a pyrotechnic device such as an electronic detonator |
US6966262B2 (en) * | 2003-07-15 | 2005-11-22 | Special Devices, Inc. | Current modulation-based communication from slave device |
AR046498A1 (es) * | 2003-07-15 | 2005-12-14 | Detnet South Africa Pty Ltd | Deteccion del estado de un fusible de detonador |
US6892643B2 (en) * | 2003-07-15 | 2005-05-17 | Special Devices, Inc. | Constant-current, rail-voltage regulated charging electronic detonator |
US7577756B2 (en) * | 2003-07-15 | 2009-08-18 | Special Devices, Inc. | Dynamically-and continuously-variable rate, asynchronous data transfer |
US20050190525A1 (en) * | 2003-07-15 | 2005-09-01 | Special Devices, Inc. | Status flags in a system of electronic pyrotechnic devices such as electronic detonators |
US7617775B2 (en) * | 2003-07-15 | 2009-11-17 | Special Devices, Inc. | Multiple slave logging device |
US6988449B2 (en) * | 2003-07-15 | 2006-01-24 | Special Devices, Inc. | Dynamic baselining in current modulation-based communication |
US7870825B2 (en) * | 2003-07-15 | 2011-01-18 | Special Devices, Incorporated | Enhanced method, device, and system for identifying an unknown or unmarked slave device such as in an electronic blasting system |
US7054131B1 (en) * | 2003-07-15 | 2006-05-30 | Special Devices, Inc. | Pre-fire countdown in an electronic detonator and electronic blasting system |
US7017494B2 (en) * | 2003-07-15 | 2006-03-28 | Special Devices, Inc. | Method of identifying an unknown or unmarked slave device such as in an electronic blasting system |
US6789483B1 (en) * | 2003-07-15 | 2004-09-14 | Special Devices, Inc. | Detonator utilizing selection of logger mode or blaster mode based on sensed voltages |
CN100346129C (zh) * | 2003-09-15 | 2007-10-31 | 中国兵器工业系统总体部 | 数码电子雷管控制器 |
DE10356349A1 (de) * | 2003-11-28 | 2005-06-23 | Bohlen Handel Gmbh | Verfahren und Einrichtung zum Sprengen von Gesteinsmassen oder dergleichen Massen Übertage oder Untertage |
BRPI0512364B1 (pt) * | 2004-06-22 | 2018-02-06 | Orica Explosives Technology Pty Limited | Método de desmonte |
US7594471B2 (en) | 2004-07-21 | 2009-09-29 | Detnet South Africa (Pty) Ltd. | Blasting system and method of controlling a blasting operation |
WO2006086844A1 (fr) * | 2005-02-16 | 2006-08-24 | Orica Explosives Technology Pty Ltd | Appareil d'abattage a securite renforcee avec analyseur biometrique et procede d'abattage |
CN101228411B (zh) * | 2005-06-02 | 2013-06-12 | 环球定位方案私人有限公司 | 起爆器以及追踪可识别起爆器的系统和方法 |
US8079307B2 (en) * | 2005-10-05 | 2011-12-20 | Mckinley Paul | Electric match assembly with isolated lift and burst function for a pyrotechnic device |
US20080098921A1 (en) * | 2006-10-26 | 2008-05-01 | Albertus Abraham Labuschagne | Blasting system and method |
AU2008215173B2 (en) * | 2007-02-16 | 2013-05-02 | Orica Explosives Technology Pty Ltd | Method of communication at a blast site, and corresponding blasting apparatus |
CN101338995B (zh) * | 2008-06-04 | 2013-05-29 | 北京铱钵隆芯科技有限责任公司 | 电子雷管控制芯片及其连接可靠性检测方法 |
EP2350560B1 (fr) | 2008-10-24 | 2016-02-17 | Battelle Memorial Institute | Système de détonateur électronique |
CN101408397B (zh) * | 2008-11-26 | 2013-03-27 | 北京维深数码科技有限公司 | 一种本安型电子雷管起爆系统 |
US8477049B2 (en) * | 2009-06-05 | 2013-07-02 | Apple Inc. | Efficiently embedding information onto a keyboard membrane |
US10384281B2 (en) * | 2012-03-02 | 2019-08-20 | Sawstop Holding Llc | Actuators for power tool safety systems |
CN102735120B (zh) * | 2011-04-06 | 2014-08-06 | 傲杰得公司 | 一种雷管网络起爆控制方法 |
DE102011108000A1 (de) * | 2011-07-19 | 2013-01-24 | Diehl Bgt Defence Gmbh & Co. Kg | EFI-Zündmodul |
GB201207450D0 (en) * | 2012-04-26 | 2012-06-13 | Secr Defence | An electrical pulse splitter for an explosives system |
RU2534782C1 (ru) * | 2013-07-29 | 2014-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Северо-Кавказский горно-металлургический институт (государственный технологический университет) | Универсальный автоматический прибор взрывания |
FR3013827B1 (fr) * | 2013-11-28 | 2016-01-01 | Davey Bickford | Detonateur electronique |
RU2606265C1 (ru) * | 2015-11-12 | 2017-01-10 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Прибор для подрыва пиросредств |
RU2610610C1 (ru) * | 2015-12-17 | 2017-02-14 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Прибор для подрыва пиросредств |
CN106427233B (zh) * | 2016-08-31 | 2017-10-17 | 湖南神斧集团向红机械化工有限责任公司 | 一种电子雷管的三码绑定系统 |
CN113639600B (zh) * | 2021-08-16 | 2024-10-22 | 北京桓安芯数技术有限公司 | 点火头发火性能检测仪、检测方法 |
US20230280141A1 (en) * | 2022-03-07 | 2023-09-07 | Trignetra, LLC | Remote firing module and method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3851589A (en) * | 1973-04-25 | 1974-12-03 | Texaco Inc | Electronic delay blaster |
US4527636A (en) * | 1982-07-02 | 1985-07-09 | Schlumberger Technology Corporation | Single-wire selective perforation system having firing safeguards |
USRE33044E (en) * | 1982-09-29 | 1989-09-05 | Larnaston, Ltd. | Sails |
US4674047A (en) * | 1984-01-31 | 1987-06-16 | The Curators Of The University Of Missouri | Integrated detonator delay circuits and firing console |
US4712477A (en) * | 1985-06-10 | 1987-12-15 | Asahi Kasei Kogyo Kabushiki Kaisha | Electronic delay detonator |
US5214236A (en) * | 1988-09-12 | 1993-05-25 | Plessey South Africa Limited | Timing of a multi-shot blast |
JPH0694996B2 (ja) * | 1989-11-24 | 1994-11-24 | 繁明 國友 | 花火点火装置 |
EP0434883A1 (fr) * | 1989-12-29 | 1991-07-03 | Union Espanola De Explosivos S.A. | Dispositif électronique à haute fiabilité pour dÀ©tonations successives |
-
1992
- 1992-09-17 FR FR9211111A patent/FR2695719B1/fr not_active Expired - Fee Related
-
1993
- 1993-09-06 EP EP93402166A patent/EP0588685B1/fr not_active Expired - Lifetime
- 1993-09-06 DE DE69312609T patent/DE69312609T2/de not_active Expired - Lifetime
- 1993-09-06 ES ES93402166T patent/ES2105166T3/es not_active Expired - Lifetime
- 1993-09-13 US US08/120,178 patent/US5520114A/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6085659A (en) * | 1995-12-06 | 2000-07-11 | Orica Explosives Technology Pty Ltd | Electronic explosives initiating device |
US6644202B1 (en) | 1998-08-13 | 2003-11-11 | Expert Explosives (Proprietary) Limited | Blasting arrangement |
WO2000057124A1 (fr) | 1999-03-20 | 2000-09-28 | Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik | Procede pour declencher des amorces par l'intermediaire d'une ligne de longueur importante |
US6637339B1 (en) | 1999-03-20 | 2003-10-28 | Dynamit Nobel Gmbh Explosivstoff Und Systemtechnik | Method for exchanging data between a device for programming and triggering electronic detonators and said detonators |
DE19930904A1 (de) * | 1999-07-06 | 2001-01-11 | Dynamit Nobel Ag | Auslöseeinheit zur Initiierung von pyrotechnischen Elementen |
DE19930904B4 (de) * | 1999-07-06 | 2005-12-29 | Orica Explosives Technology Pty. Ltd., Melbourne | Elektronische Auslöseeinheit zur Initiierung von pyrotechnischen Elementen |
Also Published As
Publication number | Publication date |
---|---|
FR2695719A1 (fr) | 1994-03-18 |
ES2105166T3 (es) | 1997-10-16 |
US5520114A (en) | 1996-05-28 |
DE69312609D1 (de) | 1997-09-04 |
DE69312609T2 (de) | 1998-01-08 |
EP0588685A1 (fr) | 1994-03-23 |
FR2695719B1 (fr) | 1994-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0588685B1 (fr) | Circuit intégré et programmable pour l'allumage des détonateurs à retard | |
EP0900354B1 (fr) | Procede de commande de detonateurs du type a module d'allumage electronique, ensemble code de commande de tir et module d'allumage pour sa mise en oeuvre | |
EP2531809B1 (fr) | Systeme de programmation et de mise a feu de detonateurs electroniques, procede associe | |
EP3394559B1 (fr) | Module périphérique d'alimentation pour détonateur électronique | |
CA2858793A1 (fr) | Systeme de mise a feu de plusieurs ensembles de detonateurs electroniques | |
EP0210889A1 (fr) | Centrale modulaire de surveillance et d'alarme de haute sécurité, et procédé de fonctionnement correspondant | |
FR2710404A1 (fr) | Procédé de commande de détonateurs du type à module d'allumage électronique à retard intégré, ensemble codé de commande de tir et module d'allumage codé pour sa mise en Óoeuvre. | |
WO2016139410A9 (fr) | Système de commande d'au moins un détonateur électronique | |
CA2256037C (fr) | Procede de commande de detonateurs du type a module d'allumage electronique, ensemble code de commande de tir et module d'allumage pour sa mise en oeuvre | |
FR3072164A1 (fr) | Detonateur electronique sans fil | |
WO1990003549A1 (fr) | Dispositif d'armement et de tempage d'une fusee pour une munition a tirer par un lanceur, en particulier par un lanceur automatique | |
WO2024017528A1 (fr) | Simulateur d'inflammateur pyrotechnique autonome | |
FR2545207A1 (fr) | Dispositif de programmation et de transfert d'energie pour systemes d'arme et projectile pour systemes d'armes munis d'un tel dispositif | |
EP1456598A1 (fr) | Installation de tirs pyrotechniques programmables | |
EP1342982B1 (fr) | Dispositif électro-pyrotechnique de sécurité pour munition et son procédé de commande | |
WO2023170369A1 (fr) | Détonateur électronique mono-condensateur et système de mise à feu de tels détonateurs électroniques mono-condensateur | |
FR2574922A1 (fr) | Fusee a retard programmable pour mise a feu d'elements pyrotechniques | |
EP0730072A1 (fr) | Ensemble constitué d'une serrure électrique de portière avec fonction de secours électrique et de ses moyens de commande | |
FR2474155A1 (fr) | Dispositif de programmation et projectile pour systeme d'arme | |
BE1004724A3 (fr) | Dispositif de surveillance de la proximite d'un objet portatif. | |
EP0440545A1 (fr) | Dispositif mat˩riel identifiable par un logiciel utilisant des moyens, standard ou non, de communication | |
EP0283386A1 (fr) | Dispositif de commande à distance de la mise à feu d'un projectile | |
FR2591327A1 (fr) | Dispositif de programmation par contact pour fusee chronometrique de munition | |
FR2633653A1 (fr) | Systeme d'actionnement, notamment pour le verrouillage d'une enceinte a proteger | |
CA3202387A1 (fr) | Procede d'installation d'un ensemble de detonateurs electroniques et procede de mise a feu associe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB SE |
|
17P | Request for examination filed |
Effective date: 19940221 |
|
17Q | First examination report despatched |
Effective date: 19950712 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DAVEY BICKFORD |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB SE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970731 |
|
REF | Corresponds to: |
Ref document number: 69312609 Country of ref document: DE Date of ref document: 19970904 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2105166 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120814 Year of fee payment: 20 Ref country code: SE Payment date: 20120918 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120810 Year of fee payment: 20 Ref country code: FR Payment date: 20120803 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121109 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20130123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69312609 Country of ref document: DE Representative=s name: PATENTANWAELTE VOLLMANN & HEMMER, DE Effective date: 20130227 Ref country code: DE Ref legal event code: R081 Ref document number: 69312609 Country of ref document: DE Owner name: DAVEY BICKFORD, FR Free format text: FORMER OWNER: BICKFORD, DAVEY, ROUEN, FR Effective date: 20130227 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69312609 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20130905 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130905 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130907 |